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Exclusively prioritizing the precision of energy prediction frequently proves inadequate in satisfying
multifaceted requirements. A heightened focus is warranted on assessing the rationality of potential
energy curves predicted by machine learning-based force fields (MLFF), alongside evaluating the prag-
matic utility of these MLFF. This study introduces SWANI, an optimized Neural Network Potential
(NNP) stemming from the ANI framework. Through the incorporation of supplementary physical
constraints, SWANI aligns more cohesively with chemical expectations, yielding rational potential
energy profiles. It also exhibits superior predictive precision compared to the ANI model. Addi-
tionally, a comprehensive comparison is conducted between SWANI and a prominent Graph Neural
Network (GNN)-based model. The findings indicate that SWANI outperforms the latter, particularly
for molecules exceeding the dimensions of the training set. This outcome underscores SWANI’s
exceptional capacity for generalization and its proficiency in handling larger molecular systems.

1 Introduction
Molecular energy predictions play a pivotal role in a diverse array
of scientific and industrial applications, ranging from drug discov-
ery and materials science to environmental chemistry and cataly-
sis.1,2 The development of accurate and efficient methods for es-
timating molecular energies has been a longstanding challenge in
computational chemistry. Traditionally, computational chemistry
techniques can be used to simulate chemical systems through two
different approaches. The first approach, which relies on quan-
tum chemical (QC) methods, is computationally demanding and
is only suitable for small-sized systems. QC methods are some-
times referred to as first principle or ab initio methods since they
approximately solve the molecular Schrödinger equation3,4. The
second approach, which employs molecular mechanics (MM), can
model large systems like proteins but ignores electrons. Classical
MM views atoms and bonds as balls and springs, and calculates
energy as a function of nuclear positions only4.

The rapid advancement of computational chemistry has
spurred the development of novel techniques for predicting
molecular properties, enabling accelerated exploration of chemi-
cal space and facilitating insights into complex molecular behav-
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iors.3–8 Among these approaches, the neural network potential
(NNP), a machine learning-based model, has gained significant
attention for its capability to predict molecular energies with no-
table accuracy.9 The NNP, often referred to as a machine learn-
ing force field (MLFF), leverages the power of artificial neural
networks to capture intricate relationships between atomic coor-
dinates and corresponding potential energy surfaces.10–12 This
promises a more efficient alternative to traditional quantum me-
chanical calculations, making it an indispensable tool for molec-
ular simulations, drug discovery, and materials design.13–16

The core principle of the NNP lies in its ability to learn the un-
derlying potential energy function directly from a training dataset
containing molecular configurations and their corresponding ref-
erence energies.10 By efficiently approximating this complex
energy landscape, the NNP bridges the gap between accuracy
and computational efficiency, significantly reducing the compu-
tational cost compared to ab initio quantum methods. Numerous
studies have explored the NNP.10,13–15,17–19. Among these stud-
ies, kernel-based methods and neural networks (NN)-based meth-
ods are the most used to learn the potential enegy of molecules.
Kernel-based methods (e.g., GDML18 and sGDML20,21) can get
high performence in the case of limited samples, but due to the
limitations of Kernel Ridge Regression (KRR), they only gain lim-
ited benefits with the dataset grows. Beyond that, they are not
designed as unified MLFF models capable of predicting various
types of molecules. Pinheiro et al. summarized that NN-based
methods can be divided into two types based on whether the lo-
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cal descriptor is learnable: NN with fixed local descriptor (NN-
fLD) using fixed local descriptor such as Behler and Parrinello
symmetry functions (BPSFs)10 and atomic environment vectors
(AEVs)11 as a molecular representation; while NN with learned
local descriptor (NN-lLD) assign node vectors to each atom, using
message passing to update local chemical environment based on
graph (convolutional) neural networks (GNNs)22.

Despite its remarkable success, the NNP is not without limita-
tions. The inherent black-box nature of neural networks can hin-
der the model’s interpretability and may lead to predictions that
lack physical meaning. Moreover, the NNP’s performance can de-
grade when extrapolating beyond the training data range, making
it challenging to ensure accurate predictions for molecules in di-
verse conformational states. Addressing these challenges, recent
research has focused on enhancing the NNP’s accuracy, transfer-
ability, and physical interpretability.23–26

In this study, we improved molecular energy predictions by
incorporating physically constrained modifications into the Neu-
ral Network Potential. By introducing additional physical con-
straints and insightful adjustments, the modified model, referred
to as SWANI, aims to overcome the limitations of the conven-
tional NNP. This study builds upon the success of the ANI11 ap-
proach and leverages physically meaningful features to ensure
accurate asymptotic energy properties and overall smoothness.
In addition, we revised the training data set ANI-1x.27 Through
extensive evaluation, including comparisons with state-of-the-art
models, our experimental results demonstrate the enhanced ac-
curacy and transferability of the proposed model, especially ex-
hibit greater stability during molecular dynamics simulations. We
expect our framework to push the prediction of molecular proper-
ties to a real-time level and to be statistically meaningful to guide
the molecular simulations.

2 Methods

2.1 SWANI model architecture design

SWANI is based on the ANAKIN-ME (ANI) method that is one of
the popular transferable neutral network-based molecular poten-
tial.11 Figure 1 provides an overview of the SWANI architecture.
To offer a clearer understanding of our model, we will provide
a brief overview of the ANI model first. The ANI model consists
of a set of atomic number specific NNPs, denoted as {Fx}. For
the ith atom of a molecule with atomic number x, the atomic en-
vironment vector (AEV), G⃗i

x
= {G1,G2,G3, ...GM}, calculated by

molecular coordinates, is designed to give a numerical represen-
tation of both radial and angular features. The G⃗i

x
is then fed into

Fx to predict atomic energy contributions, Ei
x, and then to obtain

the total energy of a molecule, ET .

ET =
all atoms

∑
i

Ei =
all atoms

∑
i

Fx(G⃗i
x
) (1)

Although ANI demonstrates commendable performance in
terms of accuracy and computational efficiency, it tends to gener-
ate substantial errors when confronted with configurations falling
outside its training range. This limitation is partially attributable
to the data set’s construction and sampling methodology, which
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Fig. 1 Illustration of the SWANI architectural overview (left), and the
neural network structure (right).

predominantly comprises conformations situated near equilib-
rium states. It is underrepresented for conformations that are
far away from the equilibrium bond length. Including a signifi-
cant amount of non-equilibrium structures can overcome some of
those defects,28 however, it is not always possible for biomolec-
ular systems. Therefore, the short-range and long-range poten-
tial that struggles to be adequately trained via neural networks,
should be taken into account at the beginning of the model de-
sign. This phenomenon can be readily demonstrated through po-
tential energy curves of binary atomic systems, which exhibits
a direct relationship between potential energies and the inter-
atomic separation. As the separation between the atoms in-
creases, the energy approaches zero, indicating the absence of
contact between them. Conversely, at extremely close distances,
repulsive forces dominate, leading to a steep rise in potential
energy. The interplay between attractive and repulsive effects
reaches equilibrium at the minimum point of the energy curve.
As demonstrated in Figure 2, we conducted dissociation simula-
tions of the H2 molecule using a range of molecular configura-
tions that deviate from the equilibrium bond length. In the ab-
sence of physical constraints, most machine learning force field
(MLFF) models struggle to accurately represent potential energy
at close distances, as evidenced by the dissociation energy curves
for the original ANI model (Figure 2 ANI) and DimeNetPP (Figure
2 DimeNetPP), among others (details in Supporting Information).
Additionally, these energy curves exhibit anomalous fluctuations
at the equilibrium distance and fail to converge to zero as the
interatomic separation increases.

In order to overcome the constraints inherent in the initial
model, several modifications were introduced to enhance the
original version of the ANI model. The energy of free atoms (at-
omization energy) should be equal to 0. For the case where two
atoms are infinitely separated and there is no interaction between
them, the input AEV G⃗ is 0. To ensure the energy is equal to the
sum of the energies of the two free atoms, we removed additive
terms (bias) from every stage of the NNPs, resulting in a bias-free
NNPs (BF-NNPs). In addition to ensuring the correct prediction of
physical properties, bias is considered to be the culprit of overfit-
ting problem, when facing with configuration outside of the train-
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Fig. 2 Dissociation energy curves of the H2 molecule. The DimeNetPP
curve is predicted by the original DimeNetPP model.17 The ANI curve is
predicted by the original ANI model.11 The ANI(BF, ZBL) curve is calcu-
lated by ANI model with bias-free NNs and ZBL potential. The SWANI
curve is generated using SWANI model with bias-free, smooth-leakyReLU
NNs trained with spectral norm regularization (SN) and addition of ZBL
potential. All models were trained on the ANI-1x-re data set.

ing range29. Removing all additive constants allows the model to
obtain a stronger generalization. To compensate for the reduc-
tion in fitting ability resulting from the removal of the bias, we
incorporate a wider linear layer in our NNPs.

To better describe the short distance repulsion potential,
Ziegler-Biersack-Littmark (ZBL) nuclear repulsion potential30

was added in the total energy to capture the right physics while
atoms near each other. The ZBL potential is calculated using:

EZBL
i j =

1
4πε0

ZiZ je2

ri j
φ(ri j/a)+S(ri j) (2)

where e is the electron charge, ε0 is the electrical permit-
tivity of vacuum, Zi,Z j are the nuclear charges of the two
atoms, a = 0.46850/(Zi

0.23 + Z j
0.23), φ(x) = 0.18175e−3.19980x +

0.50986e−0.94229x + 0.28022e−0.40290x + 0.02817e−0.20162x and S(r)
is the switching function. The ZBL terms were added before the
model output layer. The total energy of a molecule predicted by
SWANI, ET has the form of a sum over all i “atomic energy con-
tributions” and ZBL potential energy between pairs of atoms:

ET =
all atoms

∑
i

Fx
BF (G⃗i

x
)+

all atoms

∑
i, j ̸=i

EZBL
i j (Zi,Z j,ri j) fcuto f f (ri j) (3)

Where fcuto f f is a cutoff function defined as Equation (6). Figure
2 ANI(BF,ZBL) shows the dissociation energy curve of H2 com-
puted by the ANI model that has removed the bias and included
the ZBL potential, which clearly exhibits the improvements of
the predicted potential energy at short and long internuclear dis-
tance.

Furthermore, when AEV is 0, the NN should be continuously
differentiable, and the forces (first derivative) and the Hessian
(second derivative) should be 0. To ensure this property, we pro-
posed a new activation function called smooth-leakyReLU activa-
tion function (SL), depicted as follows:

σ(x) =


x+b1 x > x1

αxn x0 < x ≤ x1

knegx+b0 x ≤ x0

(4)

here, α,n,kneg are hyperparameters. α,kneg are positive values.
n should be a positive odd value to ensure monotonicity of the
activation function. x0,x1,b0,b1 are values adjusted to α,n,kneg to
ensure the continuity and differentiability of the activation func-
tion.

2.2 Modified atomic environment vectors

The molecular representation used in this model is the modified
version of atomic environment vectors (AEVs) from ANI model.11

The AEV is composed of radial and angular function to probe the
local chemical environment around the atom. To approximate
the local atomic environment and the effects attenuating over dis-
tance, a piecewise cutoff function is applied:

fcuto f f (ri j) =

0.5× cos( ri jπ

rcuto f f
)+0.5 if ri j ≤ rcuto f f

0 if ri j > rcuto f f
(5)

where ri j is the distance between the atom i and j, and rcuto f f is
the cutoff radius that is assigned manually.

The original radial and angular environments were examined
by two Gaussian distribution functions, which was originally from
Behler and Parrinello symmetry function10. However, due to the
symmetry of Gaussian function, the two sides of the equilibrium
distance have the same results, which means the long-range effect
is the same as the short-range one within certain limits. There-
fore, the sigmoid function was applied in the radial function, in-
stead. The radial function is as shown in Equation (6). The angu-
lar function is the same as the ANI method11 without any modi-
fications as shown in Equation (7). Each function is over a batch
of η , rs, θs, and ζ parameters.

GR
m(ri j,rs)=∑

allatoms
j ̸=i sigmoid(−η(ri j−rs))· fC(ri j,rcuto f f )· fC(rs,2rcuto f f )

0.5

(6)

GA
m = 21−ζ

∑
allatoms
j,k ̸=i (1+ cos(θi jk −θs))

ζ e−η(
ri j+rik

2 −rs)
2

fC(ri j) fC(rik)

(7)

2.3 Spectrum norm regularization

In this section, we will elucidate the concept of spectral norm
regularization and its role in enhancing the performance of our
model. Spectral norm regularization (SN) has been commonly
employed to improve the generalizability of deep learning mod-
els. Notably, it has been effectively used in generative adversarial
networks (GANs) to address issues related to instability during
training and the necessity for fine-tuning hyperparameters to en-
sure convergence.31 Inspired by this successful application, we
anticipate that integrating spectral norm regularization into our
SWANI model will result in improved overall performance and
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enhanced smoothness.

Our primary objective is to achieve a more continuous and ro-
bust potential surface. Regarding model performance, We aim to
ensure that our model remains robust to small perturbations in
the input, as it will not be significantly affected by them. Specif-
ically, when conformations undergo slight changes in position or
angle, the energy predictions need to remain continuous and ro-
bust.

In our fundamental architecture, we employ a 3-layer bias-
free network, which can be described as xl = f (W lxl−1) where
l = 1, ...,L denotes the number of layer, xl−1 represents the out-
put of the (l − 1)th layer, f denotes the activation function, and
in mour model, we utilize the smooth-leakyReLU function. The
weight matrices for each layer are denoted as W l ∈ Rnl×nl−1 . The
parameter set θ =

{
W l}L

l=1 characterizes our NN, and it can be
described as fθ (x0) = xL, where x0 is the input and xL is the out-
put of the final layer L.

Therefore, we consider a small perturbation vector ξ with a
small l2 norm. Employing the smooth-leakyReLU activation func-
tion f , which is Lipschitz continuous with a Lipschitz constant of

1, we establish the relationship ∥ f (W l(x+ξ ))− f (W l x)∥2
∥ξ∥2

≤ ∥W l ξ∥2
∥ξ∥2

≤
σ(W l), where σ(W l) represents the spectral norm of W l . The

spectral norm is defined as : σ(W l)= max
ξ∈Rn,ξ ̸=0

∥W l ξ∥2
∥ξ∥2

, correspond-

ing to the largest singular value of W l .By controlling W l to limit
its spectral norm, the output of each layer can robustly handle
perturbed input.

Subsequently, we delve into the examination of the smoothness
property concerning the 3-layer bias-free network implemented
in SWANI. As demonstrated by Equation 8, the smoothness of
our model can be effectively governed by regulating the spectral
norm of each layer. To achieve this, we incorporate the spectral
norm regularizer, ∑

L
l=1 σ(W l)2, into the loss function. Through

the application of gradient descent, this regularization term ac-
tively works to reduce the spectral norms of W l , thereby foster-
ing enhanced smoothness within the model. Figure 2 SWANI(BF,
ZBL, SL, SN) show the dissociation energy curve of H2 computed
by the SWANI with SL, trained with SN. The curve appears to be
smoother overall.

∥ fθ (x+ξ )− fθ (x)∥2

∥ξ∥L
2

≤
∥∥KW LKW L−1...KW 1ξ

∥∥
2

∥ξ∥L
2

≤
L

∏
l=1

σ(W l) (8)

2.4 Dataset

Constructing an optimally varied data set tailored for the train-
ing of machine learning models is challenging. In this work, we
utilized the ANI-1x data set, but recalculated the molecular struc-
tures, and implemented further refined adjustments, resulting in
the creation of a data set referred to as ANI-1x-revision (ANI-1x-
re). The ANI-1x dataset encompasses nearly five million distinct
molecular conformations, derived from DFT calculations.27 This
compilation contains a subset of configurations that deviate from
equilibrium, including instances of covalent bond rupture scenar-
ios.

The prevalent understanding is that practical utilization of
spin-restricted Kohn–Sham density functional theory is limited
in its ability to precisely address bond-breaking phenomena.32

This is primarily due to the single-reference nature of the under-
lying wavefunction and the absence of functionals that encom-
pass robust correlation effects capable of surpassing this single-
reference constraint.33 Nonetheless, noteworthy advancements
have been made recently towards the practical implementation of
strong-correlation density functional theory methods.34,35 How-
ever, despite this progress, in scenarios where the introduction of
spin-symmetry breaking is acceptable, unrestricted Kohn–Sham
(UKS) methods are acknowledged for providing accurate energy
outcomes during bond-breaking occurrences along the majority
of the potential energy curve, particularly in the case of certain
straightforward diatomic molecules.36 Consequently, within our
data set, molecules manifesting bond-breaking attributes were
treated utilizing UKS methods.

The calculation of molecular systems characterized by strong
static electron correlation (SEC) present considerable computa-
tional challenges, necessitating a qualitative comprehension to
assess the suitability of approximate quantum chemistry (QC)
methods. To address this, Stefan Grimme and his colleagues have
introduced a straightforward static electron correlation diagnos-
tic that not only facilitates practical application but also unveils
the essence of static electron correlation.37,38 This diagnostic ap-
proach is based on fractional occupation density functional the-
ory (DFT) or finite temperature DFT, termed fractional occupa-
tion number weighted electron density (FOD).37 This diagnostic
employs the integration of the FOD across spatial coordinates,
yielding a single size-extensive parameter (designated as NFOD)
that serves as a global metric for quantifying SEC.37

Throughout this study, unless specified otherwise, the optimiza-
tion of structures was conducted using the r2SCAN-3c level of
theory, a methodology introduced by Stefan Grimme and cowork-
ers in 2021.39 This approach has demonstrated superior perfor-
mance compared to prominent hybrid-DFT/QZ approaches, while
maintaining computational costs at significantly lower orders of
magnitude.39 The FOD analysis was applied to detect molecu-
lar configurations manifesting multi-reference (MR) effects. No-
tably, a substantial and broadly delocalized FOD, where NFOD ex-
ceeds the empirically chosen threshold of 0.05, signifies a genuine
MR scenario, which is subsequently treated using UKS-DFT. The
FOD analysis was conducted employing the default FOD-theory
level (TPSS/def2-TZVP) with a smearing temperature of 5000K.
The wavefunction theory computations were conducted employ-
ing the ORCA software suite with version 5.0.40,41

To further analyze the extensibility and transferability of our
model, we employed the COmprehensive Machine-learning Po-
tential (COMP6) as test set.42 The COMP6 benchmark, proposed
by Smith et al., encompasses six rigorous benchmarks that collec-
tively span a wide spectrum of organic and bio-chemical space, for
molecules containing C, N, O, and H atoms. These six benchmark
subsets are referred to as S66x843, GDB7to9, GDB10to1344–46,
Tripeptides, ANI-MD and DrugBank47.
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2.5 Training

We train our SWANI model on a data set comprising over 80%
of the 4.95 million data points in the ANI-1x-re data set. The re-
maining 20% of the data points are used as the validation set.
During training, SWANI model was optimized to predict both
molecular energies and forces. Notably, the forces predicted by
the model correspond to the analytical derivatives of the molecu-
lar energies, ensuring the conservation of energy during simula-
tion runs. The loss function consists of the energy term and force
term:

L =
1
N

N

∑
i=1

[
1

Mi
1
2
(Êi −Ei)

2 +
l0
Mi

Mi

∑
j=1

( f̂i j − fi j)
2

]
(9)

where Êi and F̂i j are the energies and forces for a given molecule,
and Ei and Fi j are the ground truth of energies and forces, re-
spectively. θ is the trainable parameters. l0 is the weight of force
loss, we use l0 = 0.1 to control the component of energy and force
during training. N is the number of the molecules, and Mi is the
atoms of i-th molecule. The MSE loss of energy and force is ap-
propriately scaled by the square root of the number of atoms and
the number of atoms, respectively48.

In order to train smooth neural NNPs, a spectral norm regular-
ization term was incorporated into the loss function to penalize
the upper bounds of the Lipschitz constants. The loss function
with spectral norm relularization was:

L̂ = L+α

all atoms

∑
i

e−
nx
2

L

∑
l=1

σ(W l
x )

2 (10)

Where α = 1.0× 10−6 is the base regularization factor, x is the
atomic number of i-th atom, e−

nx
2 is the atomic number specific

regularization factor, where nx refers to the number of outermost
electrons. Considering the principle of size-extensivity, it is ex-
pected that the energy will exhibit a positive correlation with the
number of electrons. σ(W l

x ) is the spectral norm of weight matrix
of l-th layer for the atomic number specific NNPs.

The network weights are optimized with SGD using the ADAM
optimizer49. An initial learning rate of 0.001 is used with the
other ADAM parameters set to β1 = 0.9, β2 = 0.99, and ε = 1.0×
10−8, as recommended by the ADAM authors. Training of SWANI
model were run for 1000 epochs utilizing the ReduceLRonPlateau
schedule with patience of 50 epochs and decay factor of 0.5 with
a batch size of 2500.

2.6 Explanation by SHAP based feature analysis

To analyze the different prediction performance of the GNN-based
model and AEV-based model, we constructed machine learning
model utilizing molecular features to predict the error associated
with each model’s predictions. We computed a set of 204 molec-
ular descriptors for each molecule using the Descriptors module
from the Python RDKit50, which can be categorized as follows:
general descriptors (e.g., molecular weight), topological descrip-
tors (e.g., connectivity index), fragment descriptors (e.g., number
of aromatic amines), etc.

To deal with heterogeneous tabular data of descriptors51, we

employed Random Forest (RF) model52 to predict performance
of different model. Mean absolute error (MAE) of the energy of
each molecule is used as the regression target of RF model, and
we perform log transformation on the MAE to solve the problem
that some values of MAE are too large.

Acknowledging the limited interpretability of RF models as
black-box models53. We employed SHAP54 (SHapley Additive
exPlanations) framework to interpret predictions. Based on co-
operative game theory, the concept of Shapley values55 has been
used to develop the SHAP framework, which proposes SHAP val-
ues as a comprehensive metric for assessing the feature impor-
tance. SHAP values assign a specific contribution to each feature,
indicating the impact on predictions when that feature is taken
into account. This enables sample-wise explanations, allowing
the identification of crucial molecular features that significantly
contribute to prediction errors.

3 Results and discussion
To establish the comprehensive precision and adaptability of
our model, we subjected it to evaluation across six benchmark
datasets: S66X8, GDB-11, GDB-13, Tripeptide, ANI-MD bench
and Drugbank. A comparative analysis was performed against the
initial ANI model48 as well as three prominent models grounded
in message passing, namely SchNet56, DimeNetPP17,57, and
SphereNet58. Notably, all baseline models were trained employ-
ing 80% of the ANI-1x-re dataset’s data points, with the remaining
20% reserved for validation. In conformity with established prac-
tices, configurations for all baseline methods were either adopted
from referenced literature or sourced directly from the original
authors.

3.1 Prediction performance of potential energies and forces

To assess the predictive efficacy of potential energy and force,
as well as the model’s transferability, we subjected both the
SWANI model and the baseline models, trained on ANI-1x-re,
to evaluation using the COMP6 dataset. Given the GPU mem-
ory constraints associated with SphereNet and DimeNetPP, cer-
tain molecules with a substantial number of atoms (Max atoms >
110) were omitted from the ANI-MD benchmark. The assessment
involved a comparative analysis between the SWANI model and
the baseline models, with the root mean squared error (RMSE)
serving as the designated metric for energy and force evaluation.
The summary of these comparative outcomes in terms of RMSE
for both energy (Table 1) and forces (Table 2) is presented.

While SphereNet and DimeNetPP exhibit commendable perfor-
mance on ANI-1x-re and smaller datasets (s66x8, gdb11, and
gdb13), models based on AEV representations, such as ANI
and SWANI, surpass them on the ANI-MD bench and Drugbank
datasets. Notably, in contrast to Graph Neural Network (GNN)-
based models, SWANI demonstrates robustness against variations
in atom counts. Furthermore, SWANI demonstrates superior per-
formance relative to ANI in terms of RMSE for energy across all
datasets and for forces in the majority of datasets, except for
s66x8 and Drugbank. These findings compellingly indicate that
our introduced modifications indeed enhance the performance of
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the original ANI model.

3.2 Molecular feature attribution analysis of model predic-
tion errors

For the purpose of elucidating the factors contributing to model
prediction discrepancies, a molecular feature attribution anal-
ysis is conducted within the Drugbank dataset. The dataset,
comprising 13,379 configurations, is segregated into 761 distinct
molecules according to their respective molecular classifications.
Subsequently, a collection of 204 two-dimensional (2D) molecu-
lar descriptors is employed as features for each molecule, facili-
tating the in-depth investigation of model prediction errors.

A RF model was employed with a 10-fold cross-validation to
estimate the test set error. In each of the 10 cross-validation it-
erations, SHAP (SHapley Additive exPlanations) values of molec-
ular descriptors were computed for the corresponding test set.
Notably, the outcomes of molecular feature attribution analysis
obtained from both DimeNetPP and SphereNet, as well as SWANI
and ANI, manifest a substantial level of congruence. In our com-
parative assessment between GNN-based and AEV-based models,
our primary focus centers on scrutinizing the distinctions between
DimeNetPP and SWANI. This emphasis is reflected in 3a and 3b,
which depict correlation plots of prediction errors in DimeNetPP
and SWANI against their respective predicted values. Correspond-
ingly, Figure 3c and 3d exhibit SHAP summary plots, offering
insight into the feature attribution of prediction errors for both
models.

Both SWANI and DimeNetPP demonstrate enhanced accuracy
in their predictions for molecules characterized by lower Heavy-
AtomMolWt, wherein HeavyAtomMolWt signifies the molecular
weight excluding hydrogen atoms. Notably, the molecular con-
nectivity indices (Chi3v, Chi2v, Kappa1)59 exert a pivotal influ-
ence on the prediction errors inherent to the DimeNetPP mod-
els. DimeNetPP exhibits elevated errors in predicting molecules
marked by higher Chi indices, specifically Chi3v. The index or-
der signifies the graph edges within the corresponding subgraph,
with the subscript ’v’ denoting its valence nature, which is es-
tablished based on valence delta values. Conversely, SWANI en-
counters increased errors in predicting molecules associated with
higher BertzCT60 values, a topological index reflecting complex-
ity and escalating with augmented atom numbers, atom types,
and bond types. Furthermore, SWANI reveals substantial inaccu-
racies in predicting molecules characterized by exceedingly low
BCUT2D MRLOW (molar refractivity eigenvalue low)61 values.

In order to facilitate a more distinct comprehension, our fo-
cus narrowed down to two specific molecules: Alectinib and
Hydrocortamate. Despite sharing a comparable HeavyAtom-
MolWt, these molecules exhibit disparate prediction outcomes
in DimeNetPP and SWANI. Specifically, Hydrocortamate presents
suboptimal predictive results in DimeNetPP, while Alectinib en-
counters analogous challenges in SWANI predictions. Figure
4a and 4b illustrate the 2D molecular structures of these two
molecules, while Figure 4c and 4d exhibit their corresponding
SHAP waterfall diagrams.

In the context of DimeNetPP, the intricate nature of predict-

a) b)

c) d)

Fig. 3 a) and b) Correlation plots illustrating the relationships between
the MAE reference values (log(MAE)re f ) for DimeNetPP and SWANI,
with their corresponding predictions generated by the RF model using
molecular features (log(MAE)pred). c) and d) The SHAP summary plots
showcasing the top-10 important molucule features (sort by gloabl fea-
ture importance: mean(|SHAP|)) for DimeNetPP and SWANI, respec-
tively. Each dot on the plot represents a molecule, where the color of the
dot indicates the size of a feature value associated with the molecule.
The x-axis represents the SHAP values (influence of this feature on the
prediction result). Larger SHAP values indicate that a molecule’s pres-
ence of this particular feature poses challenges for the model in making
accurate predictions (with higher MAE).

ing Hydrocortamate is rooted in its elevated second and third-
order chi indices. The elevated chi indices originating from the
intricate and extensive interatomic connectivity patterns within
the molecule give rise to heightened structural complexity, con-
sequently posing a challenge for precise predictions using the
DimeNetPP model. The predictive performance of DimeNetPP is
compromised when dealing with larger molecules compared to
those present in the training set, primarily due to data limitations,
particularly concerning higher Chi indices.

Conversely, Alectinib’s molecular configuration encompasses a
diverse array of bond types, resulting in a heightened BertzCT
value. This heightened complexity poses a challenge for SWANI
in precisely forecasting Alectinib’s properties, thereby highlight-
ing the inherent difficulty in AEV-based feature engineering when
modeling molecules containing an assortment of bond and atom
types.

3.3 Molecular Dynamics simulation
In order to assess the efficacy of all models within the context
of molecular dynamics (MD) simulations, we adhere to the MD
evaluation framework introduced by Fu et al.. This evaluation in-
volves the selection of five molecules sourced from the Drugbank
dataset, encompassing atom counts ranging from 30 to 71. For
each of these molecules, we randomly designated five conforma-
tions to serve as the initial inputs. Subsequently, we executed a
total of five ab initio molecular dynamics (AIMD) simulations and
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Table 1 Comparisons between SWANI model and other models in terms of RMSE of energy in kcal mol−1. The best results are shown with underlines.

RMSE (kcal mol−1 ) Max atoms SchNet SphereNet DimeNetPP ANI SWANI (ours)
ANI-1X (validation) 63 3.64 0.83 1.06 2.14 1.85
s66x8 34 6.37 0.59 0.77 4.73 4.58
gdb11 32 3.04 0.59 0.74 2.28 2.16
gdb13 38 6.28 1.15 1.40 3.95 3.71
tripeptide 69 119.54 4.23 3.83 4.36 3.50
ANI-md bench 103 227.32 9.81 9.88 2.58 2.51
Drugbank 140 76.26 5.75 5.47 4.96 4.70

Table 2 Comparisons between SWANI model and other models in terms of RMSE of forces in kcal mol−1 Å−1. The best results are shown with
underlines.

RMSE (kcal mol−1 Å−1) Max atoms SchNet SphereNet DimeNetPP ANI SWANI (ours)
ANI-1X (validation) 63 10.04 2.72 3.22 4.09 3.70
s66x8 34 6.22 5.84 1.00 2.26 2.30
gdb11 32 7.65 1.55 1.98 3.41 3.29
gdb13 38 11.25 2.29 2.79 4.89 4.80
tripeptide 69 29.50 2.53 2.47 4.77 2.93
ANI-md bench 103 21.30 3.50 3.65 2.92 2.71
Drugbank 140 20.87 3.41 4.50 3.34 3.34

a) b)

c) d)

Fig. 4 a) and b) 2D molecular structure diagrams of Hydrocortamate and Alectinib. c) and d) The waterfall plots of Hydrocortamate and Alectinib,
illustrating the top-10 important molecule features to predict the model prediction errors of DimeNetPP and SWANI, respectively.
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a)

time = 28800 fs time = 29610 fs

time = 29715 fs time = 30045 fs

b)

Fig. 5 Examples of simulation collapse when applying DimeNetPP to
Latanoprost. a) depicts the time-dependent curve of the maximum force
exerted on the atoms within the molecule, showcasing the occurrence of
collapse. The orange cross indicates the visualized time steps in b). b)
illustrates the process of system collapse in the MD simulation, with the
circled portion is the notable nonphysical region.

five MLFF MD simulations for every molecule. To accommodate
our computational resources, the AIMD simulations are limited to
a duration of 10 picoseconds, whereas the MLFF MD simulations
extend to 50 picoseconds. All simulations were conducted under
isothermal conditions at a consistent temperature of 300 K, em-
ploying a Berendsen thermostat, and utilizing a time step of 0.5
fs.

Furthermore, we note the potential occurrence of simulation
collapse within a brief temporal interval subsequent to a phase
of stable simulation. This collapse phenomenon is illustrated in
Figure 5, which closely resembles a comparable collapse scenario
proposed by Fu et al. In specific localized regions (as indicated by
the red circle in Figure 5b ), the collision of two hydrogen atoms
gives rise to an anomalous configuration, subsequently inducing
substantial forces causing the hydrogen atoms to repel one an-
other. This initiates a cascading effect, leading to the overall sys-
tem collapse, thereby causing the disruption of numerous bonds
within the molecule.

We employed a stability criterion to further identify in-
stances of simulation collapse.62 Within the framework of flex-
ible molecules, we assess stability by scrutinizing variations in
bond lengths. Specifically, we classify a simulation as entering an
"unstable" state at a specific time instant T when the following
condition is met:

max
(i, j)∈B

∣∣(∥∥xi(T )− x j(T )
∥∥−bi, j)

∣∣> ∆ (11)

In this expression, B denotes the set of all bonds, i and j represent
the two terminal atoms of the bond, bi, j signifies the equilibrium
bond length, and ∆ is a predetermined threshold. For our analy-
sis, we uniformly set ∆ to 20 Å for all molecules under considera-
tion.

To assess the credibility of a configuration within the MD tra-
jectory, the distribution of interatomic distances serves as a viable
evaluation metric.62 This metric offers a compact representation
of the three-dimensional structure in a reduced-dimensional for-
mat. Given a specific configuration denoted as x, the interatomic

distance distribution h(r) is computed as follows:

h(r) =
1

N(N −1)

N

∑
i

N

∑
j ̸=i

δ (r−
∥∥xi − x j

∥∥) (12)

where r signifies the distance from a reference particle, N denotes
the total number of particles, the indices i and j denote the pairs
of atoms contributing to the distance statistics, and δ represents
the Dirac Delta function utilized for value distribution extraction.
The computation and averaging of h(r) are performed exclusively
using frames derived from the stable phase within the 10ps total
simulation, spanning from beginning to the point of collapse.

The comparison results of MD simulation are summarized in
Table 3. When applying the GNN-based model to molecules with
a substantial number of atoms, the MD simulation reveals a col-
lapse phenomenon. In contrast, the AEV-based model does not
exhibit such behavior, remaining stable throughout the MD sim-
ulation. SWANI outperforms the other models in h(r) metrics for
three out of five molecules and obtains the highest average score.

The summary of MD simulation comparison results is provided
in Table 3. For molecules with a substantial number of atoms,
the application of the GNN-based model possibly yields a collapse
phenomenon in the MD simulation. In contrast, the AEV-based
model displays a conspicuous absence of such behavior, main-
taining stability throughout the entirety of the MD simulation.
Notably, SWANI surpasses other models in terms of h(r) metrics
for three out of the five molecules, achieving the highest average
score among them.

4 Conclusions
In this work, we present SWANI, a modified version of NNP based
on ANI. By incorporating additional physical constraints, SWANI
achieves a better alignment with chemical expectations by ob-
taining more rational potential energy curves. It also demon-
strates significantly higher prediction accuracy when compared to
ANI. We also conducted a comparative analysis between SWANI
and the currently popular GNN-based model. Our experiment
unveiled that SWANI outperforms the latter when dealing with
molecules larger than those in the training set. This observation
serves to demonstrate SWANI’s remarkable generalization perfor-
mance and its scalability to handle large systems effectively.

However, SWANI exhibits lower accuracy compared to
DimeNetPP and SphereNet when dealing with molecules contain-
ing a small number of atoms. The result of molecular feature attri-
bution analysis of model prediction errors indicates that BertzCT
significantly contributes to limiting the accuracy of SWANI, pos-
sibly due to the challenge of AEV in handling multiple types of
bonds and atoms. Molecular characterization through AEV is cru-
cial for AEV-based NNPs. Future research should focus on im-
proving AEV’s ability to characterize complex molecules and en-
hancing its discrimination of different bonds and atom represen-
tations. These efforts can address SWANI’s limitations and en-
hance its overall performance.
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Table 3 Results on DrugBank. The distribution of interatomic distances h(r) MAE is unitless, in 10−3. Standard deviation from 5 simulations is in
subscript for applicable metrics. Three of these molecules did not generate enough stable trajectories during the MD simulation to produce h(r) when
SchNet was applied to them.

model SchNet SphereNet DimeNetPP ANI SWANI
molecule (Atoms)
N-Acetylglucosamine stability 1.00(0) 1.00(0) 1.00(0) 1.00(0) 1.00(0)
(30) h(r) 7.39(0.15) 5.76(1.96) 4.94(1.22) 4.38(0.49) 4.82(0.57)
Spermine stability 0.05(0.02) 1.00(0) 1.00(0) 1.00(0) 1.00(0)
(40) h(r) - 7.75(3.50) 6.72(0.98) 7.84(4.25) 6.33(1.82)
Folic Acid stability 0.28(0.36) 1.00(0) 1.00(0) 1.00(0) 1.00(0)
(51) h(r) 4.82(0) 3.64(0.31) 3.41(0.38) 5.60(3.43) 3.30(0.25)
Valsartan stability 0.01(0.00) 0.50(0.31) 0.31(0.18) 1.00(0) 1.00(0)
(61) h(r) - 4.15(1.20) 5.52(3.09) 6.55(1.36) 3.84(0.67)
Latanoprost stability 0.00(0.00) 0.56(0.25) 0.53(0.09) 1.00(0) 1.00(0)
(71) h(r) - 3.86(3.59) 2.51(1.93) 4.92(3.03) 3.82(1.80)
Mean stability 0.27 0.81 0.77 1.00 1.00
(51) h(r) 6.10 5.03 4.62 5.86 4.42
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