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Abstract 

The terminal alkyne C≡C stretch has a large Raman scattering cross section in the “silent” region 

for biomolecules. This has led to many Raman tag and probe studies using molecules with this 

moiety. Computational investigation of these systems is vital to aid in the interpretation of the 

results. In this work, we develop a localized normal mode discrete variable representation (DVR) 

method for computing terminal alkyne vibrational frequencies and transition isotropic 

polarizabilities which can easily and accurately be applied to any terminal alkyne molecule. The 

errors of localization to the terminal alkyne moiety, anharmonic normal mode isolation, and 

discretization of the Born-Oppenheimer potential energy surface are quantified and found to 

oppose each other. This results in a method with low error compared to other anharmonic 

vibrational methods like VPT2 and experiment. Several density functionals are tested using the 

method, and TPSS-D3 is found to perform surprisingly well. Additionally, diffuse functions are 

found to be important for the accuracy of computed frequencies. Finally, the computation of 

vibrational properties like transition isotropic polarizabilities and the universality of the normal 

mode atomic displacements across molecules are demonstrated. 
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I. Introduction 

Infrared and Raman spectroscopy are invaluable tools for investigating the structure and 

dynamics of chemically complex systems such as biomolecules, liquids, solutions, molecular 

clusters, the atmosphere, and others.1–10 When possible, effective vibrational probes can be used 

to investigate specific aspects of these systems.1 For instance, OH, OD, and cyanide moieties 

are effective probes of the hydrogen bonding potential of an environment and carbonyls and 

nitriles are effective probes of the electric fields of an environment.11–22 An optimal vibrational 

probe is non-perturbative to the system and an investigation of the probe directly investigates the 

system property of interest. Recent work on the solvation of CO2 in ionic liquids exemplifies this; 

here, the CO2 was the probe of its own solvation dynamics.23–25 

The triple bond CC stretch of alkynes has long been used as a Raman tag in biomolecular 

and surface enhanced Raman spectroscopy studies.26–30 This vibration appears in the 

biomolecular “Raman window,” a portion of the spectrum where biomolecular systems rarely 

produce Raman scattering.9,31–33 In the prior tagging studies, the alkyne vibration was used mainly 

to show the presence of a material it was attached to. However, recent work has turned to 

exploring the terminal alkyne CC stretch as a possible vibrational probe.34–40 In a probe study, 

details of the lineshape, frequency, and intensity of the absorption are used to infer the alkyne 

probe’s molecular environment.  

We follow recent work at Haverford College and elsewhere showing that the terminal 

alkyne CC stretch vibrational mode is (1) an effective probe of biomolecular structure and 

dynamics and (2) independently sensitive to both its solvent and substituent.34,36,37 A third question 

remains unanswered: what, specifically, is the alkyne probe reporting on? There are several 

possibilities given the available experimental data. The work of Epstein et al. and Dong et al. 

implies that the terminal alkyne detects the hydrophilicity or hydrogen bonding potential of the 

environment.37,40 However, Romei et al. complicate this picture; they find that the terminal alkyne 

vibration is sensitive to a number of solvents with different properties.36 They correlate this 

sensitivity with empirical scales of the propensity of the solvent to donate electrons or polarize. 

Even so, it is possible that the factors which cause a probe’s frequency to shift between solvents 

are distinct from those that cause the frequency to shift between configurations in a single solvent, 

complicating the question of reporting. There are also possible substituent effects; some 

experiments have shown that electronic conjugation of the alkyne triple bond or adding sulfur or 

silicon atoms can shift the scatting frequency, change the scattering intensity, or modify the 

population lifetime.34,36,40–45 

In this paper, we take our first steps towards a full quantum chemistry and molecular 

dynamics investigation of what the alkyne vibration is specifically reporting on. Here, we develop 

a new method for calculating the frequency of a terminal alkyne which is compatible with 

snapshots extracted from molecular dynamics simulations. Our goals are to: 

1. Demonstrate that an isolated and localized discrete variable representation method is 

sufficient to compute the terminal alkyne CC-stretch normal mode vibrational frequency 

with good accuracy. 

2. Select one or more density functional theory methods which show good accuracy and 

speed for further examination in the presence of solvent in future work. 
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3. Propose a universal set of terminal alkyne CC stretch normal mode atom displacements, 

and show that the computed vibrational properties have the expected features. 

Our final method localizes, isolates, and discretizes the terminal alkyne CC-stretch 

vibrational normal mode. We quantify the errors associated with each of these assumptions; 

discretization is fairly benign, but localization and isolation errors are larger. Fortunately, these 

larger errors each shift the alkyne frequency in the opposite direction and nearly cancel out. We 

also attempt to lay out a particularly clear theoretical description of our employed discrete variable 

method in  Section II.  

Here, alkynes are dealt with in the gas phase, providing a solid foundation for future work 

in the solution phase. This also allows us to examine the effect of substituent on the alkyne 

frequency and other vibrational properties. We examine eight terminal alkyne molecules (Figure 

2). Six are particularly small, having four or less atoms heavier than hydrogen. These molecules 

can be examined using highly accurate electronic (CCSD(T) and MP2) and vibrational (TOSH 

and VPT2) structure methods. These molecules will be used in the first section of our results to 

quantify errors associated with localization, isolation, and discretization. The remaining molecules 

are used to quantify substituent effects and explore the accuracy of a set of model chemistries. 

II. Theory 

An anharmonically isolated normal mode can be treated as quantum particle in a single dimension 

with the Hamiltonian 

�̂� =
�̂�𝑄
2

2𝜇𝑄
+ �̂�(𝑄) (1) 

 

where �̂�(𝑄) is the potential energy operator as a function of the normal mode coordinate 𝑄  and 

�̂�𝑄 is the momentum operator conjugate to that coordinate.46 The normal mode coordinate can be 

written as a sum over atomic displacements away from the optimized geometry 

 

𝑄 =∑
𝜕𝑄

𝜕𝑐𝑗
(𝑐𝑗  − 𝑐𝑗,0)

3𝑁

𝑗=1

(2) 

 

where 𝑁 is the number of atoms (so 3𝑁 is the number of cartesian coordinates), 𝑐𝑗 is the 𝑗 th 

atomic cartesian coordinate, and 𝑐𝑗,0 is the 𝑗 th optimized atomic cartesian coordinate.46 If all the  

𝑐𝑗 = 𝑐𝑗,0, the molecular geometry is optimized, the energy is at a minimum, and 𝑄 = 0. A normal 

mode vibration changes the molecular geometry according to the derivatives 
𝜕𝑄

𝜕𝑐𝑗
. The inverses of 

these derivatives, 
𝜕𝑐𝑗

𝜕𝑄
, are printed out by most quantum chemistry programs following a harmonic 

frequency calculation and are often called “normal mode atomic displacements.”46 The reduced 

mass for a normal mode is given by  
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(3) 

 

where 𝑚𝑗 is the mass of the atom with cartesian coordinate 𝑐𝑗 and the other symbols retain their 

meaning.47 In the harmonic oscillator approximation, the potential energy of the vibrational 

Hamiltonian is expanded in a Taylor series about the minimum energy position. By definition, the 

normal mode coordinate has a value of zero at the minimum energy position. This gives 

 

�̂� =
�̂�𝑄
2

2𝜇𝑄
+∑(

𝜕𝑛𝑉(𝑄)

𝜕𝑄𝑛
)
𝑄=0

�̂�𝑛

𝑛!

∞

𝑛=0

(4) 

 

The 𝑛 = 0 term (the energy of the optimized geometry) can be arbitrarily set to zero. If 𝑄 ≈ 0, then 

the first order term is nearly zero because the first derivative at a stationary point is zero. The 

higher order terms will also be small since (1) 𝑄 ≈ 0 and is being raised to increasing exponents 

and (2) the dividing factorial terms increase as the order of the expansion increases. The most 

slowly shrinking term of the potential as 𝑄 → 0 is the second order term, so we get 

�̂� =
�̂�𝑄
2

2𝜇𝑄
+
1

2
(
𝜕2𝑉(𝑄)

𝜕𝑄2
)
𝑄=0

�̂�2 (5) 

 

which is the harmonic oscillator Hamiltonian for which the solutions are well known.46,48 The most 

popular techniques for including anharmonicity are based on including the third and fourth order 

terms in the Hamiltonian, but still require the first derivative of the energy to be nearly zero, 
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(
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)
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The vibrational configuration interaction (VCI), second-order vibrational perturbation theory 

(VPT2), vibrational self-consistent field (VSCF), and transition optimized shifted Hermite (TOSH) 

methods all start with this fourth order expansion.49–52 While all of these methods are very 

effective, they require the molecular geometry of interest to be well optimized using the same 

method and basis set as is used in the frequency calculation. These methods can be extended to 

include the effects of anharmonic coupling between different normal modes fairly easily, by 

including the appropriate third and fourth order mixed partial derivatives.49 However, we wish to 

eventually compute vibrational frequencies of one specific normal mode for snapshots from 

molecular dynamics simulations. The molecules sampled will not necessarily even have 

geometries that are optimized according to the dynamical force field! Thus, we require a method 

for calculating the vibrational Hamiltonian which does not assume the first derivative of the 

potential energy is zero. 
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The discrete variable representation (DVR) method can also be used to compute 

vibrational states.53 In this method, we again start with the normal mode vibrational Hamiltonian, 

 

�̂� =
�̂�𝑄
2

2𝜇𝑄
+ �̂�(𝑄) (7) 

 

We then discretize the normal mode - we select a grid of 𝑃  normal mode coordinate points 

𝑄1, 𝑄2, 𝑄3…𝑄𝑃 equally spaced by 𝛥𝑄 to investigate. These normal mode coordinate values each 

represent a particular molecular geometry (Figure 1).  

 

 
Figure 1. The CC stretch normal mode coordinate for the propyne molecule at MP2/aug-cc-pVTZ. See 

Eq. 2 for the definition of the normal mode coordinate, 𝑄 . Per that definition, 𝑄 = 0.0 Å corresponds to the 

optimized structure of the molecule. Other values of 𝑄  correspond to different molecular structures. For 

example, the C ≡ ￼C 
𝜕𝑟𝑐𝑐

𝜕𝑄

𝜕𝑟𝐶≡𝐶
𝜕𝑄

 is positive. Because of this, the C ≡ ￼C bond length is larger than 

optimum when Q is positive and is smaller than optimum when 𝑄  is negative.  

  

Under the Born-Oppenheimer approximation, the potential energy at a particular grid point is the 

energy of nuclear repulsion plus the ground state electronic energy for that atomic configuration, 

 

𝑉(𝑄𝑖) =∑∑
𝑍𝑗𝑍𝑘

𝑅𝑗𝑘(𝑄𝑖)

𝑁

𝑘>𝑗

+ ⟨𝜓(𝑄𝑖)|ℎ̂(𝑄𝑖)|𝜓(𝑄𝑖)⟩

𝑁

𝑗=1

(8) 

 

where 𝑁  is the number of atoms in the molecule, 𝑍𝑗 is the charge of nucleus 𝑗 , 𝑅𝑗𝑘(𝑄𝑖) is the 

distance between atoms 𝑗  and 𝑘  at normal mode grid point 𝑖 , |𝜓(𝑄𝑖)⟩ is the ground state 

electronic wavefunction at normal mode grid point 𝑖 , and ℎ̂(𝑄𝑖) is the electronic Hamiltonian at 

normal mode grid point 𝑖 .48 This expression defines a Born-Oppenheimer potential energy surface 

(PES). Once the PES at the grid points has been collected, the vibrational Schrödinger equation 

can be solved. Because our PES information has been collected specifically at the grid points, we 

expand our vibrational eigenstates in a basis of grid point position eigenfunctions, |𝑄𝑖 ⟩.
53 This 

basis has the following properties: 

⟨𝑄𝑖|𝑄𝑗⟩ = 𝛿𝑖𝑗 (9) 

 

⟨𝑄𝑖|�̂�|𝑄𝑗⟩ = 𝑄𝑖𝛿𝑖𝑗 (10)  
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⟨𝑄𝑖|�̂�(𝑄)|𝑄𝑗⟩ = 𝑉(𝑄𝑖)𝛿𝑖𝑗 (11) 

 

where 𝑄𝑖 is the value of the normal mode coordinate at grid point 𝑖 , and 𝛿𝑖𝑗 is the Kronecker delta 

function. In this basis, the normal mode position operator and functions of that operator are 

diagonal. There are several ways to define such a basis, but this property is central to the DVR 

method.53–56 Given such a basis, it can be shown that (in atomic units)  

 

⟨𝑄𝑖 |
�̂�𝑄
2

2𝜇𝑄
|𝑄𝑗⟩ =

(−1)𝑖−𝑗

2𝜇𝑄Δ𝑄2

{
 

 
𝜋2

3
,          𝑖 = 𝑗

2

(𝑖 − 𝑗)2
,    𝑖 ≠ 𝑗

(12) 

 

Interestingly, this result does not depend on the details of the grid point basis, but is the result so 

long as the |𝑄𝑖⟩ are evenly spaced grid point position operator eigenfunctions.53,54,56 This result is 

only exact in an infinite basis of grid points and grid point position eigenfunctions (i.e. when 𝑃 →

∞ and Δ𝑄 → 0) with infinite extent (i.e. 𝑄1 → −∞ and 𝑄𝑃 → ∞).53,55,56 However, in most cases, the 

kinetic energy converges so long as the grid spacing 𝛥𝑄 is less than about 10 pm, the number of 

grid points 𝑃 is greater than about 10, and the extent is large enough that �̂�(𝑄1) and �̂�(𝑄𝑃) are 

each at least 10 × the energy spacing from the harmonic oscillator approximation.54,55,57–62 With 

this, we can construct the vibrational Hamiltonian matrix as  

 

�̂�𝑖𝑖′ = ⟨𝑄𝑖|�̂�|𝑄𝑗⟩ =

(

 
(−1)𝑖−𝑗

2𝜇𝑄Δ𝑄2

{
 

 
𝜋2

3
,          𝑖 = 𝑗

2

(𝑖 − 𝑗)2
,    𝑖 ≠ 𝑗

)

 + 𝑉(𝑄𝑖)𝛿𝑖𝑗 (13) 

 

Note that because the |𝑄𝑖 ⟩ are not vibrational eigenfunctions, the vibrational Hamiltonian matrix 

should generally not be diagonal in their basis. Upon diagonalization of the Hamiltonian, we obtain 

the vibrational eigenvalues, 𝐸𝑎 , and eigenstates, |𝛹𝑎⟩. The vibrational eigenstates will be weighted 

sums of the original grid point basis functions 

 

|𝛹𝑎⟩ =∑𝑒𝑖𝑎|𝑄𝑖⟩

𝑃

𝑖=1

(14) 

 

where 𝑒𝑖𝑎 is the weighted contribution of |𝑄𝑖⟩ to eigenstate |𝛹𝑎⟩ . The absolute square of each 𝑒𝑖𝑎 

is the probability of the molecule having normal mode coordinate value 𝑄𝑖 if it is in eigenstate 𝛹𝑎, 

i.e. 𝑝𝑎(𝑄𝑖) = |𝑒𝑖𝑎|
2 = 𝑒𝑖𝑎

∗ 𝑒𝑖𝑎. These eigenstates are orthonormal 

 

⟨𝛹𝑎|𝛹𝑏⟩ = ∑∑𝑒𝑖𝑎
∗ 𝑒𝑗𝑏⟨𝑄𝑖|𝑄𝑗⟩

𝑃

𝑗=1

𝑃

𝑖=1

=∑𝑒𝑖𝑎
∗ 𝑒𝑖𝑏

𝑃

𝑖=1

= 𝛿𝑎𝑏 (15) 
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and we can use them to calculate normal mode position expectation values 

 

⟨𝑄⟩𝑎 = ⟨𝛹𝑎|�̂�|𝛹𝑎⟩ =∑∑𝑒𝑖𝑎
∗ 𝑒𝑗𝑎⟨𝑄𝑖|�̂�|𝑄𝑗⟩

𝑃

𝑗=1

𝑃

𝑖=1

=∑|𝑒𝑖𝑎|
2𝑄𝑖

𝑃

𝑖=1

=∑𝑝𝑎(𝑄𝑖)𝑄𝑖

𝑃

𝑖=1

(16) 

  

The vibrational eigenstates can be used to calculate useful vibrational properties such as the 

transition dipole moment and the transition isotropic polarizability. The transition dipole moment 

𝜇𝑎𝑏 is related to the probability of absorption in infrared spectroscopy experiments and can be 

computed as 

 

𝜇𝑎𝑏 = ⟨𝛹𝑎|𝜇(𝑄)|𝛹𝑏⟩ =∑∑𝑒𝑖𝑎
∗ 𝑒𝑗𝑏⟨𝑄𝑖|𝜇(𝑄)|𝑄𝑗⟩

𝑃

𝑗=1

𝑃

𝑖=1

=∑𝑒𝑖𝑎
∗ 𝑒𝑖𝑏𝜇(𝑄𝑖)

𝑃

𝑖=1

(17) 

 

where 𝜇(𝑄) is the three-dimensional dipole moment surface along the normal mode; the 𝜇(𝑄𝑖) 

are the molecular dipole moments at each of our 𝑃 grid points.25,63,64 The transition isotropic 

polarizability 𝛼𝑎𝑏 is related to the probability of absorption in Raman spectroscopy experiments 

and can be computed as 

 

𝛼𝑎𝑏 = ⟨𝛹𝑎|�̂�(𝑄)|𝛹𝑏⟩ =∑∑𝑒𝑖𝑎
∗ 𝑒𝑗𝑏⟨𝑄𝑖|�̂�(𝑄)|𝑄𝑗⟩

𝑃

𝑗=1

𝑃

𝑖=1

=∑𝑒𝑖𝑎
∗ 𝑒𝑖𝑏𝛼(𝑄𝑖)

𝑃

𝑖=1

(18) 

 

where 𝛼(𝑄) is the trace of the polarizability tensor surface along the normal mode, 

 

�̂�(𝑄) =
�̂�𝑥𝑥(𝑄) + �̂�𝑦𝑦(𝑄) + �̂�𝑧𝑧(𝑄)

3
(19) 

 

and can be collected at each of our 𝑃 grid points.63,65 Diagonalization of the vibrational Hamiltonian 

also produces a series of eigenvalues which we interpret as energy levels. The frequency of light 

absorbed in a transition from vibrational state 𝑎 to state 𝑏 is 

 

𝜔𝑎𝑏 =
𝐸𝑏 − 𝐸𝑎

ℎ
(20) 

 

where 𝐸𝑎 is the energy of state |𝛹𝑎⟩ and ℎ is Plank’s constant.  

III. Computational Methods: 

I. Electronic Structure Methods and Basis Sets. 

The quantum chemistry methods employed in this study include Hartree-Fock (HF)66, the 

post-Hartree-Fock methods MP267 and CCSD(T)68, and density functional theory (DFT) methods 

spanning several rungs of “Jacob’s ladder”: B3LYP-D369–72, 𝜔B97M-V73, TPSS-D372,74, and 
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PBEh-3c75.  The comparison of HF to other methods allows us to understand the effect of exact 

exchange and the other method’s approximate electron correlation on the frequency calcula tion. 

We use CCSD(T) as a “gold standard” electronic structure method, and MP2 as a sort of “silver 

standard” - not as accurate as CCSD(T) yet still reasonably applicable to some of the larger 

molecules examined in this study, and more accurate than DFT. We select TPSS-D3, B3LYP-D3, 

and 𝜔B97M-V as representative, widely used, and economical meta-GGA, global hybrid GGA, 

and range-separated hybrid meta-GGA functionals, respectively, with recommended empirical 

dispersion corrections. The composite method PBEh-3c (with the recommended def2-mSVP 

modified basis set) is included because of its impressive cost to accuracy ratio. These choices 

were influenced by recommendations from the quantum chemistry community, as were our basis 

set choices.76–78 This search will allow us to find an economical method to use for our future 

condensed phase frequency calculations while uncovering some of the quantum effects on the 

frequency. 

We also tested the effect of the basis set on the frequency by examining three families of 

basis sets: Pople, Dunning, and Ahlrichs.79–81 For each family, basis sets of the same zeta quality 

and with the same presence of diffuse functions were tested. The four combinations were: (1) 

double zeta with no diffuse functions [6-31G**, cc-pVDZ, and def2-SVP], (2) double zeta with 

diffuse functions on all atoms [6-31++G**, aug-cc-pVDZ, and def2-SVPD], (3) triple zeta with no 

diffuse functions [6-311G**, cc-pVTZ, and def2-TZVP], and (4) triple zeta with diffuse functions 

on all atoms [6-311++G**, aug-cc-pVTZ, and def2-TZVPD]. Because we will eventually calculate 

Raman intensities which are strongly dependent on polarization effects, we always include 

polarization functions on all atoms in our basis sets. For CCSD(T) and MP2, each of the largest 

triple zeta basis sets  [6-311++G**, aug-cc-pVTZ, and def2-TZVPD] were used in order to obtain 

values with high accuracy for comparison to other methods.   

II. Molecular Analysis 

All geometry optimizations, harmonic frequency calculations, single point energy 

calculations, and polarizability calculations were performed using the Q-Chem 5.4 software 

package.76 Single point energy calculations were typically performed using an self-consistent field 

(SCF) convergence criterion of 10-9 atomic units and a threshold for the neglect of two electron 

integrals of 10-14 atomic units. The relaxed constraint algorithm was used during early SCF 

iterations, and the Pulay DIIS algorithm was used during later iterations.82,83 For DFT calculations 

a quadrature grid with 99 radial points and 590 angular points was used, but a lower resolution 

SG-0 grid was used for early SCF cycles.84 We attempted to optimize all molecular geometries to 

a maximum gradient of 3 x 10-6 atomic units; if this was not possible, the restriction was loosened 

to 30 x 10-6 atomic units. Optimization was confirmed by the absence of imaginary harmonic 

frequencies. Dipole moments were computed analytically based on the ground state electronic 

wavefunction and static polarizability tensors were computed using the finite field approach. Both 

computations were completed using the appropriate Q-Chem implementation.76 

We investigated four classes of alkyne containing molecules. These included small 

alkynes with carbon-based R groups, small alkynes with non-carbon substituents, large alkynes, 

and synthetic amino acids. These choices were inspired by the work of Romei et al. and allow us 

to investigate a diverse array of alkyne containing molecular structures.36  
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Figure 2. Terminal alkyne molecules examined in this study. These optimized geometries were obtained 

using MP2/aug-cc-pVTZ. The three letter codes in parentheses are used throughout this work to refer to 

the molecules they appear underneath. 

 

III. Localized Vibrational Frequency Calculations. 

While the molecules we’re investigating vary by R group, the atoms of the terminal alkyne 

moiety (-C≡C-H, hereafter CCH) are common between them. These atoms have much larger 

displacements in the CC triple bond normal mode motion than the other atoms in each molecule 

(see Figure 1 and section IV.B.3. on localization error). Physically, this means the non-CCH atoms 

barely move during the vibration. One common approximation which can simplify a normal mode 

substantially is localization.85–88 In our localization approximation, we remove the motion of all 

non-CCH atoms in the molecule during the vibration so that only the CCH atoms move. 

We do this in two separate but similar ways. In one method, we use the partial hessian 

approximation.89,90 Here, the masses of non-CCH atoms are assumed to be so large that their 

mass-weighted hessian entries can be neglected. This results in different values of the normal 

mode displacements than when the full mass-weighted hessian is diagonalized. These 

displacements can be used to compute the reduced masses, scan the potential energy surface, 

and perform any other tasks that their full hessian counterparts are used for in our DVR method. 

The second way we can localize the normal mode is by simply setting the non-CCH atom 

displacements to zero, and using the full hessian CCH displacements as in the partial hessian 

case. Both of these methods result in similar DVR localized normal mode frequencies, reduced 

masses, and CCH displacements (Table S1). We preferred the partial hessian-based method of 

localization if it was available in Q-Chem. Of the methods we explored, it is only unavailable for 

CCSD(T). 

IV. Results and Discussion 

Section 1. Performance of the Isolated Normal Mode DVR Method 

 

Propyne 
(PPY) Homopropargyl Glycine 

(HPG)

Propargyl Acetate 
(PAC)

4-Ethynyl Benzyl Alcohol 
(EBA)

Ethynamine 
(EAM)

Ethynol 
(EOL)

1-butyne 
(BTY)

Synthetic Amino AcidsComplex AlkynesSimple Alkynes

2-propynal
(PAL)

Propargyl Alcohol 
(POL) p-Ethynyl Phenyl Alanine 

(PEP)
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Subsection A. Overall Performance 

We performed anharmonic frequency calculations using the established VPT2 method 

implemented in the Q-Chem package with the “gold standard” CCSD(T) electronic structure 

method and triple zeta basis sets with diffuse functions to obtain benchmark anharmonic CC 

stretch frequencies. Experimental values for all molecules are taken from NIST sources.91–97 

Nyquist reports 2185 cm-1 for the CC stretch frequency for POL.98 However, this disagrees with 

several other sources for the vapor and condensed phase frequency of this molecule, including 

the pictured spectrum in the Nyquist reference itself.36,91,98–101 Because of the disagreement with 

all other sources and our otherwise highly accurate CCSD(T)/triple zeta/VPT2 calculations, we 

believe this is a misreport and that sources stating the frequency is 2124 cm -1 are correct. We 

show in Table 1 that the calculated frequencies using VPT2 are within 10 cm -1 of the experimental 

frequency for most of our small molecules. We were not able to complete a VPT2 calculation for 

BTY/CCSD(T)/aug-cc-pVTZ because of the large memory and time requirements of the 

calculation. We observe a small basis set dependence on the calculated frequencies, and find 

that the Dunning and Alrichs family basis sets are most consistent with the reported experimental 

gas-phase frequency. 

VPT2 is known to fail catastrophically in cases where two or more vibrational transitions 

have nearly the same energy, so it is important to check if such transitions exist before using the 

method.49,51 We have checked this using the transition-optimized shifted Hermite (TOSH) method. 

TOSH is an approximation to VPT2 and does not share the concern of catastrophic failure.49 

Because VPT2 and TOSH calculations are automatically performed simultaneously in Q-Chem, 

we have values from both methods for every calculation we performed. The frequencies we obtain 

from the TOSH method are always similar to those we obtain from VPT2, with an RMSD of 3.6 

cm-1 (see Figure S1). This is strong evidence that the VPT2 method is not suffering from 

catastrophic failure for the CC stretch. In the absence of these failures, the VPT2 calculations 

have the best cost to accuracy ratio of the anharmonic vibrational frequency methods packaged 

with Q-Chem.76 As such, we use VPT2 anharmonic frequency calculations as a benchmark 

against which to test our localized DVR anharmonic frequency calculations. 

We tested the performance of our localized normal mode DVR method against VPT2. 

CCSD(T) was used for both calculations; using such an accurate electronic structure method 

allows us to isolate inaccuracies due to the vibrational method alone. The DVR method nearly 

matches the performance of the VPT2 method for the small molecules where the atom directly 

bonded to the alkyne group is a carbon. However, the DVR frequencies for EOL and EAM differ 

substantially from experiment and VPT2. The calculated DVR frequencies are compared to 

experiment and VPT2 frequencies in Table 1.  

 

Table 1:  Difference of calculated CC stretch frequencies from reported experimental gas phase 

frequencies for our set of six small terminal alkyne molecules. All frequencies are reported in cm-1 as 

∆𝜔 = 𝜔𝑐𝑎𝑙𝑐 − 𝜔𝑒𝑥𝑝.  RMSD = √
1

𝑛
∑ (∆𝜔𝑖)2
𝑛
𝑖=1 , where 𝑖 iterates over each unique molecule. The RMSD is 

given for only molecules where the R group begins with a carbon (RMSDR = C) and for all molecules 

(RMSDall). Experimental values are taken from NIST sources.91–97 The individual frequencies are given in 

the SI. 

 Expt  aug-cc-pVTZ  def2-TZVPD  6-311++G(d,p) 
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Subsection B. Sources of Error 

 

Our localized normal mode DVR method makes three major assumptions about the 

terminal alkyne CC vibration: (1) that the error of discretizing the potential energy surface is 

negligible, (2) that the CC stretch normal mode is not anharmonically coupled to other normal 

modes in the molecule, and (3) that the atoms in the R group do not move during the vibration. 

All of these are formally incorrect. In the following, we investigate each of these assumptions to 

determine the amount of error they introduce to our method. 

 

1. Is the error from discretizing the potential energy surface negligible? 

 

The true potential energy surface for the normal mode is continuous (𝑃 → ∞ and Δ𝑄 → 0) 

and has an infinite domain (𝑄1 → −∞ and 𝑄𝑃 → ∞). However, our DVR method discretizes and 

limits this surface, and these approximations introduce some error. To determine this error, we 

produced a DVR potential energy surface with a very fine grid (𝑃 = 100 and Δ𝑄 = 0.02 Å) and a 

very large domain (𝑄1 = −1.0 Å and 𝑄100 = 1.0 Å) at the MP2/aug-cc-pVTZ level of theory for 

propyne (Figure 3). The 𝜔01 DVR frequency obtained using this PES was 2114.53 cm-1. To ensure 

that this value was converged with respect to the number of grid points and the domain, PES 

grids with reduced resolution and domain were produced and used to compute the 𝜔01 DVR 

frequency. No change greater than 0.2 cm-1 was observed until the grid spacing, Δ𝑄, was 

increased to more than 0.04 Å. Also, the 100 grid point PES DVR results reproduce the behavior 

expected of a slightly anharmonic oscillator (Figure 3); the energy level spacing decreases slowly 

as the energy eigenvalue increases, and the high energy wavefunctions are highly oscillatory. 

Thus, we believe it is reasonable to treat this 100 grid point PES as nearly continuous and nearly 

unlimited. 

We compared this nearly continuous and nearly unlimited surface to our preferred surface, 

containing 𝑃 = 20 grid points between 𝑄1 = −0.3 Å and 𝑄20 = 0.5 Å (Δ𝑄 = 0.04 Å). The 𝜔01 

frequency obtained using the near-continuous PES (2114.53 cm-1) is consistent with the 

calculated 𝜔01 frequency using the 20 grid point PES (2114.72 cm-1). This happens because the 

low energy eigenvalues for both PESs are very similar (Figure 3). The high energy eigenstates 

obtained from the 20 grid point PES are not similar to those from the near continuous surface, 

indicating increasing error with increasing energy. The 20 grid point PES would be inadequate to 

compute, say, the 𝜔09 frequency. However, we are most interested in the 𝜔01 frequency and the 

 VPT2 DVR  VPT2 DVR  VPT2 DVR 

PPY 2124  +2 +4  +13 +6  +2 -6 

PAL 2125  -19 -17  -8 -16  -31 -28 

BTY 2116  -- +8  +16 +8  -6 -2 

POL 2124  -3 +1  -1 +1  -11 -8 

EAM 2155  -2 -29  -4 -17  -1 -37 

EOL 2198  -11 -39  -19 -28  -20 -43 

RMSDR = C --  11 10  11 9  17 15 

RMSDall --  10 21  12 15  16 26 
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error from discretization for this value is 0.19 cm-1. We find this error is acceptable in exchange 

for computing one-fifth as many PES grid points.  

 

 
Figure 3. Discretized PES for propyne (MP2/aug-cc-pVTZ) with 100-point (left) and 20--point (right) grids. 

The top panels demonstrate that the two grids produce essentially identical vibrational wavefunctions and 

energy levels for the ground and first excited vibrational states. The bottom panel shows that the 

vibrational states, which are drawn at their respective energy levels, diverge between the two grids at igh 

energies. The vibrational states of the nearly continuous 100--point grid show the behavior one would 

expect of a slightly anharmonic oscillator. 

 

2. Is the CC stretch normal mode only weakly anharmonically coupled to other normal modes in 

the molecule? 

 

Molecular normal modes are completely orthogonal motions of a molecule under the harmonic 

oscillator approximation (this is, in fact, the definition of a normal mode). However, normal modes 

generally mix with other normal modes once anharmonicity is considered. Our DVR method 
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implicitly assumes that the CC stretch normal mode is anharmonically isolated. To determine the 

error due to this assumption, which we term 𝑒iso, we performed anharmonic VPT2 frequency 

calculations for the isolated CC stretch normal mode. In this calculation, 3rd and 4th derivatives of 

the energy are only computed with respect to the CC stretch normal mode; no other normal mode 

information is included in the calculation. In effect, this anharmonically isolates the CC stretch 

vibration in a similar way to our DVR method. 𝑒iso is approximated as the difference between the 

isolated VPT2 value and the VPT2 frequency with normal mode coupling using CCSD(T) and 

triple zeta basis sets (i.e. 𝜔iso − 𝜔coup). The error due to normal mode isolation is reported in 

Table 2, and the average 𝑒iso is +40 cm-1. 

 

Table 2:  𝑒𝑖𝑠𝑜 is calculated as the difference between isolated and ordinary VPT2 frequency calculations 

using CCSD(T) and a series of triple zeta basis sets. CC stretch normal mode isolation results in a higher 

calculated frequency by an average of +40 cm-1. The individual frequencies are given in the SI. 

 

 

 

 

 

 

 

 

 

The total anharmonicity of the CC stretch normal mode can be approximated as the 

difference between harmonic and VPT2 frequencies (i.e. 𝜔harm − 𝜔coup) using the same CCSD(T) 

electronic structure theory.  A strong correlation between 𝑒iso and the total anharmonicity indicates 

that a significant portion of the variance in the total anharmonicity is due to normal mode coupling, 

rather than isolated normal mode anharmonicity (harmonic frequency calculations do not capture 

either effect). We find a moderately strong correlation (R=0.80, p < 2 x 10-3) between 𝑒iso and the 

overall anharmonicity (Figure 4). A linear regression treating the approximate total anharmonicity 

as the independent variable has a slope of 0.84, quite close to 1. This, and the small y-intercept 

value of 3.3 cm-1, implies that a large portion of the overall magnitude of the anharmonicity (not 

just its variation) is due to normal mode coupling – if the slope were exactly 1, we could essentially 

say 𝑒iso = 𝜔harm − 𝜔coup. This follows from the fact that the isolated CC stretch normal mode 

vibration itself is fairly harmonic (see Figure 3). Figure 4 also shows that few of the molecules 

strongly tend to reliably have higher or lower anharmonicity across all basis sets, leading to the 

relatively constant 𝑒iso seen in Table 2.  

 

 

 aug-cc-pVTZ def2-TZVPD 6-311++G(d,p) 

PPY +37 +40 +30 

PAL +27 +29 +29 

BTY -- +38 +37 

POL +33 +45 +34 

EAM +42 +43 +35 

EOL +44 +51 +51 
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Figure 4. Correlation between approximate total anharmonicity (horizontal axis) and isolation error 

(vertical axis). The best fit line is in black (R = 0.80, p < 2 x 10-3). 

 

 

3. Do the R group atoms move only a small amount during the vibration?  

 

Our localization method makes the approximation that only the CCH atoms move during 

the vibration. This cannot be exactly true – a pure vibration does not change the center of mass 

of the molecule, but a CCH-only vibration would. However, the degree of R group motion required 

to fulfil this requirement decreases as the R group mass increases. What effect does removing 

this R group displacement have on the normal mode motion and frequency?  

To quantify the effect on the motion we analyzed the atomic normal mode displacements 

reported by harmonic frequency calculations for all small probes using CCSD(T) with the same 

series of basis sets. We found that on average the magnitude of the R group atom displacement 

is 0.071 Å while the average ≡C-R, ≡C-H, and -H atom displacements were 0.559 Å, 0.385 Å, and 

0.719 Å, respectively. The much larger CCH displacements show that these atoms are the most 

important in the vibrational mode.  

We also quantified the effect on the calculated frequencies. We performed both harmonic 

and DVR frequency analyses that capture the error due to localizing the vibration to the CCH 

atoms. Specifically, we compared full harmonic frequencies to localized harmonic frequencies, 

and separately we compared full normal mode DVR frequencies to localized normal mode DVR 

frequencies. The localized harmonic frequencies were computed using the numerical second 

derivative of the energy as a function of the localized normal mode coordinate near 𝑄 = 0. All of 

these frequency calculations were performed using the CCSD(T) method with the same series of 

basis sets as above. 
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Table 3: The error due to localization is determined using harmonic and anharmonic approaches, 

CCSD(T) electronic structure theory, and a series of triple zeta basis sets. Localization decreases the 

calculated frequency by about 43 cm-1. The effect of localization is highest for molecules where the R 

group is not carbon based. The individual frequencies are given in the SI. 

 

 

 

 

 

 

 

 

 

 

The error due to localization, 𝑒loc, was estimated as the difference between the isolated 

normal mode frequency and the full normal mode frequency (i.e. 𝜔loc −𝜔full) for each vibrational 

structure method. The individual 𝑒loc values are reported in Table 3. The average harmonic 𝑒loc 

is –41 cm-1 and the average anharmonic 𝑒loc is -45 cm-1. The overall average is -43 cm-1. We find 

that the magnitude of 𝑒loc is strongly correlated to the sum of the mass-weighted displacements 

of the R group atoms in the full normal mode (Figure 5). In particular, the molecules with non-

carbon-based R groups, EAM and EOL, have particularly large R group displacements and thus 

large localization errors. When they’re removed from the estimate of 𝑒loc, it shrinks to -30 cm-1 for 

terminal alkynes with carbon-based R groups. That this correlation exists, is strong, and is 

negative, shows that molecules which more fully satisfy the partial hessian assumption of zero R 

group motion will have less localization error, as might be expected.  

 

 

 
 aug-cc-pVTZ  def2-TZVPD  6-311++G(d,p) 

 harm anharm  harm anharm  harm anharm 

PPY  -30 -37  -31 -36  -36 -39 

PAL  -26 -26  -22 -26  -21 -28 

BTY  -32 -33  -30 -33  -33 -35 

POL  -28 -31  -16 -31  -25 -33 

EAM  -70 -70  -66 -69  -68 -72 

EOL                      -67 -73  -68 -72  -68 -74 
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Figure 5: Correlation between the sum of the magnitude of mass-weighted displacements for all R group 

atoms (horizontal axis) and localization error (vertical axis). The best fit line is in black (R = -0.94, 

p < 1x10-8). 

 

 

4. Fortuitous error cancellation: 

 

 In our localized normal mode DVR method, the error due to discretization is negligible. 

The errors due to isolation, eiso ≈ +40 cm-1,  and localization, eloc ≈ - 43 cm-1, are more substantial 

(though not individually enormous). Fortunately, they are nearly equal in magnitude and opposite 

in sign. This cancellation occurs not only on average across molecules and basis sets but also 

for most individual combinations of molecule and basis set as depicted for the def2-TZVPD basis 

set in Figure 6. This error cancellation is consistent across alkynes with carbon-based R groups. 

As shown in Figure 6, the co-cancellation of these errors explains the high accuracy of our isolated 

normal mode DVR method. Because of the consistency of this error cancellation, the modest 

magnitudes of the errors, and the resulting accuracy, we believe it is appropriate to use this 

method for future alkyne frequency analyses. However, anyone using this method or a similar 

one should check that the error cancellation remains in their context, perhaps using the 

comparisons we have employed above. This method would need to be more carefully adjusted 

for use with alkynes having non-carbon-based R groups since, in their case, the error does not 

cancel out.  

 

 
Figure 6. Decomposition and quantification of localized normal mode DVR frequency calculation errors. 

The performance of DVR and VPT2 calculations with respect to experimental frequencies are included for 

reference. All calculations use the def2-TZVPD basis set. 

 

 

Section 2. Density Functional Theory Calculations 
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CCSD(T) is a highly accurate electronic structure method. However, it is not accessible 

for use with our larger probes. In the future, we would prefer to use DFT methods because of their 

high speed and reasonable accuracy. We use the MP2 electronic structure method as a ‘silver 

standard’ to evaluate the performance of various cheaper DFT methods. Lowering the level of 

theory to MP2 changes the frequency by about by an average of 4 cm-1 and an RMSD of 22 cm-1 

for our small probes (values in SI).  

We also calculated the localized normal mode DVR frequencies using four density 

functionals: PBEc-3h, TPSS-D3, B3LYP-D3, and 𝜔B97M-V. These calculations were performed 

using Pople, Dunning, and Alrichs style basis sets fitting the descriptions “double zeta,” “double 

zeta with diffuse functions,” “triple zeta,” and “triple zeta with diffuse functions.” An exception was 

PBEc-3h which was only used with the def2-mSVP basis set.  

We used these values to compute scaling factors following Irikura et al.102 Scaling factors 

are commonly used to correct for the inaccuracies in harmonic frequency calculations, which can 

broadly be sorted into two types. The first type of error is at the level of the vibrational calculation, 

especially the neglect of anharmonic effects. This is fundamental to the harmonic method. Our 

calculations do not have this same error but, as discussed above, our approximations introduce 

their own vibrational calculation errors. The second type is at the electronic structure level, where 

inadequacies in the description of electrons can introduce error. Because of this, scaling factors 

are sensitive both to the electronic structure method and the basis set. A scaling factor, 𝑐, can be 

computed using the formula,  

 

𝑐 =
∑ 𝑥𝑖𝑧𝑖𝑖

∑ 𝑥𝑖
2

𝑖

(21) 

 

where the sum is over different molecules in the “training set” for the scaling factor, 𝑥𝑖 are their 

computed frequencies, and 𝑧𝑖 are their experimental frequencies. The uncertainty in the scaling 

factor is given by  

 

𝑢(𝑐) = (
∑ 𝑥𝑖

2 (
𝑧𝑖
𝑥𝑖
− 𝑐)

2

𝑖

∑ 𝑥𝑖
2

𝑖

)

1
2

(22) 

 

where 𝑐 is the previously computed scaling factor.102 MP2 scaling factors and their uncertainties 

were computed for the set of small molecules for which experimental values are available. The 

average MP2 scaling factor across basis sets was 1.004 ± 0.003. These scaling factors were 

used to predict experimental values for the larger probes where we did not have experimental 

data. The predicted experimental values (i.e. scaled MP2 values) are given in Table 4. 

 

Table 4. Predicted experimental gas phase frequencies (cm-1) from on localized normal mode DVR 

using MP2 and scaling factors obtained from the smaller probes. 

 aug-cc-pVTZ def2-TZVPD 6-311++G(d,p) Average 

PAC 2131 2132 2138 2134 

EBA 2099 2094 - 2097 
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The averages of these predicted experimental values were used along with authentic 

experimental values for the small probes to compute scaling factors and uncertainties for all the 

density functional methods (Figure 7). The results are nearly identical to those obtained if only 

the small probes with true experimental frequencies are used. If EAM and EOL are removed from 

the training set, the uncertainties become smaller but the magnitudes of the scaling factors remain 

nearly the same.  

 

 

Figure 7. Estimated scaling factors for different combinations of basis set and electronic structure method. 

Frequencies were calculated using the localized normal mode DVR method developed in this work. For 

PBEc-3h, the def2-mSVP basis set was used. This basis set is a slightly modified version of the def2-SVP 

basis set, which was used for the other density functionals. 

 

A vibrational frequency method with no vibrational or electronic sources of error would 

have a scaling factor of 1.0. By this metric, MP2 performs very well, and so serves as an effective 

benchmark. HF performs relatively poorly with an average scaling factor of 0.900 ± 0.003, 

showing that electron correlation is an important factor in these calculations. Contrary to our prior 

HPG 2115 2117 2114 2115 

PEP 2100 2100 2098 2099 
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expectations, TPSS-D3 is the cheapest and most accurate DFT method for calculating the 

terminal alkyne CC stretch frequencies. The best scaling factor was 0.989 ± 0.006 for 

TPSS-D3/6-311++G(d,p). 𝜔B97M-V has surprisingly poor performance, though even its lowest 

scaling factor of 0.943 ± 0.007 for 𝜔B97M-V/6-31G(d,p) is fairly reasonable. PBEc-3h/def2-mSVP 

has the worst performance of the density functionals at a scaling factor of 0.931 ± 0.007. All 

methods and all basis set families show a marked improvement in the frequency predictions when 

going from a double zeta basis set to a double zeta basis set with added diffuse functions. For 

the Pople and Dunning basis set families, performance is worsened whenever diffuse functions 

are removed, while the double/triple zeta distinction is less important. The Alrichs basis sets are 

more “stable” in a sense – changing the basis set features has the least effect on performance 

for this family. The Pople basis sets are the most erratic, so a small change in basis set character 

can have a large effect on performance. Based on these results, an ideal model chemistry would 

include a functional like TPSS-D3 and a basis set of at least double zeta quality with diffuse 

functions included. 

One reason that TPSS-D3 may perform better than the other functionals is because it was 

derived from fundamental density functional theory principles, with very few fitted parameters.74 

B3LYP-D3 and 𝜔B97M-V include several adjustable parameters which were fit based on 

experimental data on several (or many) smaller molecules.69,73 The small molecule training sets 

did not include many alkynes or other triple bonded molecules, which may harm their ability to 

characterize triple bonds compared to a less empirically influenced method. Presumably, an 

empirical DFT method based on many triple bonded molecules would perform even better than 

TPSS-D3. The importance of diffuse functions in the basis set likely also comes down to the 

presence of the triple bond. In a triple bonded molecule, there is substantial electron density 

placed unusually far from the nuclei. A basis set without diffuse functions might have some 

difficulty fully describing this. Describing the triple bond well is particularly important when 

computing these CC bond frequencies which directly depend on estimating the bond strength. A 

deeper understanding of these trends would likely require very careful electronic structure 

analysis, which is outside the scope of this work.  

 

Section 3. Properties of the Vibration  

 

1. Transition Isotropic Polarizabilities and Transition Dipole Moments 

 

 Using this vibrational method, we can compute a number of useful vibrational properties. 

Here, we focus on the calculation of the transition dipole moment and the transition isotropic 

polarizability. To compute these, we first obtain the dipole moment and isotropic polarizability 

surfaces, shown in the left panels of Figure 8. These surfaces were calculated for all our 

molecules at the grid point structures used in our localized normal mode DVR calculations at 

TPSS-D3/6-311++G(d,p). The dipole moment is reported as the overlap (dot product) between 

the full dipole moment vector and the unit vector pointing from the carbon bonded to the R group 

to the carbon bonded to the terminal hydrogen. The isotropic polarizability is reported as the trace 

of the full polarizability tensor. In general, the projection of the dipole moment decreases slowly 

as the normal mode coordinate increases (note the y-axis). For the molecules where the R group 

does not begin with carbon, the decrease is more rapid; for PAL the dipole moment projection 
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actually increases with the normal mode coordinate. The polarizability increases along the normal 

mode for all molecules; this is expected, since molecular bond lengths are generally increasing 

as the normal mode coordinate increases. The magnitude of this increase is generally fairly large, 

especially for the molecules containing aromatic rings. 

 

 
Figure 8. Isotropic polarizability (top left) and dipole moment (bottom left) surfaces as a function of the 

CC stretch normal mode coordinate, Q. The transition isotropic polarizability (top right) and transition 

dipole moment (bottom right) are computed using these surfaces and vibrational wavefunctions from 

our localized normal mode DVR method. All properties are calculated for each probe molecule using 

TPSS-D3/6-311++G(d,p). 

 

 The dipole moment and polarizability surfaces, along with our DVR vibrational 

wavefunctions, enable us to compute transition dipole moments and transition polarizabilities for 

the 0 → 1 transition. The square of the transition dipole moment is proportional to the probability 

of absorption in infrared spectroscopy experiments, and the square of the transition polarizability 

is directly related to the probability of scattering in Raman spectroscopy experiments.63 These are 

shown in the right part of Figure 8. As expected, the transition dipole moments are relatively small. 

For comparison, the square of the transition dipole moment of the highly IR active CO2 asymmetric 

stretch 0 → 1 transition is 0.106 D2; the largest in our set of alkynes is about one-third this value 

at 0.0280 D2.103,104 The largest transition dipoles occur for the probes where the triple bond is 

attached to an atom which is not carbon. Most of the values are much smaller. The transition 

polarizabilities, however, are fairly large. Again, using CO2 as a comparator, the Raman active 

symmetric stretch 0 → 1 transition couples with the 0 → 2 overtone of the bending vibration which 
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results in two strong peaks. The squared transition polarizability of the first is 2.52 x 10-3 A6 and 

of the second is 3.73 x 10-3 A6.105 In our group of alkynes, the smallest squared transition 

polarizability is 12.6 x 10-3 A6 and the largest is 104 x 10-3 A6. The transition polarizabilities are 

especially large for the alkyne molecules conjugated to aromatic rings, for whom stronger Raman 

absorption has already been observed in experiments.29,36  

 

2. Universal Displacements 

 

The localized CCH atom displacements for the terminal alkyne CC normal mode are 

remarkably similar between the molecules observed in this study. To take advantage of this, we 

performed localized normal mode DVR on all molecules, with all basis sets and DFT functionals 

described in this work. These calculations were performed twice and then compared. In the first 

iteration, displacements were obtained individually, so each molecule, DFT method, and basis 

set combination had its own specific atomic normal mode displacements. In the second iteration, 

the localized displacements for the CCH atoms of propyne at MP2/aug-cc-pVTZ were used for all 

molecules, DFT method, and basis sets. In Figure 9, the strong correlation between these two 

methods of displacing the CCH atoms is shown. It is clear that the atomic displacements of the 

CCH atoms in the CC stretch are fairly universal – one could switch the specific values between 

any pair of molecule, DFT method, and basis set combinations. In future work, we will use such 

universal CC displacements to simplify the calculation of terminal alkyne vibrational frequencies 

from molecular dynamics snapshots. 

 
Figure 9. Comparison of DVR frequencies computed using localized displacements individual to each 

molecule and electronic structure method (𝜔𝐷𝑉𝑅) and DVR frequencies computed using the localized 

displacements from propyne at MP2/aug-cc-pVTZ, our so called “universal displacements” (𝜔𝐷𝑉𝑅,𝑢𝑑). The 

solid black line is a linear fit to the data with the equation 𝜔𝐷𝑉𝑅,𝑢𝑑 = 1.001𝜔𝐷𝑉𝑅 – 2.834 cm-1. The dotted 

blue line is 𝑦 = 𝑥 for reference. The correlation coefficient for the fit is R = 1.000. 
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V. Conclusion 

Understanding the terminal alkyne CC stretch vibration is important for a number of 

biological and materials questions. In this work, we develop and test an extension to the DVR 

method specific to this important molecular probe. Our resulting localized normal mode DVR 

method benefits from error cancellation between modest localization and isolation errors. It can 

be easily implemented using DFT methods and surprisingly TPSS-D3 is a particularly accurate 

functional when used with it. Finally, we are able to compute important vibrational properties such 

as the transition isotropic polarizability which are vital for eventually computing Raman spectra in 

realistic simulations.   

VI. Supplementary Material 

Included in the main PDF of our supplementary material are a graph of the comparison 

between our VPT2 and TOSH frequencies and a table comparing partial and full Hessian 

localization methods. XYZ files of the investigated molecules optimized with CCSD(T) or MP2 

and triple zeta basis sets are also included, because of the large computational cost of obtaining 

these structures. Finally, JSON data files and instructions for interacting with them in python are 

included. These JSON files contain all frequencies and localized normal mode CCH 

displacements computed in this work. 
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