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Abstract. Accurately determining the global minima of a molecular structure is important in diverse scientific fields, 

including drug design, materials science, and chemical synthesis. Conformational search engines serve as valuable 

tools for exploring the extensive conformational space of molecules and identifying energetically favorable 

conformations. In this study, we present a comprehensive comparison of Auto3D, CREST, Balloon, and RDKit, which 

are freely available conformational search engines, to evaluate their effectiveness in locating the global minima. These 

engines employ distinct methodologies, including machine learning (ML) potential-based, semiempirical, and force 

field (FF) based approaches. Through rigorous analyses and employing novel approaches for validation, including the 

utilization of a unique physical property known as collisional cross section (CCS), which characterizes the molecular 

shape, size, and charge, we thoroughly assess the capabilities of these engines in generating conformation ensembles 

that effectively capture the global minima. To accomplish this, we created the gas-phase conformation library (GPCL) 

which currently consists of the full ensembles of 20 small molecules, which can be used by the community to validate 

any conformational search engine. Further members of the GPCL can be readily created for any molecule of interest 

using our standard workflow used to compute CCS values expanding the ability of the GPCL in validation exercises. 

These innovative validation techniques enhance our understanding of the conformational landscape and provide 

valuable insights into the performance of conformation generation engines. Our findings shed light on the strengths 

and limitations of each search engine, enabling informed decisions for their utilization in various scientific fields, 

where accurate molecular structure determination is crucial for understanding biological activity and designing 

targeted interventions. By facilitating the identification of reliable conformations, this study significantly contributes 

to enhancing the efficiency and accuracy of molecular structure determination, with a particular focus on metabolite 
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structure elucidation. The findings of this research also provide valuable insights for developing effective workflows 

in predicting the structures of unknown compounds with high precision.  

Keywords: Conformational search engines, Global minima, Conformational sampling, Molecular structure 

determination, Collisional Cross Section. 

 

Introduction: 

Accurately determining molecular ensembles is crucial in computational chemistry for understanding 

molecular behavior and properties. However, predicting the global minima, which represents the most stable 

conformation, presents a significant challenge due to the size of conformational spaces for flexible molecules. 

Moreover, to correctly rank order all low energy conformations poses another significant technical challenge. To 

overcome these challenges, efficient and reliable conformational search algorithms are necessary to explore this space. 

Conformer generation plays a pivotal role in various computational analyses, including computational drug design1,2, 

3D QSAR modeling3,4, protein-ligand docking5–8, and structure elucidation of unknown compounds9–11. Different 

methods exist for generating conformers, ranging from obtaining a single low-energy conformation to generating 

ensembles that encompass biologically relevant low-energy conformational space. The choice of conformational 

sampling technique directly influences the subsequent analysis's reliability and speed. 

Multiple conformational search engines are available including, for example, Balloon12,13, RDKit14–16, 

Confab17, Frog27,18, MacroModel19,20, OMEGA21,22, CREST23–25, and Auto3D26.  These tools offer diverse methods 

and algorithms for conformation generation, ranging from force field-based approaches to semiempirical and machine 

learning potential-based methods. Force field-based methods are utilized by Balloon, RDKit, Confab, Frog2, and 

MacroModel to generate conformation ensembles. They combine systematic and random sampling techniques within 

the framework of a force field to explore conformational space. Balloon combines systematic and random sampling 

techniques to explore the conformational space of molecules. By combining systematic and random sampling 

techniques, it covers a wide range of molecular conformations, including both low-energy conformations and higher-

energy regions. This comprehensive exploration of conformational space gives a more complete picture of the 

conformational landscape. RDKit, an open-source cheminformatics toolkit, employs a distance geometry algorithm 

along with distance constraints derived from a force field.16,27,28 Confab, provided by the Molecular Operating 

Environment (MOE) software package, integrates systematic and random sampling methods within a force field 
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framework.29–35 Frog2, developed by Certara, utilizes a proprietary algorithm based on force field methods to sample 

low-energy conformations of drug-like molecules.7,18,36–43 MacroModel, offered by Schrödinger, employs molecular 

mechanics force fields such as OPLS-AA to explore conformational space.44–53 Omega, developed by OpenEye 

Scientific Software, is a conformation generation tool that combines distance geometry, systematic search, and random 

perturbation methods to generate diverse conformations.54–64 CREST (Conformer-Rotamer Ensemble Sampling Tool) 

utilizes an extended semiempirical tight-binding model,  GFN2-xTB, a broadly parametrized self-consistent tight-

binding (TB) quantum chemical method with multipole electrostatics and density-dependent dispersion contributions 

to calculate energy profiles and explore conformational space.65–71 Auto3D employs machine learning potential-based 

methods, utilizing artificial neural networks trained on a large dataset of molecular structures to predict energetically 

favorable conformations.72–80  

In addition to these engines, there are several other notable conformation generation tools available. The 

BioChemical Library, BCL::Conf is a conformational sampling tool developed by Meiler et. al that utilizes a 

combination of systematic search, stochastic optimization, and diversity analysis methods.81 The Experimental-

Torsion Distance Geometry with basic Knowledge (ETKDG) is a  stochastic search method that uses distance 

geometry and knowledge from experimental crystal structures to explore the conformational space.82 Conformator is 

a conformation search engine provided by the NAOMI ChemBio Suite that generates conformer ensembles using an 

incremental construction approach.83 The CSD conformer generator is a tool specifically designed for generating 

conformations of small organic molecules using information from the Cambridge Structural Database (CSD).84 

ConfGen, developed by Schrödinger, is a conformation generation tool that combines systematic search and molecular 

dynamics simulations to explore conformational space.62 CORINA is a conformational search tool that utilizes a 

combination of stochastic search algorithms, distance geometry, and energy minimization to generate low-energy 

conformations.85 MOE (Molecular Operating Environment), a software package from Chemical Computing Group, 

provides a suite of conformational search algorithms and methods for generating conformational ensembles.86 Other 

conformation generation engines include iCon, which employs an incremental construction approach to systematically 

explore the conformational space73, and CAESAR, a tool that combines genetic algorithms with energy minimization 

to generate low-energy conformations.55  

Apart from the above mentioned conformation generation software, there exists a diverse range of algorithms 

specifically designed for generating conformer ensembles. These algorithms facilitate comprehensive conformational 
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sampling in both gas and solution phases, allowing for a more thorough exploration of molecular flexibility. These 

include Confort87, ROTATE88, CONFECT89, Catalyst90,91, MED-3DMC92, Multiconf-DOCK93, CONFECT94, 

BRIKARD95, ForceGen96, TCG (TrixX Conformer Generator)97 and Cxcalc (ChemAxon)98. These tools utilize a range 

of algorithms and methodologies to explore the conformational space of molecules and generate conformational 

ensembles. ROTATE employs a systematic search algorithm based on molecular flexibility, while Catalyst utilizes a 

stochastic search algorithm with a focus on energy optimization. Confort incorporates a distance geometry approach 

to generate low-energy conformations, while MED-3DMC utilizes a Monte Carlo-based method. Multiconf-DOCK 

utilizes a systematic search approach for exploring ligand flexibility within the DOCK5 program. It extends multiple 

anchor segments stepwise and generates conformations by systematically rotating single, nonterminal, acyclic bonds 

at specified increments, while CONFECT employs an evolutionary algorithm. BRIKARD utilizes a knowledge-based 

approach, and ForceGen incorporates force field-based methods. TCG utilizes a systematic torsion angle search 

algorithm. Cxcalc utilizes a fragment fusion method and the Dreiding force field for the calculation and optimization 

of conformers. These tools aid in the exploration of potential binding modes and interactions.98,99 Finally, it’s 

important to note that all of these methods generate conformations in the gas-phase and not solution or the crystalline 

phase.  

The primary objective of these conformation generation tools is to identify the global minima or a list of low-

energy conformers from a large ensemble of generated conformations. The accuracy, speed, and computational 

reliability of these tools are achieved through different algorithmic approaches.100,101 However, it is crucial to validate 

the results obtained from these tools with experimental findings. The validation of ligand conformations often involves 

comparing the generated conformers with experimentally determined structures, typically obtained from protein-

bound ligand conformations extracted from the Protein Data Bank (PDB).102–111 A shortcoming of these so-called 

“bioactive conformers” for the validation of conformation generation software is the limited number an diversity of 

experimentally determined protein-ligand structures and questions surrounding whether these “bioactive” conformers 

represent the global minimum or local minimum or high energy structures in the conformational ensemble.85,112–127   

Additionally, X-ray structures in the PDB represent static snapshots of molecules in crystalline states, which may not 

fully capture their dynamic behavior in solution or other environments. The resolution of X-ray structures is used as 

a quality criterion and low-resolution structures may lack precision and atomic-level details necessary for accurate 

conformation determination. It is crucial to consider these limitations and explore alternative validation approaches, 
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such as benchmark datasets or comparison with other experimental data.102–104,128–131 In addition to the Protein Data 

Bank (PDB), another widely used validation dataset for ligand conformations is the Cambridge Structural Database 

(CSD).132 The CSD primarily consists of small organic molecule crystal structures obtained from X-ray 

crystallography experiments. It offers a large collection of experimentally determined structures, providing valuable 

insights into the three-dimensional arrangements and intermolecular interactions of small molecules in the solid state. 

The use of the CSD as a validation dataset complements the information obtained from the PDB, expanding the scope 

of ligand conformation validation and contributing to a more comprehensive understanding of ligand behavior in 

different environments.  

In this work, we propose a novel approach to evaluate and compare gas-phase conformational search engines 

based on their ability to characterize the gas-phase  conformational ensemble and identify the global minima using a 

quantum mechanics (QM) based workflow whose outcome are compared against experimental information.9,10 

Specifically, we have developed a QM-based method to calculate Collisional Cross Sections (CCS), which is an 

accurate indicator of the global minima for molecular structures in the gas-phase10. Our CCS calculations have been 

validated against experimental data, demonstrating their reliability in capturing the most stable conformations.133–138 

To conduct our comparative analysis, we employed four different freely available conformational search engines: 

Auto3D, CREST, Balloon, and RDKit. These engines utilize diverse methodologies, including force field-based 

conformation generation (RDKit, Balloon), semi-empirical methods (CREST), and machine learning potentials 

(Auto3D). By generating conformations using each engine and comparing them with the ensemble and global minima 

validated through CCS calculations, we aimed to identify the most effective conformational search engine for accurate 

global minima prediction. By evaluating and comparing the performance of different engines in the gas phase, our 

study aims to provide valuable insights into the selection of the optimal conformational search approach for improved 

molecular structure determination and related applications. Moreover, the resultant data set can be used to validate 

other gas-phase conformational search engines.   

 
Computational Methods: 

 In this study, we focused on 20 metabolites and employed a DFT based workflow to compute their 

Collisional Cross Section values. Our workflow has demonstrated good accuracy in CCS prediction, with an error rate 

of less than 3% compared to experiment (experimental error is ~3%). Our established workflow encompasses the 

following steps to predict accurate CCS values: First, the conformations of each metabolite were generated using the 
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RDKit tool.14,15 A maximum number of generated conformers is set to 1000 for the small molecules systems. Each 

generated conformer was then geometry optimized using the ANI QM-ML model.75,77,139 The optimized structures 

were subsequently clustered using our in-house automated clustering code called AutoGraph, enabling the 

identification of chemically unique conformations.140–142 Geometry optimization and Mulliken atomic charge 

calculations were performed on representative conformations of each identified cluster using B3LYP/6-31+G(d,p) 

and B3LYP/6-311++G(d,p) level of theory, respectively employing a GPU enabled, in-house developed QM engine 

called QUICK.143–145 The CCS values were computed using the trajectory method (TM) as implemented in the HPCCS 

code developed by Zanotto et al.146,147 The inclusion of an unsupervised clustering method in our workflow reduces 

the potential for human bias and error in cluster selection, while the QM-ML model and clustering technique contribute 

to its computational efficiency. 

To assess the accuracy of conformational search engines in predicting the global minima, we compared the 

generated conformations from Auto3D, CREST, Balloon, and RDKit, with the most stable conformation determined 

by our QM based workflow. Conformations were ranked based on increasing relative energies, computed using the 

respective potential energy functions employed by each conformation generation tool. We performed RMSD 

calculations between the generated conformations and the QM optimized most stable conformation using the LS-align 

algorithm, a high-throughput virtual screening atom-level structural alignment method developed by Zhang et al.148  

The conformation with the lowest RMSD and energy values was considered the global minima for that particular 

molecule using the specific conformation generation engine. If no conformation matched these criteria, it was deemed 

that the engine failed to find the global minima for that molecule. 

Furthermore, we calculated the Boltzmann average CCS values using the conformations generated by the 

conformation search engines and compared them with experimental values. The percentage error in predicting the 

CCS was reported and an error range within  3% was considered indicative of a good CCS prediction as the 

experimental uncertainty of CCS values within  3%.  

System setup. In our previous study, we extensively investigated various ionization models 

(protonation/deprotonation) and their impact on CCS prediction accuracy for metabolites.10 The predicted CCS values 

were compared to experimental results to identify the charge model that exhibited the lowest error percentage. In the 

current study, focusing on finding global minima based on CCS values, we selected the protonation state that yielded 

the best predicted CCS values (lowest error percentage) for further analysis. For instance, in the case of the carnosine 
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molecule, five models were considered (model 1, model 2, model 3, model 4, and model 5) with corresponding CCS 

errors of 9.4%, 9.9%, 8.3%, 0.1%, and 31.0%, respectively. Model 4, exhibiting the lowest error percentage, was 

chosen as the representative carnosine model for the present investigation. Figure 1 presents an overview of the 

metabolites included, with their respective ionization sites highlighted in red.  

 

Results and Discussions:  

Conformation generation and global minima search. In this study, we examined the performance of various 

conformation generation engines, including Auto3D, CREST, Balloon, and RDKit, in generating conformations and 

identifying global minima. Table 1 provides an overview of the number of conformations generated by each engine 

for the selected metabolites. In the case of QM results, the conformation generation process involved using RDKit to 

initially generate conformations, followed by clustering and subsequent QM geometry optimization. 

 Among the engines, Auto3D and CREST had the capability to perform clustering as part of their 

conformation generation process, whereas Balloon and RDKit did not include this clustering step. Consequently, after 

generating conformations using Balloon and RDKit, we applied the Autograph clustering algorithm to cluster the 

resulting conformational ensemble. This allowed for a comprehensive analysis of the conformations and their 

subsequent evaluation in terms of capturing global minima.  The number of conformations generated by Balloon and 

RDKit prior to the clustering step can be found in Table S1-S64 in the SI. The inclusion of a clustering step in Auto3D 

and CREST eliminated high energy conformations giving a short list of conformations to consider. On the other hand, 

Balloon and RDKit produced a significantly higher number of conformations due to the lack of this pruning step. It is 

worth noting that the number of conformations generated by Balloon was lower than that of RDKit. 

To determine the global minima for each molecule, we employed a root-mean-square deviation (RMSD) 

matrix to compare the conformations generated by the conformation search engines with the lowest-energy QM 

conformation. The RMSD values for all conformations can be found in the SI specifically Table S1-S102. The 

conformations were ranked based on both RMSD and energy values, and those achieving the top rank (ranked as 1, 

lowest RMSD, lowest energy) in both categories were considered global minima and are highlighted in green in Table 

2. On the other hand, if the lowest-energy conformation did not correspond to the lowest RMSD value, it indicated 

that the engines failed to identify the global minima, and these instances are highlighted in red. For instance, in the 

case of carnosine, Auto3D successfully identified the global minima with a rank of 1 out of 13 conformations, while 

https://doi.org/10.26434/chemrxiv-2023-hc8jv-v2 ORCID: https://orcid.org/0000-0001-7981-5162 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-hc8jv-v2
https://orcid.org/0000-0001-7981-5162
https://creativecommons.org/licenses/by/4.0/


 8 

RDKit achieved a rank of 1 out of 9 conformations. However, CREST and Balloon were unable to find the global 

minima, as their lowest RMSD conformations ranked 7 out of 7 and 6 out of 10 in terms of energy, respectively. The 

details of the RMSD values, relative energies, and corresponding rank of Carnosine conformations are given in Table 

3. It is important to note that the range of relative energies obtained from the conformation generation engines exhibits 

significant variation. Our analysis revealed that the relative energies generated by Auto3D span a wide range, while 

the relative energies produced by CREST are relatively compressed. For the carnosine system, all seven conformations 

generated by CREST exhibited relative energies within 5 kcal/mol, whereas none of the 13 conformations generated 

by Auto3D fell within this range. Notably, Conformation 9 (viz. Conf_9) was the second lowest in energy among the 

Auto3D conformations, but it had a higher energy by 15.9 kcal/mol. The highest relative energies obtained from 

Balloon and RDKit were 6.3 kcal/mol and 17.8 kcal/mol, respectively. In comparison, the highest energy 

conformations generated by Auto3D and CREST were 31.9 kcal/mol and 5.7 kcal/mol, respectively. Detailed energy 

values for all the molecules can be found in the Supporting Information (Table S1-S102). Out of the 20 metabolites 

considered in this study, Auto3D successfully identified the global minima for 8 metabolites, whereas CREST detected 

them for 4 metabolites. Balloon and RDKit each demonstrated success for 3 metabolites. The success rate of Auto3D 

in finding global minima was 40%, while CREST attained 20%. Balloon and RDKit both achieved a 15% success 

rate, indicating comparatively lower performance. 

CCS Prediction and Comparison. We further evaluated the accuracy of CCS predictions for the generated 

conformational ensembles using all the engines, as summarized in Table 4. The calculated CCS values were compared 

with experimental CCS values, and predictions within 3% of the experimental values were considered accurate and 

highlighted in green. Conversely, predictions with errors exceeding 3% were considered inaccurate and highlighted 

in red.  

Our results showed that out of the 20 metabolites, the QM method achieved accurate CCS predictions for 13 

metabolites, resulting in a success rate of 65%. Among the conformation generation engines, Auto3D demonstrated 

accurate CCS predictions for 8 molecules, yielding a success rate of 40%. CREST performed well, achieving accurate 

CCS predictions for 9 metabolites with a success rate of 50%. However, Balloon and RDKit exhibited lower accuracy, 

correctly predicting CCS values for only 5 and 6 metabolites, respectively, with success rates of 25% and 30%. The 

average errors in CCS predictions for the QM, Auto3D, CREST, Balloon, and RDKit generated conformational 

ensembles were found to be 2.5%, 4.9%, 3.7%, 5.9%, and 6.0%, respectively. Notably, the QM method achieved the 
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highest accuracy in CCS prediction, highlighting its superiority in capturing the conformational behavior of the 

metabolites. The semi-empirical-based engine CREST demonstrated a notable success rate of 50% in accurately 

predicting CCS values. However, the ML-based engine Auto3D exhibited a slightly lower accuracy rate of 40%. The 

force field-based engines Balloon and RDKit yielded the lowest accuracy rates of 25% and 30%, respectively.  

These results underscore the importance of selecting appropriate conformation generation engines for 

accurate prediction of global minima and CCS values in molecular gas phase conformational ensembles. The QM 

method, with its ability to capture fine structural details and accurately calculate CCS values, emerges as the most 

reliable approach. The findings also highlight the promising performance of the semi empirical based engine CREST 

and the ML based engine Auto3D, while indicating the limitations of FF based tools such as Balloon and RDKit in 

accurately representing the conformational space and predicting CCS values.  

Conclusion: 

In this study, we investigated the performance of different conformation generation engines, namely Auto3D, 

CREST, Balloon, and RDKit, in generating molecular gas phase conformational ensembles. This was accomplished 

utilizing the GPCL database, which currently encompasses a comprehensive assessment of the conformational 

ensembles of 20 small molecules. Our aim was to identify the most effective engine for accurate global minima 

prediction and reliable computational workflows in the fields of drug design and metabolite structure prediction. We 

utilized a comprehensive computational workflow that encompassed conformer generation, clustering, and analysis 

of global minima and accurate CCS prediction. The conformations were generated using the respective engines, and 

we compared them with the global minima obtained through extensive QM computation. We also compared the 

predicted CCS values of the generated conformations with experimental values to assess their accuracy. Based on the 

analysis of global minima and accurate CCS prediction, we observed that ML based algorithm, Auto3D achieved the 

highest success rate in identifying global minima, followed by CREST, RDKit, and Balloon. In terms of CCS 

prediction accuracy, QM methods yielded the most accurate results, followed by CREST, Auto3D, RDKit, and 

Balloon. It is noteworthy that while Auto3D demonstrated a higher success rate in global minima identification, 

CREST exhibited relatively higher accuracy in CCS prediction among the engines considered. 

This study provides valuable insights into the performance of different conformation generation engines and 

their impact on global minima identification and accurate CCS prediction. Moreover, the findings will contribute to 

the development of more reliable computational workflows for conformational search and related applications in drug 
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design. Based on our present observations conformational search tools have significant room for improvement for 

gas-phase ensemble prediction. Further investigations can focus on optimizing the parameters of the conformation 

generation engines and integrating ML techniques to enhance the accuracy and efficiency of global minima prediction 

and CCS prediction. Our study emphasizes the significance of selecting appropriate conformation generation engines 

for the accurate prediction of molecular gas phase conformational ensembles, which has broad implications for drug 

design and metabolite structure prediction.  
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Figure 1. Metabolites examined in the study, with the protonation site highlighted in red and the deprotonation site 

highlighted in blue. 
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Table 1. Conformation generation results and number of rotatable bonds (N.R.B) for the metabolites. (*The QM 

geometry optimized conformations after clustering using the standard workflow.) 

Number Metabolites N.R.B QM* Auto3D CREST Balloon RDKit 

1 Carnosine 6 12 13 7 10 9 

2 O-succinyl-L-homoserine 8 17 13 16 14 23 

3 L-tyrosine 3 10 5 11 3 10 

4 L-mimosine 3 9 7 15 5 8 

5 Citramalic acid 3 11 8 1 3 10 

6 N-methyl-L-glutamate 5 15 9 5 12 13 

7 L-ornithine 4 13 5 4 4 12 

8 Abscisic Acid 3 10 13 9 7 10 

9 L-tryptophan 3 9 9 6 4 9 

10 L-asparagine 3 7 7 2 4 8 

11 L-anserine 6 10 10 4 9 10 

12 Kynurenine 4 8 8 2 13 12 

13 Serotonin 2 4 6 5 2 7 

14 N,N-Dimethylglycine 2 6 6 3 1 9 

15 L-citrulline 5 17 11 17 5 14 

16 Glutamine 4 9 6 6 9 9 

17 L-2-Aminoadipic Acid 5 12 8 8 12 13 

18 Guanidinoacetic Acid 2 10 6 4 4 11 

19 Nicotinic Acid 1 3 2 3 1 4 

20 Quinolinic Acid 2 5 4 3 3 5 
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Table 2. Metabolites and computed CCS using standard workflow (QM), success (green) or failure (Red) in finding 

global minima with conformation generation engines: Auto3D, CREST, Balloon, and RDKit. 

Number Metabolites 
Predicted CCS 

(% error) 
Auto3D CREST Balloon RDKit 

1 Carnosine 150.21 (0.11) YES (1/13) NO (7/7) NO (6/10) YES (1/9) 

2 O-succinyl-L-homoserine 145.45 (0.39) NO (8/13) NO (6/16) NO (3/14) NO (20/23) 

3 L-tyrosine 148.53 (4.14) YES (1/5) NO (8/11) NO (3/3) YES (1/10) 

4 L-mimosine 145.36 (1.43) YES (1/7) YES (1/15) NO (3/5) NO (2/8) 

5 Citramalic acid 121.58 (0.24) NO (6/8) YES (1/1) YES (1/3) NO (6/10) 

6 N-methyl-L-glutamate 129.30 (1.98) NO (7/9) NO (3/5) NO (10/12) NO (8/13) 

7 L-ornithine 127.39 (0.95) YES (1/5) NO (4/4) NO (2/4) NO (11/12) 

8 Abscisic Acid 162.86 (0.05) NO (5/13) NO (6/9) NO (7/7) NO (8/10) 

9 L-tryptophan 159.69 (6.06) NO (2/9) YES (1/6) NO (3/4) NO (3/9) 

10 L-asparagine 128.93 (0.20) NO (2/7) NO (2/2) NO (3/4) NO (2/8) 

11 L-anserine 159.74 (3.70) NO (4/10) NO (4/4) NO (4/9) NO (3/10) 

12 Kynurenine 146.94 (0.47) YES (1/8) NO (3/7) NO (10/13) NO (4/12) 

13 Serotonin 131.36 (0.38) NO (3/6) NO (2/5) NO (2/2) NO (2/7) 

14 N,N-Dimethylglycine 118.19 (6.23) YES (1/6) NO (2/3) YES (1/1) NO (6/9) 

15 L-citrulline 141.86 (4.59) NO (4/10) NO (3/13) NO (3/5) NO (10/14) 

16 Glutamine 129.92 (0.58) NO (3/6) NO (3/6) NO (6/9) NO (4/9) 

17 L-2-Aminoadipic Acid 129.56 (1.55) NO (5/8) NO (3/8) NO (8/12) NO (4/13) 

18 Guanidinoacetic Acid 130.21 (2.43) NO (4/6) NO (2/4) NO (2/4) NO (7/11) 

19 Nicotinic Acid 132.17 (3.55) YES (1/2) NO (3/3) YES (1/1) YES (1/4) 

20 Quinolinic Acid 142.14 (5.00) YES (1/4) YES (1/3) NO (3/3) NO (2/5) 
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Table 3. RMSD and Relative Energy (kcal/mol) of Carnosine Conformations. The Rank, indicated in parentheses, 

increases with higher values of RMSD and Relative Energy. 

Conformati

on No. 

Auto3D CREST Balloon RDKit 

RMSD 

(rank) 

Rel_E 

(rank) 

RMSD 

(rank) 

Rel_E 

(rank) 

RMSD 

(rank) 

Rel_E 

(rank) 

RMSD 

(rank) 

Rel_E 

(rank) 

Conf_1 0.07 

(1/13) 

0.00 

(1/13) 

0.31 

(1/7) 

5.72 

(7/7) 

0.57 

(1/10) 

3.70 

(6/10) 

0.49 

(1/9) 

0.00 

(1/9) 

Conf_2 0.19 

(2/13) 

28.84 

(10/13) 

0.33 

(2/7)) 

3.30 

(5/7) 

0.72 

(2/10) 

3.56 

(5/10) 

0.73 

(2/9) 

6.82 

(3/9) 

Conf_3 1.10 

(3/13) 

26.52 

(7/13) 

0.57 

(3/7) 

0.08 

(2/7) 

0.79 

(3/10) 

1.65 

(3/10) 

1.36 

(3/9) 

9.75 

(6/9) 

Conf_4 1.54 

(4/13) 

17.34 

(5/13) 

0.61 

(4/7) 

0.00 

(1/7) 

0.90 

(4/10) 

2.22 

(4/10) 

1.54 

(4/9) 

17.76 

(9/9) 

Conf_5 1.57 

(5/13) 

31.99 

(13/13) 

1.10 

(5/7) 

2.70 

(4/7) 

0.90 

(5/10) 

4.92 

(7/10) 

1.87 

(5/9) 

12.47 

(8/9) 

Conf_6 1.59 

(6/13) 

17.10 

(4/13) 

1.49 

(6/7) 

5.21 

(6/7) 

1.07 

(6/10) 

1.53 

(2/10) 

1.90 

(6/9) 

6.48 

(2/9) 

Conf_7 1.67 

(7/13) 

28.26 

(9/13) 

1.51 

(7/7) 

2.25 

(3/7) 

1.33 

(7/10) 

0.00 

(1/10) 

1.92 

(7/9) 

12.34 

(7/9) 

Conf_8 1.70 

(8/13) 

27.89 

(8/13) 

  
1.37 

(8/10) 

5.77 

(8/10) 

1.96 

(8/9) 

7.88 

(4/9) 

Conf_9 1.73 

(9/13) 

15.90 

(2/13) 

  
1.45 

(9/10) 

6.36 

(10/10) 

2.01 

(9/9) 

9.40 

(5/9) 

Conf_10 1.83 

(10/13) 

18.28 

(6/13) 

  
1.88 

(10/10) 

5.90 

(9/10) 

  

Conf_11 2.00 

(11/13) 

16.75 

(3/13) 

      

Conf_12 2.14 

(12/13) 

29.13 

(11/13) 

      

Conf_13 2.74 

(13/13) 

29.26 

(12/13) 
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Table 4. Predicted CCS and error as compared to the experimental value. If the error is within 3%, it is marked as 

green, indicating accurate CCS prediction. If the error is greater than 3%, it is marked as Red, indicating a poor 

prediction of CCS value. The CCS values reported here are based on Standard QM results, Auto3D, CREST, Balloon, 

and RDKit engines, respectively. 

Number Metabolites QM (% error) 
Auto3D 

(% error) 

CREST 

(% error) 

Balloon 

(% error) 

RDKit  

(% error) 

1 Carnosine 150.21 (1.31) 159.60 (5.99) 149.52 (0.35) 161.45 (7.06) 166.49 (9.87) 

2 O-succinyl-L-homoserine 145.45 (1.38) 147.86 (2.00) 141.03 (2.47) 147.41 (1.70) 138.52 (4.61) 

3 L-tyrosine 148.53 (4.14) 153.78 (7.40) 147.12 (3.21) 153.66 (7.33) 150.41 (5.33) 

4 L-mimosine 145.36 (1.43) 146.02 (1.86) 142.49 (0.57) 147.63 (2.93) 147.52 (2.86) 

5 citramalic acid 121.58 (0.24) 116.51 (4.11) 118.38 (2.47) 118.38 (1.98) 120.93 (0.31) 

6 N-methyl-L-glutamate 129.30 (1.98) 133.98 (1.59) 128.04 (2.98) 135.53 (2.72) 135.93 (3.00) 

7 L-ornithine 127.39 (0.95) 119.75 (7.39) 123.48 (4.15) 120.18 (7.01) 133.07 (3.36) 

8 Abscisic Acid 162.86 (0.05) 166.06 (1.96) 160.58 (1.38) 174.51 (6.71) 173.12 (5.96) 

9 L-tryptophan 159.69 (6.06) 161.97 (10.69) 159.62 (9.38) 161.56 (10.47) 167.83 (13.81) 

10 L-asparagine 128.93 (0.20) 124.90 (3.00) 124.20 (3.58) 126.52 (1.68) 125.08 (2.85) 

11 L-anserine 159.74 (3.70) 155.98 (1.37) 152.90 (0.62) 166.13 (7.39) 171.23 (10.15) 

12 Kynurenine 146.94 (0.47) 156.59 (5.71) 160.65 (8.09) 159.56 (7.46) 157.45 (6.22) 

13 Serotonin 131.36 (0.38) 158.29 (6.47) 158.89 (6.82) 159.79 (7.35) 168.18 (11.97) 

14 N,N-Dimethylglycine 118.19 (6.23) 113.91 (10.22) 115.02 (9.15) 114.34 (9.80) 116.42 (7.84) 

15 L-citrulline 141.86 (4.59) 154.66 (12.49) 135.55 (0.15) 161.73 (16.31) 159.52 (15.15) 

16 Glutamine 129.92 (0.58) 126.11 (3.64) 125.95 (3.77) 124.64 (4.86) 132.75 (1.54) 

17 L-2-Aminoadipic Acid 129.56 (1.55) 137.00 (3.97) 128.24 (2.58) 138.36 (4.92) 142.40 (7.62) 

18 Guanidinoacetic Acid 130.21 (2.43) 120.17 (5.72) 120.23 (5.67) 123.22 (3.11) 122.31 (3.88) 

19 Nicotinic Acid 132.17 (3.55) 127.16 (0.27) 126.49 (0.80) 132.29 (3.62) 128.64 (0.89) 

20 Quinolinic Acid 142.14 (5.00) 138.84 (2.73) 143.91 (6.16) 140.96 (4.19) 140.84 (4.11) 
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