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Abstract

This study presents the development and evaluation of a novel
GPT-like conditional molecule generator designed to optimize the syn-
thesis of chemical compounds with desirable properties. The model in-
corporates six pivotal physicochemical properties as conditions: molec-
ular weight, number of non-hydrogen atoms, ring count, hydropho-
bicity, quantitative estimation of drug-likeness (QED), and synthetic
accessibility score (SAS). By integrating these specific attributes, the
generator successfully produced a high-QED database, consisting of
approximately 2 million molecules, all exhibiting a QED higher than
0.9. This achievement not only demonstrates the model’s effectiveness
in generating structurally diverse and potentially pharmacologically
viable molecules but also underscores its utility in accelerating drug
discovery processes.
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1 Introduction

In the rapidly evolving field of drug discovery and chemical synthesis, the
ability to generate novel molecules with desired properties has become a
critical paradigm. Leveraging the power of transformer-based models, like
Generative Pre-trained Transformers (GPT), offers a promising approach to
address this challenge[1]. Such models, once trained on a substantial dataset,
can be fine-tuned to produce chemical structures that not only satisfy specific
chemical criteria but also may possess desirable pharmacological attributes.
In the burgeoning field of molecular design, the application of machine learn-
ing (ML) techniques has revolutionized the way scientists generate and op-
timize novel chemical entities. Various ML architectures, including RNN-
based[2, 3, 4] , LSTM-based[5, 6, 7], Transformer-based[8, 9, 10], Variational
Autoencoders (VAE)[11, 12, 13, 14], and Generative Adversarial Networks
(GANs)[15, 16, 17], along with specialized models like conditional Generative
Pre-trained Transformers (GPT), offer unique capabilities and challenges in
the generation of molecular structures.

This study focus on a GPT-like transformer model, specifically designed
for molecule generation, considering six pivotal physicochemical properties:
molecular weight, number of non-hydrogen atoms, ring count, hydrophobic-
ity, quantitative estimation of drug-likeness (QED)[18], and synthetic ac-
cessibility score (SAS). Developing a model that can efficiently manipulate
these dimensions in molecular design can immensely benefit synthetic chem-
istry, reducing the time and cost associated with experimental methodologies.
This conditional GPT-like model for molecule generation, specifically con-
figured to incorporate six selected physicochemical properties as mentioned
above. While these properties were chosen due to their significant relevance
in molecules designing, it is important to underscore that the architecture
of the model is inherently flexible. The conditional nature of this GPT-like
generator is not limited to these six attributes alone; indeed, the framework
can be readily adapted to integrate a wide array of other molecular proper-
ties and conditions. This versatility allows for customization to meet specific
research needs and objectives, making it an invaluable tool in the exploration
and design of novel compounds.
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2 Methods

In our study, we employed a autoregessive attention only network[19], recog-
nized for its robustness in modeling complex data relationships across fields
such as natural language processing and cheminformatics. This architecture’s
effectiveness lies in its capacity to handle intricate dependencies and inter-
actions, making it ideal for the nuanced task of generating molecules with
specific characteristics. The core configuration of the model includes a hid-
den size of 512, which provides substantial capacity to understand complex
data relationships while maintaining manageability on standard computa-
tional hardware. Additionally, the model features a multi-head attention
mechanism with 16 heads, allowing simultaneous processing of diverse data
facets, and is built with a depth of 24 layers to capture deep hierarchical pat-
terns essential for accurate molecule synthesis. Despite its robustness, this
model configuration is smaller compared to larger language models used in
broader tasks, a design choice driven by the specific requirements of molecule
generation. This smaller scale ensures the model remains both efficient and
practical for the task at hand, balancing computational demands with perfor-
mance. Compared to larger models, our transformer demonstrates a strong
capability to predict molecular structures in response to set conditions such
as molecular weight, atom count, and synthetic accessibility. The decision
to use a relatively compact model configuration was informed by extensive
hyperparameter tuning and existing research, which suggested diminishing
returns for larger models in tasks of similar complexity. This strategic choice
ensures that our model can be effectively trained and utilized with the avail-
able resources, making it well-suited for iterative development and real-world
applications, thus providing a powerful yet computationally feasible tool for
exploring complex relationships in molecule generation tasks.

In the development of our model for embedding SMILES (Simplified
Molecular Input Line Entry System) strings, we opted for a character-level
encoding approach to construct the vocabulary. This decision was driven
by the simplicity and directness of treating each character in the SMILES
notation as an independent token, which simplifies the model architecture
and training process. Character-level tokenization ensures comprehensive
coverage of the chemical space without the risk of missing rare or novel sub-
structures that might not be included in a predefined word dictionary.

However, it is acknowledged that utilizing a group-based word dictio-
nary, such as that employed in ChemBerta[20], could potentially enhance the
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Figure 1: Model architecture based on the vanilla attention only model [19],
the hidden-size was set to be 512, the number of heads was 16 and the layers
was 24.

model’s performance, particularly in the accurate prediction of valid molec-
ular structures. ChemBerta and similar approaches leverage groupings of
characters that represent common chemical substructures, thus encapsulat-
ing more contextual information per token than individual characters. This
method could reduce the complexity of the model and improve its learning
efficiency by decreasing the sequence length of the inputs and capturing more
meaningful chemical patterns.
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3 Model training

3.1 Dataset

For training, we utilized an extensive dataset from PubChem[21], which in-
cluded around 77 million molecules. To ensure manageability and relevance,
only those molecules with a length of fewer than 200 characters were selected,
aligning with typical lengths of small to medium-sized molecules. This pre-
selection criteria helped in maintaining a focus on computationally feasible
molecular sizes during model training and subsequent generative tasks. In
this study, we utilized the open-source dataset from PubChem comprising
approximately 77 million molecules, previously employed in the training of
the ChemBERTa model. To facilitate our analysis, we calculated six critical
molecular properties for each molecule using the RDKit cheminformatics soft-
ware[22]. These properties include Molecular Weight (MolWt), Heavy Atom
Count, Ring Count, Molecular LogP (MolLogP), Quantitative Estimate of
Drug-likeness (QED), and synthetic accessibility score (sascore). Each of
these properties was chosen for its relevance in assessing the drug-likeness
and synthetic feasibility of molecules, crucial factors in drug discovery and
design. The Molecular Weight provides insight into the size of the molecule,
Heavy Atom Count gives the number of non-hydrogen atoms, Ring Count in-
dicates the number of ring structures, MolLogP measures lipophilicity, QED
offers a quantitative estimate of drug-likeness, and sascore assesses the ease
of synthesis. The distribution of each of these molecular properties across the
dataset is illustrated in Figure 2. This visualization helps in understanding
the chemical space covered by the dataset and the typical profiles of molecules
it contains. Analyzing these distributions is essential for setting appropriate
conditions for molecule generation, ensuring that the generated molecules are
representative of realistic, synthesizable, and potentially pharmacologically
active compounds.

3.2 Batch, optimization and regularization

The training of the model was configured to accommodate the memory con-
straints of the available hardware, setting the batch size at 40. Optimization
was performed using the Adam optimizer[23], with an initial learning rate of
1×10−5. This learning rate was scheduled to decay by a factor of 0.2 starting
from the second epoch to facilitate finer adjustments in the later stages of
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(a) molecule weight (b) non-hydrogen atom count

(c) Ring count (d) Hydrophobic/hydrophilic

(e) Drug-likeness (f) Synthesis score

Figure 2: Distributions of the calculated properties for the training molecules
data
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Smiles MolWt HeavyAtomCount RingCount MolLogP QED sascore
CCC=CCC=CC... 457.548 31 0 3.679 0.163 3.726
CC(C)(C)n1... 304.269 19 1 1.037 0.845 3.424
C[NH+](C)C... 455.604 32 3 2.703 0.386 2.949
Cc1cc(C)c(... 245.254 18 2 2.361 0.832 2.853

... ... ... ... ... ... ...

Table 1: Data structure for the training dataset, total amount of the data is
approximately 77 million molecules

training. To further optimize resource utilization and improve computational
efficiency, the model was trained using half-precision floating-point (FP16)
arithmetic. However, this configuration occasionally led to instability in the
training process, manifesting as non-converging numerical values (NaN) in
the loss calculations. for each transformer decoder layer, we set a dropout
ratio of 0.1.

3.3 Hardware

The model has been trained on a RTX4090 graphic card with 2 epochs. Using
the hypermetropias described in section of Method, each epoch took about
17 hours to finish ending up of about 54 hours training time.

4 Testing the model

The efficacy of the model was assessed through its ability to generate a
high-quality dataset characterized by a high Quantitative Estimate of Drug-
likeness (QED). The methodology employed for this evaluation is detailed in
the subsequent section.

Upon processing 7.2 million conditions through the generator, the model
successfully produced 6.5 million valid SMILES strings, achieving a genera-
tion success rate of 90.27%. Among these valid SMILES strings, 4,636,508
were unique, representing a novelty rate of 71.33%. And compared with
the original training data 4.43% of the generated molecules is the same in
training database, representing a novelty of generation of 95.57%.
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7.2M Inputs
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Figure 3: Visualization of molecules generation validation and novelty

5 Generation high QED molecules

In this research, we extend the methodology for generating novel molecu-
lar datasets by leveraging a pretrained Generative Pre-trained Transformer
(GPT)-like model, incorporating specific conditions to guide the generation
process. To evaluate the efficacy of this conditional generation approach, we
initially sampled six million combinations from cross distributions of multi-
ple molecular descriptors—Molecular Weight (MolWt), Heavy Atom Count,
Ring Count, Molecular LogP (MolLogP), and synthetic accessibility score
(sascore). These descriptors were selected from a comprehensive dataset
comprising 77 million molecules, each characterized by a calculated Quan-
titative Estimate of Drug-likeness (QED) exceeding 0.85, emphasizing the
focus on potentially high-quality drug-like molecules. For the generation
phase, we employed these sampled descriptor values as input conditions, set-
ting the QED condition explicitly to unity (1.0) to simulate an ideal scenario
in drug design where maximum drug-likeness is desired. This approach al-
lowed us to systematically assess how well the GPT-like model can adhere
to and reproduce these optimal conditions in the generated molecules. By
integrating these stringent conditions, we aim to demonstrate that our model
can not only recreate molecules resembling those in the high-quality subset
of the training data but also potentially innovate by exploring the chemical
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space around these high-condition benchmarks. This strategy highlights the
model’s capability to generate viable molecular candidates tailored to specific
pharmacological profiles, thereby enhancing the utility of generative models
in drug discovery and development.

To ensure that the input conditions for our GPT model reflect realistic
molecular properties, we first performed a comprehensive statistical analysis
of our molecular dataset. We segmented molecular properties into bins based
on their Quantitative Estimate of Drug-likeness (QED) scores and calculated
the mean and covariance of critical molecular descriptors within each bin.
These descriptors included molecular weight, heavy atom count, ring count,
partition coefficient, QED itself, and synthetic accessibility score. The bin-
ning approach facilitated a nuanced understanding of property distributions
across different levels of drug-likeness.

Utilizing the calculated means and covariance matrices, we developed a
function to draw samples that conform to the observed empirical distributions
of molecular properties. For each set of conditions—defined by a specific bin
index and property column—this function generates samples from a multi-
variate normal distribution. The parameters of this distribution are directly
derived from the mean and covariance statistics of the bin, ensuring that each
sample reflects feasible combinations of molecular properties. This method
significantly reduces the likelihood of proposing chemically implausible or
unrealistic molecules as inputs to the generative model.

The sampled molecular properties serve as conditioned inputs to our
GPT-based molecular generator. By feeding the model with inputs that
are statistically representative of realistic molecular configurations, we effec-
tively guide the generation process towards chemically viable and drug-like
molecules. This approach not only enhances the chemical relevance of the
generated molecules but also streamlines the discovery process by focusing
on candidates with higher potential for successful synthesis and development.

6 Conclusion

The development of the GPT-like conditional molecule generator marks a
significant advancement in the field of computational chemistry and drug
design. The ability to generate a database of 2 million molecules with high
quantitative estimation of drug-likeness (QED ¿ 0.9) validates the model’s
capability to effectively integrate critical physicochemical properties into the
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Figure 4: Distributions of the QED for generated molecules

generation process. This study’s outcomes highlight the potential of ma-
chine learning models to contribute meaningfully to the early stages of drug
discovery by providing a rapid, reliable means to generate compounds with
targeted properties. Future work will focus on refining the model’s accuracy
and expanding its application to include a broader range of chemical enti-
ties, ultimately aiming to enhance the efficiency and innovativeness of drug
development.

7 Code and dataset availability

The code for training the model can be found in Github (working on the
repo...) the generated high QED dataset can be found at https://dx.doi.org/10.21227/egvm-
m266 A demostration web application for this model can be found at https://buluway.com/mol
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