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Abstract  
Synthetic polymers, in contrast to small molecules and deterministic biomacromolecules, are 
typically ensembles comprised of polymer chains with varying numbers, lengths, sequences, 
chemistry, and topologies. While numerous approaches exist for measuring pairwise similarity 
among small molecules and sequence-defined biomacromolecules, accurately determining the 
pairwise similarity between two polymer ensembles remains challenging. This work proposes the 
earth mover’s distance (EMD) metric to calculate the pairwise similarity score between two 
polymer ensembles. EMD offers a greater resolution of chemical differences between polymer 
ensembles than the averaging method and provides a quantitative numeric value representing the 
pairwise similarity between polymer ensembles in alignment with chemical intuition. The EMD 
approach for assessing polymer similarity enhances the development of accurate chemical search 
algorithms within polymer databases and can improve machine learning techniques for polymer 
design, optimization, and property prediction. 

 
Introduction 
Polymers, with their wide range of applications and properties, are integral to numerous industries1 
including textiles,2 water purification,3, 4 energy,5 transportation,6 and health care.7 As the demand 
for polymeric materials with bespoke properties continues to grow, understanding the underlying 
similarities and differences between polymers is essential for the efficient design and optimization 
of materials.8-10 The study of polymer similarity not only provides insights into structure-property 
relationships11, 12 but also aids in the development of effective search algorithms for polymer 
databases13-19 and advances machine learning techniques for property prediction and materials 
discovery.12, 20-37 Despite its importance, quantifying the similarity of polymers remains a 
challenging task, primarily due to the fact that polymers are ensembles of polymer chains with 
varying numbers, lengths, sequences, chemistry, and topologies.38, 39 All of these features can 

https://doi.org/10.26434/chemrxiv-2023-qcjkh ORCID: https://orcid.org/0000-0002-5447-3925 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

mailto:bdolsen@mit.edu
mailto:debra.audus@nist.gov
https://doi.org/10.26434/chemrxiv-2023-qcjkh
https://orcid.org/0000-0002-5447-3925
https://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

affect polymers’ properties and can make similarity studies of polymers more complex than those 
of well-defined small molecules40-42 and sequence-defined biomacromolecules.43, 44 
 
To compute the similarity between polymer ensembles, researchers typically45, 46 first embed each 
molecule in the ensemble, or equivalently convert every polymer chain into a vector, and then 
average all the embedding vectors to obtain a global embedding vector for the ensemble. Similarity 
operations (i.e., cosine similarity or jaccard index) are then performed to calculate the similarity 
between two ensemble embedding vectors, ultimately yielding a similarity between the two 
polymer ensembles. For instance, Aldeghi et al.46 utilized this method to derive a global embedding 
vector for ensembles of polymer chains for block polymers, random polymers, and alternating 
copolymers. However, this commonly used average method prematurely reduces the 
dimensionality of the system, eliminating differences among ensembles due to the topological or 
monomer sequence information.30, 45-47 This premature loss of key information can result in two 
distinct ensembles being classified as identical. Furthermore, the design of embedding functions 
becomes non-trivial when the polymer chains have varying chain lengths or complex nonlinear 
topologies. 
 
Apart from the average methods, researchers have explored the development of new text-based48-

50 and graph-based stochastic representations46, 51-53 that respect the unique aspects of polymer 
chemistry and then utilize these representations for similarity calculations. For instance, 
BigSMILES48, 49 is a text-based representation that builds upon the simplified molecular-input 
line-entry system (SMILES)54, 55 representation for small molecules and is designed specifically 
to describe the stochastic nature of polymer molecules. The polymer automaton51 developed by 
Lin et al. is a graph-based state machine representation that describes polymers' stochastic features. 
Aldeghi et al. developed a graph-based representation with “stochastic” edges to describe the 
average structure of repeat units.46 These existing text-based and graph-based stochastic 
representations can be used to calculate the pairwise similarity score, which captures the chemical 
and topological features contained in a polymer chemical structure diagram.56  However, these 
stochastic representations do not specify the weight or probability of each polymer molecule within 
the ensemble. This probability information can include chain length, composition gradient, 
stereochemistry, and molecular mass distribution. This additional information is not included in 
chemical structure representations; rather it is obtained via polymer characterization and linked to 
chemical structure in data structures such as CRIPT9 and PolyDAT57. 
 
This work proposes the earth mover’s distance (EMD)58 to quantitively calculate the similarity of 
polymer ensembles with greater chemical resolution. Four examples are presented to illustrate the 
power of EMD in characterizing the similarity between polymer ensembles, including two 
component copolymer ensembles, first-order Markov linear copolymer ensembles, star-polymer 
ensembles and polymer ensembles represented by molecular mass distributions (MMDs). The 
proposed EMD metric for calculating the pairwise similarity of polymer ensembles offers a higher 
resolution by avoiding premature dimensionality reduction. It will be shown that EMD yields a 
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more accurate representation of the differences between polymer ensembles and is more consistent 
with chemical intuition. 
 
Methods 
EMD is a well-constructed metric to calculate the similarity of ensembles or distributions. The 
original application of EMD is an optimization problem where the goal is to minimize the amount 
of work to move earth from one pile to another. Thus, it can be formulated and solved as a 
transportation problem. EMD has been successfully applied in multiple fields, including the 
similarity of inorganic solids,59, 60 cell-cell similarity inference,61 and geometric dataset 
distances.62 Analogously, the problem here is transforming one polymer ensemble to another 
polymer ensemble with the minimum amount of work done, which is interpreted as a calculation 
of dissimilarity. In order to use EMD to calculate the pairwise similarity of polymer ensembles, it 
is necessary to determine the dissimilarity or distance between each pair of individual polymer 
chains. There are numerous methods for calculating the dissimilarity or distance between two 
individual polymer chain, such as sequence alignment algorithms63, 64 and graph edit distance 
(GED). Among all these methods, GED stands out as a robust and generalized approach for 
calculating the pairwise dissimilarity or distance between each pair of individual polymer chains 
with varying chemistries, lengths, and topologies. 
 
Graph Edit Distance 
In this work, each polymer chain in the molecular ensemble is first transformed into a coarse-
grained graph representation, where the nodes are molecular fragments, such as repeat units, end 
groups and linkers, and the edges are the connections between these molecular fragments, as 
shown in Figure 1a. If the end group is *H, this end group *H is implicit. Canonicalization rules51 
are utilized to ensure the generalization of selecting repeat units as nodes for building the coarse-
grained polymer graph representations. GED is then used to calculate the pairwise dissimilarity or 
distance between each pair of individual polymer chains with one chain selected from each of the 
two ensembles being compared. GED, first reported by Sanfeliu and Fu65 in 1983, is a measure of 
similarity between two graphs 𝑔𝑔1  and 𝑔𝑔2. The idea behind GED is to find the minimal set of 
transformations that can transform graph 𝑔𝑔1 into graph 𝑔𝑔2 by means of edit operations on graph 
𝑔𝑔1 . The set of elementary graph edit operators typically includes insertion, deletion, and 
substitution of both nodes and edges, as shown in Figure 1. The formula for calculating GED is 
 

𝐺𝐺𝐺𝐺𝐺𝐺(𝑔𝑔1 ,𝑔𝑔2) = min
(𝑒𝑒1,...,𝑒𝑒𝑘𝑘) ∈ 𝒫𝒫( 𝑔𝑔1 ,𝑔𝑔2) 

�𝑐𝑐(𝑒𝑒𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

 (1) 

where 𝒫𝒫(𝑔𝑔1, 𝑔𝑔2)  denotes the set of edit paths transforming 𝑔𝑔1 into graph 𝑔𝑔2 and 𝑐𝑐(𝑒𝑒𝑖𝑖) is the cost 
of each graph edit operation 𝑒𝑒𝑖𝑖 . As shown in Figure 1b, for insertion and deletion of nodes/edges, 
they add a constant cost to the distance, assumed here to be 1. For node substitution (Figure 1c), 
the cost is either the same constant cost as the insertion and deletion costs if the node uses one-hot 
encoding or equal to the constant cost multiplied by the Tanimoto dissimilarity43 of the pair of 
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nodes being substituted if the node uses Morgan fingerprint encoding.43, 46 𝐺𝐺𝐺𝐺𝐺𝐺(𝑔𝑔1, 𝑔𝑔2) is zero 
when 𝑔𝑔1 and 𝑔𝑔2 are identical. GED is symmetric; the minimal cost of transforming graph 𝑔𝑔1 into 
graph 𝑔𝑔2 is the same as the minimal cost of transforming graph 𝑔𝑔2 into graph 𝑔𝑔1. 
 

 
Figure 1: (a) Three examples of the coarse-grained graph representations of polymer chains, where 
the nodes are molecular fragments, such as repeat units, end groups and linkers, and the edges are 
the connections between those molecular fragments. Graph edit distance (GED) operations include 
(b) adding nodes/edges or deleting nodes/edges and (c) substituting nodes. 

 
To map 𝐺𝐺𝐺𝐺𝐺𝐺(𝑔𝑔1, 𝑔𝑔2) onto a distance 𝑑𝑑(𝑔𝑔1, 𝑔𝑔2) with the range of [0, 1), an exponential decay 

function on the normalized graph edit distance, 𝐺𝐺𝐺𝐺𝐺𝐺(𝑔𝑔1,𝑔𝑔2)
(𝑁𝑁1+𝑁𝑁2)/2

  is used:56, 66 

𝑑𝑑(𝑔𝑔1 ,𝑔𝑔2) = 1 − exp�−
𝛼𝛼 ∙ 𝐺𝐺𝐺𝐺𝐺𝐺(𝑔𝑔1, 𝑔𝑔2)

(𝑁𝑁1 + 𝑁𝑁2)/2
� (2) 

where 𝑁𝑁𝑖𝑖  denotes the number of nodes of 𝑔𝑔i and 𝛼𝛼 is a tunable parameter with the default value 
being 1. 𝑑𝑑(𝑔𝑔1, 𝑔𝑔2) is 0 when 𝑔𝑔1 and 𝑔𝑔2 are identical. 𝑑𝑑(𝑔𝑔1 ,𝑔𝑔2) is also symmetric, so 𝑑𝑑(𝑔𝑔1, 𝑔𝑔2) =
 𝑑𝑑(𝑔𝑔2,𝑔𝑔1). The reason for converting the absolute 𝐺𝐺𝐺𝐺𝐺𝐺(𝑔𝑔1 ,𝑔𝑔2) to 𝑑𝑑(𝑔𝑔1, 𝑔𝑔2) stems from chemical 
intuition. The same GED signifies a larger difference when comparing two short polymer chains 
than it does when comparing two long polymer chains. For instance, the similarity score between 
two short polystyrene chains with polymerization degrees of 10 and 20, should be lower than the 
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similarity score between two longer polystyrene chains with polymerization degrees of 110 and 
120, even though both pairs have the same GED. 
 
Earth Mover’s Distance 
As shown in Figure 2, one polymer ensemble is defined as  𝑃𝑃 =
��𝑝𝑝1 ,𝑤𝑤𝑝𝑝1�, �𝑝𝑝2,𝑤𝑤𝑝𝑝2�, … , �𝑝𝑝𝑖𝑖 ,𝑤𝑤𝑝𝑝𝑖𝑖�, … �𝑝𝑝𝑚𝑚,𝑤𝑤𝑝𝑝𝑚𝑚�� having 𝑚𝑚  types of polymer chains, where 𝑝𝑝𝑖𝑖  
represents a type of polymer chain and 𝑤𝑤𝑝𝑝𝑖𝑖  is its corresponding weight, which can be the mole 
fraction of this polymer chain in the polymer ensemble. Similarly, the second polymer ensemble 

𝑄𝑄 = ��𝑞𝑞1 ,𝑤𝑤𝑞𝑞1�, �𝑞𝑞2,𝑤𝑤𝑞𝑞2�, … , �𝑞𝑞𝑗𝑗 ,𝑤𝑤𝑞𝑞𝑗𝑗� , …  �𝑞𝑞𝑛𝑛,𝑤𝑤𝑞𝑞𝑛𝑛�� has 𝑛𝑛  types of polymer chains. The 

sums of the weights for 𝑃𝑃  and 𝑄𝑄  are both normalized and equal to one �i. e. ,∑ 𝑤𝑤𝑝𝑝𝑖𝑖
𝑚𝑚
𝑖𝑖=1 =

∑ 𝑤𝑤𝑞𝑞𝑗𝑗
𝑛𝑛
𝑗𝑗=1 = 1� and individual weights must be positive. 

 

 
Figure 2: Schematic of earth mover's distance (EMD) for calculating the similarity score between 
two polymer ensembles, where  𝑃𝑃 = ��𝑝𝑝1,𝑤𝑤𝑝𝑝1�, �𝑝𝑝2 ,𝑤𝑤𝑝𝑝2�, … , �𝑝𝑝𝑖𝑖 ,𝑤𝑤𝑝𝑝𝑖𝑖�, … �𝑝𝑝𝑚𝑚,𝑤𝑤𝑝𝑝𝑚𝑚�� has 𝑚𝑚 
types of polymer chains and𝑄𝑄 = ��𝑞𝑞1 ,𝑤𝑤𝑞𝑞1�, �𝑞𝑞2 ,𝑤𝑤𝑞𝑞2�, … , �𝑞𝑞𝑗𝑗 ,𝑤𝑤𝑞𝑞𝑗𝑗� , …  �𝑞𝑞𝑛𝑛 ,𝑤𝑤𝑞𝑞𝑛𝑛�� has 𝑛𝑛 
types of polymer chains. The pairwise dissimilarity or distance 𝑑𝑑𝑖𝑖,𝑗𝑗  between every individual 
polymer chains 𝑝𝑝𝑖𝑖  and 𝑞𝑞𝑗𝑗  is calculated through graph edit distance (GED). EMD utilizes 𝑤𝑤𝑝𝑝𝑖𝑖, 𝑤𝑤𝑞𝑞𝑗𝑗 , 
and  𝑑𝑑𝑖𝑖,𝑗𝑗  to calculate the pairwise ensemble similarity between 𝑃𝑃 and 𝑄𝑄. 

EMD
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The pairwise dissimilarity or distance 𝑑𝑑𝑖𝑖,𝑗𝑗  between every pair of individual polymer chains 𝑝𝑝𝑖𝑖  and 
𝑞𝑞𝑗𝑗  is calculated through Equation 2.40 After 𝑤𝑤𝑝𝑝𝑖𝑖 , 𝑤𝑤𝑞𝑞𝑗𝑗 , and  𝑑𝑑𝑖𝑖,𝑗𝑗  are obtained for all the entities in 
the ensembles, the earth mover’s distance (EMD) is determined using Equation 3a along with the 
constraints as specified in Equations 3b-e. 
 

𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃,𝑄𝑄) =
min
𝐹𝐹
∑ ∑ �𝑑𝑑𝑖𝑖,𝑗𝑗 ⋅ 𝑓𝑓𝑖𝑖,𝑗𝑗�𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1

∑ ∑ 𝑓𝑓𝑖𝑖 ,𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1

= min
𝐹𝐹
���𝑑𝑑𝑖𝑖 ,𝑗𝑗 ⋅ 𝑓𝑓𝑖𝑖,𝑗𝑗�

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

 (3a) 

Subject to 𝑓𝑓𝑖𝑖,𝑗𝑗 ≥ 0,∀ 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛 (3b) 

�𝑓𝑓𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑗𝑗=1

= 𝑤𝑤𝑝𝑝𝑖𝑖,∀ 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 (3c) 

�𝑓𝑓𝑖𝑖 ,𝑗𝑗

𝑚𝑚

𝑖𝑖=1

= 𝑤𝑤𝑞𝑞𝑗𝑗 ,∀ 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛 (3d) 

��𝑓𝑓𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

= �𝑤𝑤𝑝𝑝𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= �𝑤𝑤𝑞𝑞𝑗𝑗

𝑛𝑛

𝑗𝑗=1

= 1 (3e) 

 
𝑓𝑓𝑖𝑖,𝑗𝑗 is the flow or amount of weight at 𝑝𝑝𝑖𝑖  which is transported to 𝑞𝑞𝑗𝑗 , and 𝐹𝐹 = �𝑓𝑓𝑖𝑖,𝑗𝑗� denotes all the 
flows between 𝑃𝑃 and 𝑄𝑄. Here,  𝑑𝑑𝑖𝑖,𝑗𝑗 ⋅ 𝑓𝑓𝑖𝑖,𝑗𝑗 is the cost for each individual flow. These equations are 
coded into Pyomo,67, 68 an open-source optimization modeling language, and solved with 
Computational Infrastructure for Operations Research (COIN-OR) Branch-and-Cut (cbc) solver,69 
an open-source mixed integer linear programming solver. Since the sum of the weights is 
normalized, the minimum overall cost equals the minimum overall distance. All 𝑑𝑑𝑖𝑖,𝑗𝑗  are bounded 
between 0 and 1, so EMD is also bounded between 0 and 1, representing the minimum overall 
distance to convert one polymer ensemble 𝑃𝑃 to another polymer ensemble 𝑄𝑄, or equivalently the 
dissimilarity score. Finally, the pairwise similarity score 𝑆𝑆(𝑃𝑃,𝑄𝑄), for the ensemble pair 𝑃𝑃 and 𝑄𝑄,  
may then be defined as 
 

 𝑆𝑆(𝑃𝑃,𝑄𝑄) = 1− 𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃,𝑄𝑄) 
 

(4) 

The value of 𝑆𝑆(𝑃𝑃,𝑄𝑄) is also between 0 and 1. The larger the 𝑆𝑆(𝑃𝑃,𝑄𝑄), the more similar between 𝑃𝑃 
and 𝑄𝑄. The self ensemble similarity score is 1. 
 
Results and Discussions 
Example 1: Two Component Polymer Ensemble 
EMD provides greater resolution of chemical differences between polymer ensembles than simple 
sums or averages of the embedding for each polymer chain. The reason is that simply averaging 
or summing44 prematurely reduces the dimensionality of the system, eliminating differences 
among ensembles. In this example, a comparison of two ensembles, each composed of an equal 
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mixture of two equal-length polymer chains, is employed to demonstrate the features of the EMD 
method for computing pairwise similarity scores, as shown in Figure 3a,b. The two ensembles are 
denoted 𝑃𝑃 = ��𝑝𝑝1 ,𝑤𝑤𝑝𝑝1 = 0.5�, �𝑝𝑝2 ,𝑤𝑤𝑝𝑝2 = 0.5�� where 𝑝𝑝1  and 𝑝𝑝2  are alternating polymers, and 
𝑄𝑄 = ��𝑞𝑞1 ,𝑤𝑤𝑞𝑞1 = 0.5�, �𝑞𝑞2,𝑤𝑤𝑞𝑞2 = 0.5�� where 𝑞𝑞1  and 𝑞𝑞2 are blocky polymers. To compare the 
two ensembles, each polymer chain is first represented as a vector, also known as an embedding. 
Specifically, a one-hot encoding method is used, where the blue repeat unit R0 is represented by 

�10�, the red repeat unit R1 is represented by �01�. This embedding is easily extended to an arbitrary 

number of monomers by increasing the dimensionality of the vector. Then the embedding vectors 

for these polymer chains are  𝑣𝑣𝑝𝑝1 = �10 01 10 01 10 01 10 01 10� ,  𝑣𝑣𝑝𝑝2 = �01 10 01 10 01 10 01 10 01� ; 𝑣𝑣𝑞𝑞1 =

�10 10 10 01 01 01 10 10 10�,  𝑣𝑣𝑞𝑞2 = �01 01 01 10 10 10 01 01 01�.  

 
To illustrate the benefits of EMD, the commonly used average method is computed as a 
benchmark. In this case, a single embedding vector for an ensemble is generated by taking a 
weighted average of the embedding vectors35 resulting in a single embedding for the entire 
ensemble rather than explicitly using the embedding of each constituent. Using this method, the 
embedding vector 𝑉𝑉𝑃𝑃  for polymer ensemble 𝑃𝑃  is  

𝑉𝑉𝑃𝑃 = �𝑣𝑣𝑝𝑝1
⋅ 𝑤𝑤𝑝𝑝1

� + �𝑣𝑣𝑝𝑝2
⋅ 𝑤𝑤𝑝𝑝2

� = �0.5
0.5 0.5

0.5 0.5
0.5 0.5

0.5 0.5
0.5 0.5

0.5 0.5
0.5 0.5

0.5 0.5
0.5 �, and the embedding vector 𝑉𝑉𝑄𝑄 

for polymer ensemble 𝑄𝑄  is 𝑉𝑉𝑄𝑄 = �𝑣𝑣𝑞𝑞1
⋅ 𝑤𝑤𝑞𝑞1

�+ �𝑣𝑣𝑞𝑞2
⋅ 𝑤𝑤𝑞𝑞2

� = �0.5
0.5 0.5

0.5 0.5
0.5 0.5

0.5 0.5
0.5 0.5

0.5 0.5
0.5 0.5

0.5 0.5
0.5 � . 

Since 𝑉𝑉𝑃𝑃 ≡ 𝑉𝑉𝑄𝑄 ,  the similarity score between 𝑃𝑃  and 𝑄𝑄  is one. 𝑃𝑃  and 𝑄𝑄  are treated identically, 
regardless of which similarity metric is used in the average method. However, as observed in 
Figure 3a,b, the two polymer ensembles 𝑃𝑃  and 𝑄𝑄  are noticeably distinct in terms of their 
sequences. Thus, the average method fails to capture the dissimilarity between polymer ensembles 
𝑃𝑃 and 𝑄𝑄. 
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Figure 3: (a) Polymer ensemble 𝑃𝑃 = ��𝑝𝑝1,𝑤𝑤𝑝𝑝1 = 0.5�, �𝑝𝑝2,𝑤𝑤𝑝𝑝2 = 0.5��  and (b) Polymer 
ensemble 𝑄𝑄 = ��𝑞𝑞1 ,𝑤𝑤𝑞𝑞1 = 0.5�, �𝑞𝑞2,𝑤𝑤𝑞𝑞2 = 0.5��. Blue circles represent the repeat unit 𝑀𝑀0, and 
red circles represent the repeat unit 𝑀𝑀1. (c) Graph edit distance (GED) matrix and (d) distance (𝑑𝑑) 
matrix between the polymer ensembles 𝑃𝑃 and 𝑄𝑄. 

 
Next, the EMD method is used to calculate a quantitative ensemble similarity score. GED matrix 
and distance matrix ([𝑑𝑑𝑖𝑖 ,𝑗𝑗]) between the polymer ensembles 𝑃𝑃 and 𝑄𝑄 are calculated, with results 
shown in Figure 3c,d. Additional details can be found in the Methods section. Using the necessary 
information about 𝑤𝑤𝑝𝑝𝑖𝑖, 𝑤𝑤𝑞𝑞𝑗𝑗 , and  𝑑𝑑𝑖𝑖,𝑗𝑗 , the optimization problem is solved, yielding 𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃,𝑄𝑄) =
0.28 and 𝑆𝑆(𝑃𝑃,𝑄𝑄) = 0.72. The EMD method captures the difference and provides a quantitative 
pairwise similarity score that accurately reflects the similarity between the two ensembles. 
 
Example 2: First-order Markov Copolymer Ensemble 
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EMD is applied to a more complex system, first-order Markov copolymers,38, 70 where the primary 
structure of the copolymer can be treated as a first-order Markov process. The two repeat units are 
the same as in Example 1, where the blue repeat unit is R0 and the red repeat unit is R1. Fixed-
length linear polymers are generated using 𝑡𝑡𝑖𝑖𝑖𝑖, the transition or conditional probability that a repeat 
unit of type 𝑖𝑖 is followed by a repeat unit of type 𝑗𝑗 in a linear sequence, with  𝑖𝑖, 𝑗𝑗 = R0 , R1.  As 
shown in Figure 4a, the transition probability 𝑡𝑡10, for example, is the probability of forming a 
~R1R0 from ~R1 in a copolymer chain where “~” represents a piece of polymer chain. The 𝑡𝑡𝑖𝑖𝑖𝑖s 
can be used to construct a transition matrix 𝑇𝑇, which is given by 

𝑇𝑇 =  �
𝑡𝑡00 𝑡𝑡10
𝑡𝑡01 𝑡𝑡11

�  

 
(5) 

Due to the rules of probability, the sum of the transition probabilities for the addition to ~R0  and 
~R1,  are each separately equal to 1. Therefore, 

𝑡𝑡00 + 𝑡𝑡01 = 1 (6a) 
𝑡𝑡10 + 𝑡𝑡11 = 1 (6b) 

 
The first-order Markov process can thus be specified by two independent parameters: (i) the 
average fraction of R1 in a copolymer chain, 𝑓𝑓R1 

𝑓𝑓R1 = 𝑓𝑓R1 ⋅ 𝑡𝑡11  + �1 − 𝑓𝑓R1� ⋅ 𝑡𝑡01 (7) 
 
and (ii) the nontrivial eigenvalue of the transition matrix 𝑇𝑇, 𝜆𝜆, which defines the correlations in the 
linear repeat unit sequence. 
 

𝜆𝜆 = 𝑡𝑡00 + 𝑡𝑡11  − 1 (8) 
 
Here copolymer ensembles are studied with the setting 𝑓𝑓R0 = 𝑓𝑓R1 = 0.5 , where the average 
fractions of R0 and R1 are the same in a copolymer chain. Consequently, 𝑡𝑡00, 𝑡𝑡01, 𝑡𝑡10 and 𝑡𝑡11 are 
solely determined by 𝜆𝜆. 
 

𝑡𝑡00 = 𝑡𝑡11 =
1 + 𝜆𝜆

2
 

 
(9a) 

𝑡𝑡01 = 𝑡𝑡10 =
1 − 𝜆𝜆

2
 (9b) 

 
By modifying the value of 𝜆𝜆, different copolymer ensembles 𝑃𝑃𝜆𝜆 can be generated. In this example, 
a series of polymer ensembles are generated for 𝜆𝜆 = −1.0 to 1.0 in increments of 0.5. All chains 
have a fixed length 𝐿𝐿 = 10. Representative copolymer sequences are illustrated in Figure 4b. At 
𝜆𝜆 = 0, there are no correlations (memory) along the chain; this is an ideal random copolymer. The 
case of 𝜆𝜆 > 0 corresponds to positive correlations between identical repeat units, meaning that the 

https://doi.org/10.26434/chemrxiv-2023-qcjkh ORCID: https://orcid.org/0000-0002-5447-3925 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-qcjkh
https://orcid.org/0000-0002-5447-3925
https://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

last monomer of the polymer chains has a tendency to connect the same type of repeat units (blocky 
polymers). The case of 𝜆𝜆 < 0  corresponds to negative correlations between identical repeat units, 
meaning chains tend to alternate between R0 and R1 repeat units. For the case of 𝜆𝜆 = −1.0, the 
polymer ensemble 𝑃𝑃𝜆𝜆=−1.0 has two sequences with equal probability, R0R1R0R1R0R1R0R1R0R1 
and  R1R0R1R0R1R0R1R0R1R0. Even though these two polymer chains' pairwise GED is zero 
due to symmetry, they are both kept because they are generated in different Markov processes. For 
the case of 𝜆𝜆 = 1.0, the polymer ensemble 𝑃𝑃𝜆𝜆=1.0 has only two sequences with equal probability 
R1R1R1R1R1R1R1R1R1R1 and R0R0R0R0R0R0R0R0R0R0 . Apart from these two special cases, 
polymer ensembles generated by other 𝜆𝜆 values are sampled by following the above first-order 
Markov process for 3 × 107  polymer chains (Discussions of sampling size convergence are 
included in the Supporting Information). 
 

 
Figure 4: (a) First-order Markov copolymer model. (b) Representative copolymer sequences (Blue 
circle representing repeat unit 𝑅𝑅0 and red circle representing repeat unit 𝑅𝑅1) with average mole 
fraction 𝑓𝑓𝑅𝑅1 = 0.5, and different repeat unit sequences (𝜆𝜆 value): 𝜆𝜆 = 1.0 generates chains either 
pure 𝑅𝑅0 or 𝑅𝑅1 (𝑡𝑡00 = 𝑡𝑡11 = 1.0); 𝜆𝜆 = 0.5 creates a chain with moderate positive correlations in 
identical monomers (𝑡𝑡00 = 𝑡𝑡11 = 0.75);  𝜆𝜆 = 0.0 is an ideally random chain (𝑡𝑡00 = 𝑡𝑡11 = 0.5); 
𝜆𝜆 = −0.5 creates a chain with moderate negative correlations in identical monomers (𝑡𝑡00 = 𝑡𝑡11 =
0.25); and 𝜆𝜆 = −1.0 is a perfectly alternating chain (𝑡𝑡00 = 𝑡𝑡11 = 0). (c) The distributions of the 
mole fraction of 𝑅𝑅1  in the polymer chain (𝐶𝐶𝑅𝑅1 ) for a series of first-order Markov copolymer 
ensembles generated from different 𝜆𝜆 values. 
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The distributions of the mole fraction of 𝑅𝑅1 in the polymer chain (𝐶𝐶R1) for a series of ensembles 
as a function of the composition variation on a chain basis in the ensemble are shown in Figure 4c. 
These copolymer ensembles generated by different 𝜆𝜆  values have distinct chain composition 
distributions. The ensemble generated at 𝜆𝜆 = −1.0 is perfectly alternating copolymer with only 
two unique sequences where the values of 𝐶𝐶R1 of these two chains are both 0.5. Therefore, polymer 
ensemble 𝑃𝑃𝜆𝜆=−1.0 has probability 1.0 at 𝐶𝐶R1 = 0.5. As 𝜆𝜆 increases, the corresponding probability 
for 𝐶𝐶R1 = 0.5 gradually decreases, and the corresponding probability at the two ends (𝐶𝐶R1 = 0.0 
and  𝐶𝐶R1 = 1.0) gradually increases. When 𝜆𝜆 = 1.0, polymer ensemble 𝑃𝑃𝜆𝜆=1.0 has a distribution 
with the probability of 𝐶𝐶M1 = 0.0  being 0.5 and the probability of 𝐶𝐶R1 = 1.0  being 0.5. The 
distributions are symmetric since the same average fraction 𝑓𝑓R0 = 𝑓𝑓R1 = 0.5. 

Similar to Example 1, the one-hot encoding method is utilized to embed the copolymer sequence 

as a vector, where the blue repeat unit is �10� and the red repeat unit is �01�. For comparison, the 

average method is employed to compute the mean of all embedding vectors of copolymer chains 
within each ensemble, the obtained average global vector V for each ensemble is identical: 
�0.5
0.5 0.5

0.5 0.5
0.5 0.5

0.5 0.5
0.5 0.5

0.5 0.5
0.5 0.5

0.5 0.5
0.5 0.5

0.5 �.  Consequently, the average method eliminates the ensemble 
features and fails to accurately characterize the pairwise similarity among these copolymer 
ensembles, akin to the issue in Example 1. 

 

EMD is then employed to compute the pairwise similarity between a pair of ensembles of first-
order Markov copolymers. As illustrated in Figure 5a, using one-hot encoding and setting 
substitution cost as 1, the value of 𝑆𝑆(𝜆𝜆1 , 𝜆𝜆2) between a copolymer ensemble 𝑃𝑃𝜆𝜆1 and a copolymer 
ensemble 𝑃𝑃𝜆𝜆2  from the EMD method is between 0.61 and 1. The lowest similarity score is 
𝑆𝑆(1.0,−1.0) =  𝑆𝑆(−1.0, 1.0) =  0.61, and the highest similarity score is self-similarity 𝑆𝑆(𝜆𝜆, 𝜆𝜆) =
1. The similarity between copolymer ensemble 𝑃𝑃𝜆𝜆1 and copolymer ensemble 𝑃𝑃𝜆𝜆2 decreases as the 
gap |𝜆𝜆1 − 𝜆𝜆2|  increases, which is consistent with chemical intuition. If repeat units R0  and 
R1represent specific chemical structures, such as “*CC(*)c1ccccc1” (the repeat unit of polystyrene 
represented in BigSMILES, {[][$]CC(c1ccccc1)[$][]})) and “*CC(*)c1ccc(C(=O)OC)cc1” (the 
repeat unit of poly(methyl 4-vinylbenzoate), {[][$]CC(c1ccc(C(=O)OC)cc1)[$][]}), then the 
nodes and edges can be embedded with Morgan fingerprints46  and the Tanimoto dissimilarity 
between R0 and R1 can be used as the substitution cost.43 The corresponding pairwise similarity 
results for this case are shown in Figure 5b. The basic trends match that of one hot encoding, but 
the range of similarities values is smaller since the two different repeat units are more similar to 
one another than if one hot encoding is used. For both one-hot encoding and Morgan fingerprint 
encoding, EMD results follow chemical intuition and provide a quantitative result. Therefore, 
unlike the average method, EMD method is able to distinguish these first-order Markov copolymer 
ensembles from one another, thus demonstrating the utility of the method. 
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Figure 5: The pairwise similarity score 𝑆𝑆(𝜆𝜆1, 𝜆𝜆2) for first-order Markov copolymer ensembles 
generated by different 𝜆𝜆 values under one-hot encoding (a) and Morgan fingerprint encoding (b). 

 

Apart from different chemistry, Example 2 can also be used to describe the pairwise similarity of 
polymer ensembles with different tacticity, such as atactic, and syndiotactic polypropylene (PP), 
where R0 and R1 represent "*C[C@H](C)*" and "*C[C@@H](C)*". Atactic PP ensemble can be 
treated as 𝑃𝑃𝜆𝜆=0. Syndiotactic PP can be treated as 𝑃𝑃𝜆𝜆=−1.0. If using the one-hot encoding, the 
pairwise similarity result can be found in Figure 5a, 𝑆𝑆(atactic PP,  syndiotactic PP) = 0.69 . 
Furthermore, if Morgan fingerprint encoding is used to include the detailed chemical structure of 

One-hot Encoding

Morgan Fingerprint Encoding

(a)

(b)
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stereochemical centers, then the pairwise similarity result is  𝑆𝑆(atactic PP,  syndiotactic PP) =
0.90. 
 

Example 3: Star Polymer Ensemble 
In the two examples discussed above, all the polymer chains are linear and have a constant chain 
length. However, in the real-world, polymer ensembles are often more complex, featuring varying 
lengths, topologies and chemistries, such as the eight star polymer ensembles in Figure 6a. Take 
SP-1, a three-arm star polymer ensemble as an example. The probabilities of arm-lengths are 
assigned to be one, two, and three are 1

4
, 1
2
 and 1

4
, respectively. This simple case was chosen as it 

allows for illustration of the method, while reducing the computational burden of the costly GED 
method. With these parameters, this three-arm star polymer ensemble SP-1 has ten configurations 
with the corresponding analytical mole fractions as shown in Figure 6b. The configurations and 
corresponding mole fractions of the other seven polymer ensembles are given in the Supporting 
Information. Morgan fingerprints are used for the embedding of nodes and edges while Tanimoto 
dissimilarity is used as the substitution cost. 

 
Figure 6: (a) Eight types of star polymer ensembles generated with varying arm lengths, arm 
numbers, and repeat unit compositions. The blue circle and the red circle represent two types of 
repeat units. The yellow triangle is a star core group with three connection spots. The green square 
is a star core group with four connection spots. (b) Ten polymer chains' configurations and the 
corresponding mole fractions about the three-arm polymer ensemble SP-1 in (a). 
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The pairwise dissimilarity 𝑑𝑑𝑖𝑖 ,𝑗𝑗 between two individual polymer chains is calculated by GED, and 
then the 𝑑𝑑𝑖𝑖,𝑗𝑗  and each polymer chain's weight are used to calculate the EMD and similarity score.  
The similarity results are shown in Figure 7. 𝑆𝑆(SP-1, SP-2) reveals the effect of arm length on the 
similarity score; 𝑆𝑆(SP-1, SP-3)  illustrates the effect of arm number on similarity score; 
𝑆𝑆(SP-1, SP-5)  demonstrates the impact of repeat units on similarity. 𝑆𝑆(SP-1, SP-2) >
 𝑆𝑆(SP-1, SP-4) and 𝑆𝑆(SP-1, SP-3) >  𝑆𝑆(SP-1, SP-4) because compared with SP-1, SP-4 changes 
both arm length and arm number, which is consistent with the chemical intuition. The pair SP-1 
and SP-8 and the pair SP-4 and SP-5 have the smallest pairwise similarity scores, meaning these 
pairs are the most different pairs. This is consistent with chemical intuition because the arm length, 
arm number, and repeat units of SP-1 and SP-8 (or SP-4 and SP-5) are all different. 

 

 
Figure 7: The pairwise similarity score for eight star polymer ensembles. 
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Example 4: Polymer Ensembles Represented by Experimental Molecular Mass Distributions 
Polymer molecular mass distributions (MMDs)38, 39, 71-73 exemplify the fact that synthetic polymers 
are ensembles rather than single, well-defined structures. Six experimental polystyrene MMDs 
from Kottisch et al.71 are used to illustrate how EMD can be used to characterize the pairwise 
similarity between two different MMDs, as displayed in Figure 8a. Kottisch et al. controlled the 
breadth and shape of polystyrene MMDs by varying initiator (sec-butyllithium) addition rates 
(constant, linearly ramped, and exponentially ramped) and addition time.71 For example, C-40 
refers to a constant rate of initiator addition with an addition time of 40 min. The parameters of 
these six MMDs are shown in Figure 8b. Among these MMDs, C-40, L-40 and E-60 have similar 
number average molar mass (𝑀𝑀n ) and dispersity (Đ) but different shapes illustrated by the 
asymmetry factor (𝐴𝐴𝑠𝑠), skewness (𝛼𝛼3), and kurtosis (𝛼𝛼4).  

 
Figure 8: (a) Six polystyrene MMDs from the work of Kottish et al.71 generated by varying initiator 
(sec-butyllithium) addition rates (constant (C), linearly ramped (L), and exponentially ramped (E)) 
and addition time (40 min and 60 min). C-40, for example, refers to a constant rate of initiator 
addition with an addition time of 40 min. (b) MMDs' parameters include number average molar 
mass (𝑀𝑀𝑛𝑛), dispersity (Đ), asymmetry factor (𝐴𝐴𝑠𝑠), skewness (𝛼𝛼3), kurtosis (𝛼𝛼4) from Kottish et 
al.71 (c) The polymer graph representation is built for every single value of measured molecular 
mass (𝑀𝑀𝑖𝑖) in the MMDs. (d) Pairwise similarity scores for six polystyrene MMDs via EMD. 

In this example, the EMD metric is utilized to quantitatively calculate the similarity between two 
arbitrary distributions. As in the previous examples, each unique polymer molecule is utilized to 
generate a polymer graph representation. In this case, to make the method generalizable to multi-
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parameter distributions (for example molar mass and monomer composition), the polymer graph 
representation is built for every single value of measured molecular mass (𝑀𝑀𝑖𝑖) in the MMDs, as 
shown in Figure 8c. To do so, the fact that the polymers are linear is used. Since one of the end 
groups (*H) is implicit, the number of nodes can be computed as 

where 𝑑𝑑𝑑𝑑𝑖𝑖  is the degree of polymerization computed from 𝑀𝑀𝑖𝑖 . The value of 1 corresponds to the 
other end group, sec-butyl group. Since all of the MMDs in this study are about linear polystyrene, 
as shown in Figure 8c, adding one repeat unit node means also adding one edge in the graph 
representation. GED between 𝑀𝑀𝑖𝑖  and 𝑀𝑀𝑗𝑗  can be computed as two times the difference of the degree 
of polymerization. For nonlinear polymers, this equation may also be a suitable approximation 
approach if only the MMDs are known. 

𝐺𝐺𝐺𝐺𝐺𝐺�𝑀𝑀𝑖𝑖 ,𝑀𝑀𝑗𝑗� = 2 × |𝑑𝑑𝑝𝑝𝑖𝑖 − 𝑑𝑑𝑝𝑝𝑗𝑗| (11) 
 
Plugging this into Equation 2 yields 

𝑑𝑑𝑖𝑖,𝑗𝑗�𝑀𝑀𝑖𝑖 ,𝑀𝑀𝑗𝑗� = 1 − exp�−
2 × |𝑑𝑑𝑝𝑝𝑖𝑖 − 𝑑𝑑𝑝𝑝𝑗𝑗|

(𝑑𝑑𝑝𝑝𝑖𝑖 + 1) + �𝑑𝑑𝑝𝑝𝑗𝑗 + 1�
2

� (12) 

 
For the weight setting of 𝑤𝑤𝑖𝑖  and 𝑤𝑤𝑗𝑗 , the normalized mole fractions are used. EMD takes 𝑤𝑤𝑖𝑖 , 𝑤𝑤𝑗𝑗  
and 𝑑𝑑𝑖𝑖 ,𝑗𝑗  to calculate the pairwise similarity score values among MMDs. Since the weights are 
normalized, the EMD should theoretically converge (ignoring experimental error) if the frequency 
of sampling 𝑀𝑀𝑖𝑖  is increased. The pairwise similarity results are shown in Figure 8d. 𝑆𝑆(C-40, C-60) 
is lower than 𝑆𝑆(E-40, E-60), which is consistent with chemical intuition that E-40 and E-60 are 
closer in dispersity. Among polystyrene C-40, L-40, and E-60 MMDs, C-40 and L-40 are the most 
similar pair, while polystyrene MMDs C-40 and E-60 are the most different. These similarity 
scores are consistent with the relative rankings of skewness and kurtosis of C-40, L-40, and E-60. 
 
Areas for Future Development 
GED is a robust, generalized and powerful tool for calculating the pairwise distance between two 
individual polymer chains with arbitrary composition, chain length and topology. However, the 
calculation of exact GED is non-deterministic polynomial-time hard (NP-hard). Even the state-of-
the-art algorithms cannot reliably compute the exact GED within reasonable computing time 
between graphs with more than 16 nodes.66, 74 If each polymer ensemble has thousands of unique 
polymer chains, the calculation of EMD between these polymer ensembles requires millions of 
exact GED calculations. This NP-hard feature of an exact GED calculation renders it especially 
costly for large graph representations and limits the proposed method to relatively small polymers 
unless assumptions such as those in Example 4 are used. 
 

𝑁𝑁𝑖𝑖 = 𝑑𝑑𝑝𝑝𝑖𝑖 + 1 (10) 
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The method for selecting repeat units as nodes for building the coarse-grained polymer graph 
representations needs further improvement. For example, a polyethylene chain with 100 
polymerization degrees (CC)100 and a hydrogenated 1,4-polybutadiene chain with 50 
polymerization degrees, (CCCC)50 are treated differently since their monomers are different under 
the canonicalization priority rules51 despite the fact that they both represent the same polymer 
chain with the total length of 200 carbons. Fundamentally, this is an artifact of coarse-graining the 
polymer chain into monomer units. Comprehensive coarse-graining techniques which satisfy both 
the repeat unit level and the whole polymer chain level will be developed in the future. 
 
In the study of experimental polymer ensembles, various approximation methods are employed to 
calculate pairwise similarity scores. These methods aim to construct representative ensembles that 
reflect the actual states of the polymers, albeit with limited available information (molecular 
structure representations and MMDs). As experimental characterization techniques for polymers 
continue to advance in the future, it is anticipated that more comprehensive data will be collected. 
This additional information will facilitate the creation of more accurate representative ensembles, 
which in turn will improve the precision of similarity calculations. 
 
Conclusion 
Quantifying the pairwise similarity of polymers is a challenging task due to their ensemble nature, 
consisting of polymer chains with varying quantities, lengths, sequences, chemistry, and 
topologies. This complexity is greater than that of small molecules with well-defined molecular 
structures or biomacromolecules with specified sequences. This research leverages the earth 
mover’s distance (EMD) method to quantitatively compute pairwise similarity scores of polymer 
ensembles. The EMD metric provides enhanced chemical resolution compared to the average 
method, which may eliminate differences by prematurely reducing system dimensionality. 
Furthermore, EMD only needs the pair dissimilarity 𝑑𝑑𝑖𝑖,𝑗𝑗  which can be robustly calculated from 
graph edit distance, skipping the difficult step of designing comprehensive embedding functions 
for each polymer chain, especially for those nonlinear polymers with complex topological 
structures. 
 
Utilizing the EMD metric allows for an accurate and quantitative assessment of chemical similarity 
between polymer ensembles, and the results have been shown to align with chemical intuition. 
This method has far-reaching applications in polymer database retrieval systems, including nearest 
neighbor search queries. It benefits the development of supervised machine learning techniques 
on polymer properties and provides a robust foundation for future research in polymer design and 
optimization.8, 12, 24, 33, 75-80 
 
Code Availability 
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Example scripts and information necessary to run and reproduce the examples and the 
corresponding results contained in this article are posted at the GitHub repository, 
https://github.com/olsenlabmit/Polymer-Ensemble-Similarity. 
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