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Abstract

We recently introduced a polarizable embedding scheme based on an integral-exact

reformulation of the direct reaction field method (IEDRF) that accounts for differen-

tial solvation of ground and excited states in QM/MM simulations. The polarization

and dispersion interactions between the quantum-mechanical (QM) and molecular-

mechanical (MM) regions are described by the DRF Hamiltonian, while the Pauli

repulsion between explicitly treated QM electrons and the implicit electron density

around MM atoms is modeled with effective core potentials. A single Hamiltonian

is used for all electronic states, so that Born-Oppenheimer states belonging to the
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same geometry are orthogonal and state crossings are well-defined. In this work, we

describe the implementation of the method using graphical processing unit accelera-

tion in TeraChem, where it is combined with multiple electronic structure methods,

including Hartree-Fock, Time-dependent Density Functional Theory, and Complete Ac-

tive Space Self-Consistent Field. In contrast with older implementations of the DRF

method, integrals of the polarization operators are evaluated exactly. Expressions for

ingredients needed to construct analytical gradients and non-adiabatic coupling vectors

are derived and tested by optimizing a conical intersection between two excited states

in the presence of a polarizable solvent shell. The method is applied to estimating the

solvent shifts of absorption energies of a series of donor-acceptor dyes having low-lying

charge-transfer states. Even for a non-polar solvent such as n-hexane, the inclusion of

its static polarizability leads to non-negligible shifts that improve the agreement with

the positions of experimental absorption maxima measured in solution.

1 Introduction

Photochemical reactions can often be understood by concentrating on relatively small molec-

ular components, the chromophores, which are responsible for absorption of light. Light-

induced processes of technological interest, or those occurring in nature such as photo-

synthesis,1 happen in the condensed or liquid phase, where the environment affects the

photophysical properties of the chromophores. Some solvent effects can be understood by

modeling the solvent as a structureless dielectric continuum2–5 or viscous medium: the color

of some chromophores changes depending on the solvent polarity6 and aggregation induced

emission7 is observed when non-radiative deactivation channels are blocked mechanically by

the surrounding molecules. However, other solvent effects defy simple explanations in terms

of macroscropic solvent properties or steric hinderance and require an atomistic model. A

particularly important example is the unidirectional charge separation in photosynthetic re-

action centers.8 These protein complexes contain two identical branches of pigments, but

2

https://doi.org/10.26434/chemrxiv-2022-j8rgj-v2 ORCID: https://orcid.org/0000-0002-2908-5680 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-j8rgj-v2
https://orcid.org/0000-0002-2908-5680
https://creativecommons.org/licenses/by-nc-nd/4.0/


only one of them is active. Although the electronic excitation is strictly localized to the

chromophores, the functioning of the reaction center is fine-tuned by the protein matrix.

Numerous theoretical9,10 and experimental11,12 studies have concluded that the asymme-

try, which directs the charge transfer exclusively along the active branch, is produced by

the unequal dielectric screening in the protein matrix. Since the protein complex contains

thousands of atoms, a fully quantum-mechanical treatment is out of the question. This

motivates the division of such complex systems into a small part treated with quantum me-

chanics (QM) and a larger environment treated with a classical molecular mechanics (MM)

force field.13 The coupling between the two systems can be decomposed into electrostatic

and steric interactions as well as polarization and dispersion. Although the electrons in the

MM part are not explicitly accounted for, one must not forget that all these interactions

are quantum-mechanical in nature: Steric effects arise from Pauli repulsion and static polar-

ization and dispersion are the result of the correlated motion of electrons both in the MM

and QM part. Classical approximations for the coupling in the form of pairwise Lennard-

Jones potentials, fixed point charges and polarizable force fields do not necessarily carry over

without adjustments to the situation where the QM region is electronically excited.

While QM/MM simulations with polarizable embedding schemes are routinely performed

for ground-state reactions,14 the extension to excited states is complicated by the fact that

different electronic states react differently to the polarizable environment. Charge transfer

states, for instance, induce a much larger reaction field than local excitations. The polariz-

ability of a molecule, and with it the dispersive attraction to the surrounding MM region,

also change in the excited state.

It is important to note that in polar solvents, most of the dielectric response to long-

lived excited states comes from the slow reorientation of the solvent molecules, which could

be captured by running electrostatic embedding QM/MM molecular dynamics simulations

in the excited state. What this simple QM/MM approach misses is the screening due to

the instantaneous reaction of the environment’s electrons to the new charge distribution
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in the excited state. Macroscopically, this instantaneous polarization is quantified by the

high-frequency dielectric constant, which for most saturated organic solvents amounts to

approximately ϵ∞ ≈ 2.0 and does not vary among solvents as much as the static (or zero-

frequency) dielectric constant (e.g. ϵr = 1.8 for n-hexane versus ϵr = 78 for water). However,

in apolar solvents, the dielectric screening is exclusively due to the fast response of the

electrons. Even then, the Coulomb interaction (ϵ∞r)−1 is only about half as strong as in

vacuum and the stabilization of long-range charge transfer in the excited state can be very

large.

Previous efforts to combine polarizable embedding schemes with excited-state calcula-

tions can be roughly divided into linear response9,15,16 and state-specific formulations.17–20

In linear-response solvation models, ground and excited states are not treated on the same

footing. In a first step, the reaction field of the induced dipole moments is determined self-

consistently with the charge distribution of the ground-state wavefunction. In the second

step, electronic excitation energies are determined from the response of the electronic and

dipole degrees of freedom to an oscillating electric field. When solving for the excited states

in the second step, the reaction of the induced dipoles to the transition density of the ex-

cited state is retained to linear order. As pointed out for the related polarizable continuum

models (PCM), linear response then recovers only a dispersion-like portion of the solva-

tion’s infleunce on the excitation energy,21 and the solvent response to long-range (dark) CT

states is largely missed.22 As a result, linear-response polarization will tend to overestimate

photoexcited CT state energies.

In contrast to linear response, state-specific approaches17–20 determine the polarization

response self-consistently for a specific electronic state. This idea appears to originate with

a similar approach used for PCM23 and even earlier in analytic solvation models.24 A sepa-

rate calculation has to be performed for each state. Since the Hamiltonian depends on the

wavefunction through the induced dipole moments, different electronic states are not eigen-

functions of the same Hamiltonian anymore. Therefore transition matrix elements and state
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crossing become ill-defined.18,25,26 In addition, root flipping issues are commonly observed,

particularly between states that are close in energy.18,26

In a previous paper,26 we showed that an early polarizable embedding method called

direct reaction field (DRF),27,28 which, although seems to have fallen out of use, overcomes

the problems of both linear-response and state-specific solvation models and allows one to

obtain several excited states in a single run. This section quickly reviews the history of

the DRF27 and dipole interaction models.29 In one of the earliest mixed quantum-classical

simulations of an enzymatic reaction, Warshel and Levitt already realized the importance

of the polarizable environment for stabilizing reaction intermediates.30,31 They represented

the solvent molecules as a collection of polarizable dipoles that react to the charge dis-

tribution of the substrate. The effective polarizability of such an ensemble of interacting

dipoles can be estimated from atomic parameters using Applequist’s model.29 Based on

these initial developments, the DRF method was invented by Thole and van Duijnen in the

early 1980s.27,28 They considered a system divided into a quantum-mechanical region and

an atomistic environment of point charges and interacting polarizable dipoles. The starting

point is the classical expression for the polarization energy of the dipoles, Upol = −1
2
fTAf ,

where f are the electric fields created by the QM charge distribution and A is the effec-

tive polarizability of the environment. By replacing the electrostatic fields, f , with their

quantum-mechanical equivalents, f̂ , which depend on the electronic coordinates, one arrives

at a quantum-mechanical operator for the polarization energy.

The approach is called the direct reaction field in contrast to the self-consistent reaction

field. In the self-consistent reaction field, another name for state-specific solvation, the re-

sponse of the solvent is introduced only after determining the solute wavefunction and charge

distribution, which then creates a field that acts back on the solute. Since the electric fields

enter the polarization energy in the form of an expectation value, USCRF
pol = −1

2
⟨f̂⟩TA⟨f̂⟩,

the Hamiltonian acquires a complicated non-linear dependence on the electronic state of

interest.27 In the DRF method, on the other hand, the reaction field is added directly in
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the form of a polarization Hamiltonian. Crucially, there are no non-linear terms, as in the

self-consistent reaction field method, and the same Hamiltonian is used for all electronic

states. Thus, solvent effects are incorporated directly into the Hamiltonian matrix elements

such that the polarizable solvent molecules effectively screen the Coulomb interaction be-

tween all charged solute particles. As a result, the nuclear repulsion and the matrix elements

for electron-nuclear attraction and electron-electron repulsion have to be modified. The po-

larization Hamiltonian alters both the one- and two-electron operators and thus introduces

additional correlations between electrons through their interaction with the solvent. The po-

larization energy is determined in the usual way as an expectation value of the polarization

Hamiltonian, UDRF
pol = ⟨−1

2
f̂TAf̂⟩.27 Due to the assumption of an instantaneous response

of the induced MM dipoles to the electronic coordinates of the QM region, the method also

approximately captures correlations between the electrons and MM dipoles, i.e. dispersion

interactions between QM and MM particles, discussed in detail in our previous paper.26

DRF has seen a number of applications over the years, some of which are summarized in

Ref. 32. While initial applications of the method focused on the electronic ground state, DRF

was used to compute solvatochromic shifts of the π∗ ← n transition of acetone in various

solvents.33 Random conformations were sampled from a Monte Carlo simulation using a

classical force field to average over the solvent degrees of freedom. The shifts were estimated

from two self-consistent field calculations: a restricted HF calculation for the ground state

S0 and a restricted open-shell calculation for the S1 state. The blue shift in polar solvents

was predicted in good agreement with experimental data.

Since DRF provides an atomistic description of the solvent, it is suitable to investigate

situations where the interaction with the environment breaks the symmetry of degenerate

excited states. An asymmetric solvent shell can break two charge resonances with no net

dipole moment into charge-separated states with large dipole moments.34,35 Grozema et al.

studied the relaxation of the S1 state of bianthryl in solution with the help of semiempirical

configuration interaction combined with DRF.35 They showed that even non-polar solvents
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can create considerable local electric fields that fluctuate with the reorientation of the solvent

molecules, but cancel on average.35 The DRF method has also been applied to the study of

excitations in solids using the embedded cluster approach.36

If there is no quantum-mechanical region, DRF turns into a polarizable force field,

which goes by the name discrete reaction field and unfortunately has the same acronym

as DRF.37–40 The discrete reaction field itself has a polarizable QM/MM extension, which

treats the solvent atomistically, but takes the expectation value of the electric fields arising

in the QM region to polarize the MM region and therefore formally requires a self-consistent

solution.32 The discrete reaction field idea has also been extended to a form of polarizable

continuum model, which may be combined with a polarizable atomistic treatment of some

of the solvent.32

Although the direct reaction field method is in some sense simpler than the self-consistent

solvation models, it has not been widely adopted. This might be due to difficulties in the

implementation. Technical details of the implementation of DRF can be found in Ref. 41.

The additional matrix elements of the polarization operators were evaluated as a Taylor

expansion around arbitrary atomic centers. While this simplifies the resulting expressions,

this can introduce symmetry-breaking artefacts32 and seems to preclude the evaluation of

analytical gradients of the energy.

In a previous study, we described a preliminary implementation of DRF that was limited

to neutral atomic solvents and Hartree-Fock and CASSCF electronic structures.26 Building

on this previous study, the aim of this work is to revive the direct reaction field method by

making a number of technical improvements: (a) All integrals are evaluated exactly using

a special library for polarization integrals.42,43 Therefore matrix elements of the polariza-

tion Hamiltonian are smooth functions of the nuclear coordinates. (b) TeraChem is chosen

as a development platform because of its clever abstraction of molecular integral routines

and GPU acceleration.44 This code formulates many electronic structure methods in terms

of a core Hamiltonian and Coulomb and exchange operators applied to generalized den-
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sity matrices (”J- and K-builds”). By modifying only those few integral routines, many

quantum-chemistry methods such as Hartree-Fock (HF), density functional theory (DFT),

time-dependent density functional theory (TD-DFT), configuration interaction singles (CIS),

and complete active space self-consistent field (CASSCF) can be combined straightforwardly

with the explicit solvent model provided by DRF. (c) Expressions for the analytical gradi-

ents of the solvation energy are derived. In TeraChem the gradients of the energy or the

non-adiabatic coupling vectors are expressed as contractions of derivatives of the core Hamil-

tonian and the J- and K-operators with generalized density matrix-like objects. Similar to

energies, modification of a handful of routines then provides analytical gradients for all of the

mentioned electronic structure methods in combination with DRF. To reflect these devel-

opments, we call the method integral-exact direct reaction field (IEDRF). We demonstrate

the method on vertical excitation energy calculations with QM/MM-IEDRF embedding and

conical intersection optimizations in a polarizable environment.

The rest of the article is structured as follows: First the working equations of the direct

reaction field are rederived (sections 2.1 and 2.2). Then the ingredients for assembling

analytical gradients are worked out (2.3). The scaling of the method, convergence with

system size and its computational cost are explored in section 2.4. As a proof of principle,

solvatochromic shifts of a series of bichromophoric dyes in n-hexane are computed at the TD-

DFT and CASSCF levels of theory (3.1). Finally, the minimum-energy conical intersection

between two excited states of one of the dyes is optimized in a shell of polarizable solvent

molecules (3.2). The article concludes with some thoughts on combining IEDRF with density

functional theory (section 4).
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2 Theoretical Methods

2.1 Polarization Hamiltonian

The distribution of all free charges in the whole system is denoted by

ρ(r) =

Nele∑
e=1

(−1)δ(r − r̂e) +
Nnuc∑
n=1

Znδ(r −Rn) +

Ncharge∑
c=1

Qcδ(r −Rc). (1)

This contains the electrons and nuclei with atomic numbers Zn in the QM part as well as

any point charges Qc in the MM part. r̂e is the quantum-mechanical position operator for

electron e, while Rn/c is the position vector of a classical particle. In addition to charged

particles, a number of polarizable sites are included in the MM region. Not all atoms will be

made polarizable in order to save computational time, and typically we include polarizable

sites on only the first one or two solvation shells around the QM region. Therefore it is

preferable to keep separate counts of the point charges (all MM atoms) and the polarizable

atoms denoted by indices i and j (running over 1, . . . , Npol).

An electric field, E, induces a dipole, pi, proportional to the atomic dipole polarizability

αi of the atom :

pi = αiE(Ri). (2)

The induced dipole itself also generates an electrostatic field which can induce other dipoles.

Therefore, if there is more than one polarizable atom, the total electric field that enters

Eqn. 2 consists of two parts: (1) The electric field generated by the free charges, ρ(r), and

(2) the electric field generated by the induced dipoles:

E(Ri) = Echarges(Ri) +Edipoles(Ri)

= fi[ρ]−
n∑

j ̸=i

T (ij)pj.
(3)

Here T (ij) is the the dipole field tensor,29 a (3Npol)× (3Npol) dimensional symmetric matrix,
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which describes the electrostatic interaction between point dipoles.45,46 When two point

dipoles come closer than the typical extension of an atom, the dipole field tensor is damped

to avoid the polarization catastrophe.45 We refer the reader to the supporting information

for expressions of T (ij) and the damping functions.

Substituting Eqn. 3 into Eqn. 2 and using supervector notation (see SI for details) gives

p = α (f [ρ]− Tp) (4)

which is equivalent to [
α−1 + T

]
p = f [ρ]. (5)

This matrix equation has the solution

p = B−1f [ρ] with B = α−1 + T (6)

Since T is symmetric and α is diagonal, B is also symmetric.

Plugging the polarization induced by the charge distribution in Eqn. 6 into the expression

for the polarization energy,

U = −pT · f +
1

2
pTα−1p+

1

2
pTTp, (7)

yields the additional term that has to be added to the QM Hamiltonian:

U = −fTB−1f +
1

2
fT

B−1
(
α−1 + T

)︸ ︷︷ ︸
B

B−1

f

= −1

2
fTB−1f .

(8)

The matrix

A = B−1 =
(
α−1 + T

)−1
(9)
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can be understood as an effective dipole polarizability for the whole system. In the case of a

single polarizable atom, A reduces to the atomic polarizability and we recover the energy of

a single atom in a field f : U0(p)+U1 =
1
2
pTα−1p−fTp, where the first term is identified as

the work required to polarize the atom and the second term is the electrostatic interaction

of the resulting induced dipole and the field.

2.2 Modified one- and two-electron integrals

In the DRF formalism, the presence of polarizable atoms modifies the Hamiltonian of the

QM system. It changes not only the one-electron part of the Hamiltonian, as external point

charges or traditional self-consistent polarizable embedding does, but also the two-electron

part. In this way, the DRF method accounts for screening effects induced by a polarizable

environment. In this section, the corrections to the two-electron, one-electron and constant

parts of the Hamiltonian are derived.

Indexing conventions. The indices a,b enumerate the Nelec electrons and m,n the point

charges, which include the nuclei in the QM region as well as any additional point charges

in the MM region. The Npol polarizable atoms are denoted by the indices i and j. α and

β enumerate Cartesian components of three-dimensional space. µ, ν, λ, σ, γ, δ are indices of

NAO atomic orbitals.

The density of the free charges is written as

ρ(r) =

Nelec∑
a=1

(−1)δ(r − r̂a) +

Npt.chrgs∑
n=1

Qnδ(r −Rn). (10)

11

https://doi.org/10.26434/chemrxiv-2022-j8rgj-v2 ORCID: https://orcid.org/0000-0002-2908-5680 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-j8rgj-v2
https://orcid.org/0000-0002-2908-5680
https://creativecommons.org/licenses/by-nc-nd/4.0/


The electric field created by the free charges on a polarizable atom at Ri is then

fi[ρ] =

∫
d3r ρ(r)

Ri − r

|Ri − r|3

=

Nelec∑
a=1

(−1) Ri − r̂a
|Ri − r̂a|3︸ ︷︷ ︸

f̂
(e)
ia

+

pt.chrgs∑
n=1

Qn
Ri −Rn

|Ri −Rn|3︸ ︷︷ ︸
f
(n)
in

=
∑
a

(−1)f̂ (e)
ia +

∑
n

Qnf
(n)
in

= f̂
(e)
i + f

(n)
i .

(11)

In the last equation the contributions from the electrons and those from the points charges

have been separated. The field due to the electrons is an electronic operator (denoted by

the hat). Putting the field into Eqn. 8 gives the polarization Hamiltonian, which has to be

added to the Hamiltonian of the QM system:

Ĥpol = −
1

2
f̂ (e)TAf̂ (e) − f (n)TAf̂ (e) − 1

2
f (n)TAf (n) (12)

After grouping the terms into two-electron and one-electron operators and zero-electron

terms, the polarization Hamiltonian reads

Ĥpol =
1

2

∑
a,b
a̸=b

ĥ(2)(a, b) +
∑
a

ĥ(1)(a) + h(0). (13)

The two-electron operator accounts for the additional interaction between two different elec-

trons via the polarizable sites,

ĥ(2)(a, b) = −
∑
i,j

f̂
(e)T
ia Aijf̂

(e)
jb with a ̸= b. (14)

The one-electron operator contains the interaction between nuclei and electrons as well as
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the self-interaction of an electron, which are mediated by the polarizable sites,

ĥ(1)(a) =
∑
i,j

∑
n

Qnf
(n)T
in Aijf̂

(e)
ja −

1

2

∑
i,j

f̂
(e)T
ia Aijf̂

(e)
ja . (15)

The term involving only nuclei and point charges is a (geometry dependent) constant,

h(0) = −1

2

∑
m,n

QmQn

∑
i,j

f
(n)
im Aijf

(n)
jn , (16)

that includes both the polarization contribution from the QM nuclei as well as the polariza-

tion energy of the MM region.

Now we wish to know the representation of these operators in a basis of atom-centered

Gaussian type orbitals µ(r), ν(r), λ(r), σ(r). Strictly speaking, integrals of the type∫
d3r µ(r)|r − Ri|−kν(r) do not exist if k > 2 because of the singularity of the polar-

ization operator at r = Ri. The singularity is however not physical and arises from the

treatment of MM polarizable atoms as point induced dipoles, when in reality they should

have a finite charge distribution. The polarization operator should then be damped at short

range. To model this effect, a damping function,

C(r) = (1− exp
(
−ar2

)
)q (17)

is included, which ensures the existence of all polarization integrals. With the damping

function, the matrix elements of the electric field generated by a point charge at R is written

as

Fµν(R) =

∫
d3r µ(r)

r −R

|r −R|3
C(|r −R|) ν(r). (18)

The individual components,

F iα
µν =

∫
d3r µ(r +Ri)

xα

r3
C(r) ν(r +Ri), (19)
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with i = 1, . . . , Npol and α = 1, 2, 3 (Cartesian spatial dimensions) are combined into a

supervector of length 3Npol

F (e)
µν = (Fµν(R1), . . . ,Fµν(Ri), . . . ,Fµν(RNpol

))T , (20)

for each combination of atomic orbitals µ, ν. The electric fields generated by the nuclei and

point charges at the position of a polarizable atom R,

F (R) =
∑
n

Qn
R−Rn

|R−Rn|3
C(|R−Rn|) (21)

are similarly combined into a supervector of size 3Npol,

F (n) = (F (R1), . . . ,F (Ri), . . . ,F (RNpol
))T . (22)

It is important that the same damping function, C(r) (defined in Eqn. 17), is used for the

electronic and nuclear fields, so that for a neutral molecule, the fields cancel appropriately

at short and intermediate range.

Partial charges on MM atoms are usually optimized to reproduce the correct electrostatic

potential on the surface of the molecule, while the electric fields generated by them inside

the molecule are not physically meaningful. Therefore one has to be careful in excluding

monopole fields from point charges on MM atoms that are directly bonded to a polarizable

atom. MM force fields keep an exclusion list to remove non-bonded interactions between

certain atoms. The same list is used to exclude point charge n from the summation in

Eqn. 21 if it belongs to the exclusion list of the polarizable atom at R.

For a given geometry, the vectors F
(e)
µν and F (n) are calculated once and stored in memory.

The memory requirements for this are NAO
2 × 3 × Npol + 3 × Npol. All matrix elements of

the two- and zero-electron operators can be assembled from this information, as well as the

first term of the one-electron operator (Eqn. 15). However, the one-electron operator also
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contains a new type of four-center integral. This integral arises from the second term of

Eqn. 15 and has the form

∫
d3r µ(r)

(r −Ri)

|r −Ri|3
·Aij ·

(r −Rj)

|r −Rj|3
C(|r −Ri|)C(|r −Rj|) ν(r). (23)

If i and j refer to the same polarizable site, the integral reduces to a sum of one-electron

integrals

Tr{AiiIµν(Ri)} =
3∑

α,β=1

Aαβ
ii I

αβ
µν (Ri) (24)

α, β = 1, 2, 3 enumerate the elements of the 3× 3 matrix Aii and the additional one-electron

integrals Iαβµν take the form of core polarization potentials (CPP).47 They are defined as

Iαβµν (Ri) =

∫
d3r µ(r)

(xα −Xiα)(xβ −Xiβ)

|r −Ri|6
C(|r −Ri|)2 ν(r) (25)

with r = (x1, x2, x3)
T and Ri = (Xi1, Xi2, Xi3)

T . While the electric field integrals in Eqn. 18

do not necessarily require a damping function, the integrals of Eqn. 25 would not exist

without it. For consistency, the damping function has been included in both expressions.

If there is only a single polarizable site with polarizability αi then the effective polariz-

ability equals the atomic dipole polarizability, which is isotropic, A = α = diag(αi, αi, αi),

and expression 24 simplifies to

αiI
x2+y2+z2

µν (Ri) = αi

∫
d3r µ(r)

1

|r −Ri|4
C(|r −Ri|)2 ν(r). (26)

For the integrals F iα
µν and Iαβµν defined by Eqns. 19 and 25, respectively, analytical expressions

exist. Integrals of this type were solved for the first time by Schwerdtfeger48 and have been

implemented recently by us in an open-source library.42,43 However, we are not aware of

an analytical solution for the multi-site case in Eqn. 23 (when i ̸= j), and we therefore

approximate these integrals by a resolution-of-identity trick (note: the original DRF method

uses a similar trick, but in the molecular orbital basis).32 The scalar product in Eqn. 23 is
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split by inserting the identity

1 ≈
∑
γ,δ

|γ)
(
S−1

)
γδ
(δ| (27)

where Sγδ = (γ|δ) is the overlap matrix. In princple, a larger auxiliary basis could be used

in the resolution of identity; however, we found sufficient accuracy was obtained using the

primary basis set. If diffuse orbitals are present, the overlap matrix might be singular. In

this case the inverse has to be replaced with the pseudoinverse, where small singular values

below a certain threshold have been removed. Equation 23 becomes

(µ|(r −Ri)C(|r −Ri|)
|r −Ri|3

·Aij ·
(r −Rj)C(|r −Rj|)

|r −Rj|3
|ν)

=
∑
γ,δ

(
S−1

)
γδ
(µ|(r −Ri)C(|r −Ri|)

|r −Ri|3
|γ) ·Aij · (δ|

(r −Rj)C(|r −Rj|)
|r −Rj|3

|ν)

=
∑
γ,δ

(
S−1

)
γ,δ

Fµγ(Ri) ·Aij · Fδν(Rj).

(28)

With these definitions, the matrix elements of the polarization Hamiltonian in Eqn. 13

consists of the following parts:

• two-electron part

(µν|ĥ(2)(1, 2)|λσ) = −F (e)
µν AF

(e)
λσ , (29)

The two-electron polarization integrals have the same symmetry under permutation of

orbital indices as the electron repulsion integrals:

(µν|ĥ(2)|λσ) = (νµ|ĥ(2)|λσ) = (λσ|ĥ(2)|µν) = . . . (30)

These will not be formed directly, but rather, we make use of their tensor factorizable

nature in terms of one-electron integrals, as discussed below. The effective polariz-

ability supermatrix, A, is constructed by inversion of Eqn. 9 using LU decomposition.

While this carries a computational cost that scales as Npol
3, the inversion need only

be carried out once for a given molecular geometry before the electronic structure cal-
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culation is started. As a result, it carries a low pre-factor and does not dominate the

observed scaling of our method, at least for the range of Npol we explored. For very

large numbers of polarizable sites, the inversion to form A could dominate the overall

computational scaling, and we will then explore iterative inversion approaches.

• one-electron part

(µ|ĥ(1)|ν) = −F (n)AF (e)
µν −

1

2

∑
γ,δ

(
S−1

)
γ,δ

F (e)
µγ AF

(e)
δν

+

1

2

∑
γ,δ

(
S−1

)
γδ
F (e)

µγ diag(A)3×3F
(e)
δν −

1

2

Npol∑
i=1

3∑
α,β=1

Aαβ
ii I

αβ
µν (Ri)

 .

(31)

These one-electron polarization contributions are simply added to the core Hamilto-

nian. In the second term of Eqn. 31, the same-site contributions (i = j) are treated

with the resolution-of-identity trick discussed above.49 The last term in brackets re-

moves these and replaces them by the exact integrals for i = j. diag(A)3×3 contains

only the diagonal 3 × 3 blocks of A. If one wishes to treat all integrals on the same

footing and with the resolution of identity, the term in brackets may be omitted.

Since the number of polarizable MM atoms, Npol, may be quite large, it is preferable

to evaluate the contractions in such a way that the exponent k of the scaling relation

O(Nk
pol) is as low as possible. First, the two tensors

(AF )iµν =
∑

j AijF
(e)
jµν (32)

(S−1F )iµν =
∑

γ(S
−1)µγF

(e)
iγν (33)

are calculated. The first operation scales quadratically in Npol (two loops are needed,

one over i, the other over j), while the second one scales linearly. Then the resolution-
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of-identity part of the core Hamiltonian is constructed as

(µ|ĥ(1)|ν) = −
∑
i

F
(n)
i (AF )iµν −

1

2

∑
i

∑
δ

(S−1F )iδµ(AF )iδν , (34)

which again scales linearly in Npol. The term in brackets in Eqn. 31 already has

the desired linear scaling. The only operation which does not scale linearly is the

construction of (AF )iµν , which scales quadratically with Npol. Future work will explore

how to reduce this to linear scaling.

• And finally the zero-electron part

h(0) = −1

2
F (n)AF (n), (35)

which is added to the (classical) nuclear-nuclear repulsion and any of the non-polarizable

MM forcefield terms. Note: this term includes the MM polarization energy, which

therefore should not be evaluated separately outside IERDRF, to avoid double count-

ing.

The construction of the Coulomb and exchange parts of the Fock operator require efficient

algorithms to evaluate contractions of electron repulsion integrals (µν|γδ) with molecular

orbital coefficients Cγk (k is the index of an occupied molecular orbital). The analogous

sums for the two-electron part of the polarization Hamiltonian factorize and can thus be

efficiently calculated, provided the number of polarizable sites is not too large.

For Hartree-Fock theory, the IEDRF correction terms for Coulomb and exchange opera-

tors are

∆Jµν =
∑
γδ

(µν|ĥ(2)|γδ)
∑
k∈occ

CγkCδk

= −F (e)
µν A

(∑
γδ

F
(e)
γδ

[∑
k∈occ

CγkCδk

]) (36)
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and

∆Kµν =
∑
γδ

(µγ|ĥ(2)|νδ)
∑
k∈occ

CγkCδk

= −
∑
k∈occ

(∑
γ

F (e)
µγ Cγk

)
A

(∑
δ

F
(e)
νδ Cδk

)
,

(37)

respectively.

Efficient implementations of time-dependent density functional theory (TD-DFT), con-

figuration interaction singles (CIS) or complete active space self-consistent field (CASSCF)

theory are formulated in terms of generalized Coulomb- and exchange-like matrices con-

structed from different one-particle density matrices, P ,50 which do not have the simple

form Pµν =
∑

k∈occ CµkCνk of a closed shell Slater determinant. Eqns. 36 and 37 then have

to be modified as

∆Jµν(P ) =
∑
γδ

(µν|ĥ(2)|γδ) Pγδ

= −
∑
i

Fi,µν


∑
γδ

[∑
j

AijFj,γδ

]
︸ ︷︷ ︸

(AF )i,γδ

Pγδ


︸ ︷︷ ︸

(AFP )i

(38)

and

∆Kµν(P ) =
∑
γδ

(µγ|ĥ(2)|νδ) Pγδ

= −
∑
i

∑
δ

[∑
γ

Fi,µγPγδ

]
︸ ︷︷ ︸

(FP )i,µδ

[∑
j

AijFj,νδ

]
︸ ︷︷ ︸

(AF )i,νδ

.
(39)

The sums over j, γδ in the construction of J and γ and j in the construction of K have

the form of matrix-matrix multiplications, which can make use of the parallelism of graphical
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processing units (GPUs). In the next step, each matrix element (µ, ν) of the Coulomb and

exchange matrices is computed by one thread on the GPU.

As noted earlier, the construction of (AF )i,γδ carries a computational cost that scales as

Npol
2, and this term appears in both the J and K builds. We avoid the construction of this

term dominating the scaling of the method by noting that it does not depend on any density

matrix, therefore we pre-calculate it with a storage cost that matches the field integrals. In

the current implementation, we do not take advantage of sparsity in the AO representation

of the density matrix, Pγδ, or the field integrals, Fi,µγ. As a result, for small to moderate

numbers of polarizable sites, the scaling of the method is dominated by the contraction of the

two inner terms in the exchange matrix of Eqn. 39: (FP )i,µδ with (AF )i,νδ. This contraction

has a scaling of Npol × NAO
3, and while linear scaling in the number of polarizable sites

(confirmed below), comes with a relatively high prefactor due to the cubic scaling with QM

size. Future work will address this bottleneck by taking advantage of sparsity of the matrices

in the AO representation.

Polarization is treated on the same footing for all electronic states. Nevertheless, the

induced polarization and the polarization energies are state-dependent quantities. Given the

density matrix Pµν for an electronic state with the electron density ρ, the total (expectation)

electric field generated at the polarizable sites is

f [ρ] =
∑
µν

PµνF
(e)
µν + F (n). (40)

The induced dipoles are related to the fields by the effective polarizability,

p[ρ] = Af [ρ], (41)

and the polarization energy for the particular state is

U [ρ] = −1

2
fTp. (42)
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2.3 Analytical Gradients

Since the DRF approach directly modifies the one- and two-electron integrals of the QM

Hamiltonian, analytical gradients are relatively straightforward to derive, adding modified

integral derivative terms to the gradient expressions of the underlying electronic structure

theory. For example, QM/MM-IEDRF embedding modifies the gradients of RHF51 to:

∂ERHF-DRF

∂x
=

NAO∑
µ,ν

Dµν

[
∂Hcore

µν

∂x
+

∂(µ|ĥ(1)|ν)
∂x

]
−

NAO∑
µν

Wµν
∂Sµν

∂x
(43)

+
1

4

∑
µ,ν,λ,σ

{2DµνDλσ −DµλDνσ}

[
∂(µν|λσ)

∂x
+

∂(µν|ĥ(2)|λσ)
∂x

]
+

∂Vnuc

∂x
+

∂h(0)

∂x
,

where x represents any external parameter, which in our case could be the coordinates of

the nuclei, the point charges or the polarizable sites. The gradient depends on the following

quantities:

Dµν =
∑
i∈occ

2C∗
µiCνi (44)

is the density matrix and

Wµν =
∑
i∈occ

2C∗
µiCνiεi (45)

is the ”energy-weighted” density matrix, both in the atomic orbitals basis. Here Cµi are

the coefficients of occupied molecular orbital i with orbital energy εi. (µν|λσ) are the two-

electron repulsion integrals, Hcore
µν and Sµν are the core Hamiltonian and the overlap matrix,

respectively, and Vnuc is the nuclear-nuclear repulsion energy. All the integral derivatives

arising from DRF have analytical expressions, although they are rather lengthy and therefore

discussed in the supporting information.

In order to limit the memory footprint of the algorithm, it is convenient to avoid storing

large arrays with integral derivatives. Instead, gradients of matrix elements are immediately

contracted with a density matrix. These contracted gradients are thus functions of up to

two density matrices, labelled D(1) and D(2). Although the expressions for RHF gradients
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involve the same density matrix, D(1) = D(2), keeping separate labels in the equations below

allows for immediate generality to contractions that arise in the analytical gradients of other

electronic structures, including CIS, TD-DFT, and CASSCF,44 where the density matrices

can be different and are not necessarily symmetric.

In the same way that IEDRF introduces corrections to Coulomb and exchange operators

(Eqns. 36 and 37), corrections to gradients of Coulomb and exchange operators can be

formed:

∂(∆J)

∂x
(D(1),D(2)) =− ∂F

∂x

(
(AFD(2))⊗D(1) + (AFD(1))⊗D(2)

)
− ∂A

∂x

(
(FD(1))⊗ (FD(2))

)
,

(46)

where the argument of the function ∂F
/
∂x contains Kronecker products between a vector

of size Npol and a density matrix of dimensions NAO ×NAO, e.g.

[
(AFD(2) ⊗D(1)

]
i,µν

=
(
AFD(2)

)
i
D(1)

µν , (47)

and the function ∂F
/
∂x contains contractions of the derivative polarization integrals, ∂F (e)

/
∂x,

with a tensor E of dimensions (3Npol)×NAO×NAO, computed in an integral-direct fashion:

∂F

∂x
(E) =

∑
i

∑
µ,ν

∂F
(e)
i,µν

∂x
Ei,µν . (48)

The polarization integral derivatives are evaluated inside the loop over i, µ and ν. They

are directly multiplied with the corresponding matrix element of the density matrix and are

added to the gradient ∂F
/
∂x. Similarly, we define the contraction of a (3Npol) × (3Npol)

matrix U with the gradient of the effective polarizability,

∂A

∂x
(U ) =

∑
i,j

∂Aij

∂x
Uij. (49)
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The corrections to gradients of the exchange operator follow in a similar fashion:

∂(∆K)

∂x
(D(1),D(2)) = −∂F

∂x

(
AFD(2)D(1) +AFD(2)TD(1)T

)
− ∂A

∂x

(
FFD(2)TD(1)T

)
,

(50)

where the superscript T indicates a matrix transpose. A full derivation of these expressions

is provided in the supporting information.

2.4 Convergence and Computational Cost

The convergence of vertical excitation energies of a solute (treated at the time-dependent

density functional theory level) with number of solvent molecules (treated at the IEDRF

level) is explored in Fig. 1 for dye 7c in n-hexane. The details of the calculation are given

in the Results section below; here we only focus on the convergence and scaling of the

computational cost with system size. As expected, the locally excited (LE) state converges

rapidly with the size of the MM region, reaching its plateau value at a radius of ∼ 8 Å, while

the charge-transfer (CT) state requires a rather larger radius of ∼ 14 Å to reach convergence.

Polarization is an inherently long-range phenomenon, so these findings are not surprising.

As discussed in Section 2, the current formulation of QM/MM-IEDRF has a compu-

tational bottleneck in the exchange operator that is linear scaling with the size of the QM

system, albeit with a rather large prefactor. This is demonstrated in Fig. 1(b) which confirms

linear scaling: The size of the solvent shell is measured by Npol, the number of polarizable

MM atoms. The timings for preparing integrals (ints.), construction of core Hamiltonian

(H0) and J- and K-builds on 2 × NVIDIA GeForce GTX 1080 Ti GPUs are shown on a

log-log scale. For large solvent shells, most of the time is spent on IEDRF corrections to

the Hamiltonian, in particular the K-build. Scaling exponents were determined from fits

to CNm
pol (shown as dashed lines): core Hamiltonian H0 ∝ N0.98

pol ; J-build ∝ N0.93
pol ; K-build

∝ N1.05
pol ; total ∝ N0.83

pol . For Npol < 1500 the preparation of constant intermediates is dom-

inated by the evaluation of the polarization integrals, which scales linearly (∝ N0.92
pol ), but
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for Npol > 1500 constructing AF (Eqn. 32) becomes the bottleneck with approximately

quadratic scaling (∝ N1.74
pol ).

Figure 1: TD-ωPBEh/6-31g* calculation for the lowest 8 excited singlet states of the dye 7c
(QM) in n-hexane (MM): a) Convergence of excitation energies with the size of the solvent
shell. b) Timings for preparing integrals (ints.), core Hamiltonian (H0) and J- and K-builds
on 2 × NVIDIA GeForce GTX 1080 Ti GPUs.

The wall times of the current implementation are rather high (albeit much lower than a
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full-system TD-DFT calculation of the same system size), and preclude ab initio dynamics at

present. Possible remedies have already been explored in the original formulation of DRF:

At large distances the atomistic nature and orientation of the solvent molecules does not

matter, so that distant parts of the solvent can be replaced by a continuum. This suggests

a multi-layered partitioning of the system: An inner QM region is surrounded by a thin

shell of explicit polarizable MM atoms, which in turn is enclosed by a polarizable continuum

(see Fig. 1 in Ref. 52). Another simpler solution is to combine the atomic dipoles on a

distant solvent molecule into a single polarizable site (with a possibly anisotropic molecular

polarizability) placed at the molecular center. This does not change the scaling but reduces

the number of polarizable sites by coarse graining the reaction field far from the QM region.

The time savings of such a coarse-graining approach are illustrated in Fig. 2. The coarse

graining is applied to solvent molecules if all of their constituent atoms are further away than

5 Å from any QM atom. Atom-centered dipoles are replaced by a single dipole, which is

placed on the atom closest to the center of mass. The polarizability of the molecule-centered

dipole is estimated according to Applequist’s and Thole’s dipole interaction model.29,45 To

avoid dependence on the orientation and internal coordinates, the molecular polarizability

tensor αmol is diagonalized and the average of the eigenvalues is taken as the isotropic, scalar

polarizability: αiso = 1
3
(αxx + αyy + αzz). Figure 2 shows that grouping atomic dipoles on

distant solvent molecules together does not change the energies but reduces the computation

time significantly.

3 Results

3.1 Solvatochromism of Intramolecular Charge-Transfer States

Pasman et al. synthesized a series of bichromophoric dyes to study intramolecular charge

transfer.53 The charge-transfer states are visible in the absorption spectra and thus provide

experimental reference energies against which our calculations can be benchmarked. The
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Figure 2: Same calculation as in Fig. 1 with coarse graining. a) Solid lines are the energies
for a coarse grained reaction field, dots mark energies for fully atomistic reaction field; b)
timings; c,d) induced dipole moments in the S1 (CT) state: c) atom centered dipoles, d)
dipoles outside a sphere of radius 5Å are combined into molecule-centered dipoles.

dyes consist of an acceptor and donor region separated by several σ bonds. Chemical struc-

tures of the dyes are shown in Fig. 3. An electron is donated by the lone electron pair of a

tertiary amine (systems 1,2,3) or a sulfur atom (systems 5,6,7,8,9) or an electron-rich double

bond (system 4) on one end of the molecule. The acceptor is the π∗ orbital of a double bond
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substituted with electron-withdrawing groups such as cyano or ester groups on the other end.

Electron and donor moieties are separated by one or two cyclohexane rings. The frontier

orbitals of one of the dyes are shown in Fig. 4. The orbitals are localized on the donor and

acceptor fragments and give rise to a local excitation (LE) of the C=C double bond on the

acceptor and a lower-lying charge transfer (CT) state, where an electron is transferred from

the lone pair to the π∗ orbital of the C=C bond. In this idealized picture, the long-range

CT state would be dark; however, in reality there is significant mixing between the LE and

CT states, so that both of them acquire some oscillator strength and have a large perma-

nent dipole moment. This allows both the LE and CT states to be identified in a UV/Vis

absorption spectrum.

3.1.1 Optimal Tuning in the Gas Phase and in Solution

Since charge-transfer states are notoriously difficult to model with local and hybrid density

functionals, an optimally-tuned range-separated hybrid is employed, which has been shown

to give excellent fundamental gaps of atoms and molecules in the gas phase.54 We determine

the optimal range-separation parameter separately for each dye in vacuum and in solution.

The geometries of all dyes were optimized in the gas phase at the ωPBEh55/def2-SVP

level of theory using the default range-separation parameter ω = 0.2 Bohr−1 and the default

value of CHF = 0.2 for the portion of exact Hartree-Fock exchange at full range. For dyes

with cyclohexane rings, the most stable chair conformation was chosen. At the double bond

of the acceptor, we selected the cis/trans isomer which afforded the least steric hinderance.

The range-separation parameter was tuned55,56 separately for each dye in the gas phase and

in solution (see SI section 3). For tuning the functional in solution with the direct reaction

field, snapshots of dyes embedded in n-hexane were generated as described later.

Depending on the dye, the optimal vacuum range-separation parameter varies from

ωvacuum
opt = 0.17 Bohr−1 (for 1b) to 0.22 Bohr−1 (for 6a). The values obtained from tun-

ing in n-hexane with the QM/MM embedding scheme are approximately 5% larger than in
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Figure 3: Chemical structures of the selected bichromophoric dyes from Pasman et al.53

the gas phase, and with QM/MM-IEDRF they are approximately 10% larger ranging from

ω
QM/MM-IEDRF
opt = 0.20 Bohr−1 (for 1b) to 0.24 Bohr−1 (for 6c). This finding is in contrast to

state-specific polarization, in which the optimal value of omega is found to approach 0 as the

dielectric constant of the environment increases.57 A similar issue was noted when apply-

ing optimal tuning to condensed-phase systems and motivated the development of screened

range-separated hybrid functionals that incorporate a fraction of long-range exact exchange

equal to 1/ϵ.58–60 Since IEDRF already includes the effects of screening at the Hamiltonian
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Figure 4: Frontier orbitals of the dye 1c.

level on both one-particle and many-body state energies, the fraction of exact exchange at

long range can be set equal to 1.0, while still yielding reasonable optimal omega values.

This is very promising for a quantitative prediction of both LE and CT states, which we

demonstrate below. The optimal values for all dyes are listed in the SI.

3.1.2 Solution Phase Absorption Spectra: n-hexane

We now describe the procedure for solvating the chromophores and sampling snapshots

of nuclear geometries along a classical molecular dynamics trajectory. The influence of

electronic polarization on the absorption spectra is then estimated by calculating vertical

excitation energies on those snapshots with and without the direct reaction field.

System Setup. GAFF parameters61 were assigned for both the chromophores and the n-

hexane solvent molecules using antechamber 62 and leap from the AMBER 2018 package.63

The chromophore was packed into a ball of 5000 solvent molecules with the help of the
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packmol program.64 The radius of the sphere was determined from the experimental density

at room temperature. An octahedral unit cell was carved out of the solvent ball to allow for

simulations with periodic boundary conditions.

All MM optimizations and molecular dynamics simulations were performed with pmemd.cuda

or sander from the AMBER 2018 package.63 A non-bonded cutoff of 8 Å was used in all sim-

ulations, with the particle-mesh Ewald summation65 used to handle long-range electrostatic

interactions. Bonds to hydrogen atoms were constrained using the SHAKE algorithm.66

Heating and Equilibration. The system was relaxed in two steps, first by optimizing

only the solvent molecules while restraining the solute atoms with a harmonic force constant

of 100 kcal/mol, followed by relaxing the whole system for 10000 optimization steps. The

system was heated up in 10 steps from 0 K to 325 K while applying a weak restraint of 10

kcal/mol on the chromophore to keep it at its central position. The system was equilibrated

for 1 ns with a time step 1 fs in the NVT ensemble at T=300 K with a Langevin thermostat

and a collision frequency of 1.0 ps−1. This was followed by a second equilibration lasting

also 1 ns in the NPT ensemble at a temperature of T=300 K and a pressure of P=1 bar

using the Berendsen barostat67 with a pressure relaxation time of 1.0 ps.

Production. Starting with the equilibrated coordinates and velocities, a single tra-

jectory was run for 10 ns in the NPT ensemble. Snapshots were taken every nanosecond,

yielding 10 uncorrelated configurations.

Validation. At the end of the production run some basic consistency checks were per-

formed: (a) The total energy and temperature were observed to be stable. (b) The average

density was computed. This is a sensitive test for the non-bonded interactions between the

solvent molecules. In all cases the density was within 5% of the experimental value of 0.6606

kg/m3.68

Postprocessing of Snapshots. For the QM/MM-IEDRF calculations, atomic dipole

polarizabilities from Applequist’s model29 were assigned to the MM atoms. For solvent

molecules further than 5 Å away from the QM region the polarizabilities were coarse grained
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as explained previously to save some computation time. MM atoms were also equipped

with effective core potentials (MM-ECPs69) to avoid the electron spill-out problem. In the

QM/MM-IEDRF calculation the small MM point charges on the n-hexane molecules were

also included in the electrostatic potential.

Excitation energies are very sensitive to small changes in the bond lengths. Since the

GAFF force field was not sufficiently reliable at maintaining the equilibrium structures of

the dye molecules, the snapshots extracted from the MM trajectory contained chromophores

with slightly wrong bond lengths. In order to fix this, the solvated systems were optimized

for 100 steps at the QM/MM level of theory (and separately at the QM/MM-IEDRF level)

using the ωPBEh functional (with default parameters) and the def2-SVP basis set. Outer

solvent molecules with coarse-grained polarizabilities were frozen during the optimization.

Since TeraChem does not yet support periodic boundary conditions, the octahedral unit cell

was used as a solvent ”droplet”. For the gas-phase reference calculations, the chromophores

were taken out of the solvent and optimized locally with the same functional and basis set.

Vertical Absorption Spectra with TD-DFT. For each of the locally optimized snap-

shots, the lowest few excited states were obtained with linear-response TD-ωoptPBEh/aug-cc-

pVDZ using the different embedding schemes. For consistency the same embedding scheme

was chosen as for the geometry optimization. That is to say the absorption spectrum with

electrostatic embedding (QM/MM) was calculated at the QM/MM optimized geometry and

the spectrum with electrostatic and polarizable embedding (QM/MM-IEDRF) at the cor-

responding QM/MM-IEDRF optimized one. Figure 5 shows a correlation plot between

the experimental CT energies and the TD-DFT predictions with the different embedding

schemes.

Overall, the trends across most of the molecular structures are already well captured by

the gas-phase TD-DFT calculations (red circles), taking into account that we are neglect-

ing the vibronic structure and are comparing vertical excitation energies with absorption

band maxima. However, some important differences between the theoretical gas-phase and
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Figure 5: Correlation between experimental absorption band maxima (experiment) of the
charge transfer state and the lowest vertical TD-ωoptPBEh/aug-cc-pVDZ (theory) excitation
energy with different embedding schemes: isolated chromophore in gas phase (vacuum, red
circles), electrostatic (QM/MM, blue violin plots) and electrostatic+polarizable embedding
(QM/MM-IEDRF, green violin plots). Violin plots indicate the distribution of energies
among the 10 snapshots. The diagonal dashed line indicates a perfect correlation.

solution-phase experimental results are noted. Firstly, the dyes 3b and 8c show a low-lying

CT state in our calculations not seen in experiment; however, their oscillator strengths are

≤ 0.01, which is much smaller than the oscillator strengths of the LE states (≥ 0.4). There-

fore these states are likely not identifiable in experimental UV/Vis spectra. As for the dye

5b, we suspect there to be a typo in table I of Ref.,53 since 5b and 6c are listed with exactly

the same CT energies, although their different structures and our TD-DFT calculations sug-

gest them to be different. We therefore leave 3b, 5b and 8c out of our analysis. Secondly,

with the exception of the dyes 1a, 1b, 2a and 6a, the gas-phase calculations overestimate the

CT energies by 0.2 eV or more. In particular, the chromophores 7c and 9c stick out with

differences between the theoretical gas-phase and experimental CT energies of 0.7 eV and

0.5 eV, respectively. This makes perfect sense, if one looks at their molecular structures in

Fig. 3: In both 7c and 9c the donor and acceptor moieties are separated by two cyclohexane

rings, so that the electron and hole are kept far apart. Such long-range CT states are very
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sensitive to the dielectric environment. This motivates an atomistic representation of the

liquid environment, which we turn to next.

In the QM/MM calculations (blue violin plots), the electrostatic interaction with the

(fixed) point charges and the Pauli repulsion is added. Since n-hexane is apolar, the MM

charges are small so that no large effect is expected. Since the range-separation parameters

ω
QM/MM
opt are approximately 5% higher than in the gas phase, presumably due to the QM-MM

Pauli repulsion, the increased exact exchange at medium range slightly shifts the excitation

energies up. Indeed, for all chromophores, the means of the QM/MM excitation energies

are higher than their respective gas phase values, worsening the agreement with experi-

ment, which we attribute to the missing polarization interactions in electrostatic-embedded

QM/MM, which especially should lower the energies of the CT states from the gas-phase to

solution. In addition, dispersion interactions with the apolar n-hexane molecules, missing in

the gas phase, should lower the energies of all excited states, since excited states usually are

more diffuse and polarizable than the ground state. On the other hand, the Pauli repulsion

tends to compress the wavefunctions of diffuse states in the solvent cage and can raise the

excitation energy again. The different solvent configurations in each snapshot lead to an

inhomogeneous broadening of ≈ 0.1 eV or larger.

Now turning on polarization interactions in the QM/MM-IEDRF calculations (green

violin plots), the presence of the solvent enters in the form of the direct reaction field Hamil-

tonian, which modifies both the one- and two-electron integrals and effectively screens (or

”renormalizes”) the Coulomb interaction. The CT energies are lowered bringing them into

closer agreement with experiment. Furthermore, the magnitude of the solvatochromic shifts

are consistent with the range of the charge transfer: The long-range CT states in the dyes 7c

and 9c are lowered most, as expected. For the dyes 1a and 4c, the CT energies are slightly

underestimated by approximately 0.1 eV, which is anyway within the expected accuracy

of TD-DFT. Nevertheless, the significant improvement in CT excitation energies observed

going from electrostatic-embedded QM/MM to QM/MM-IEDRF is highly encouraging.
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3.2 QM/MM-IEDRF Optimization of Conical Intersections

At the Franck-Condon point, the CT and LE state are mixed, so that both the S1 and S2

states acquire some oscillator strength. This explains why the CT state can be discerned

in the experimental absorption spectrum. Emission happens from the lowest excited state,

which is strongly affected by the polarity of the solvent. The transition between the absorbing

and the emitting states is mediated by a conical intersection. The mixing coefficients between

the CT and LE states can change on the path to the conical intersection, so that its position,

topology and energetic location could be sensitive to solvent polarization.

With IEDRF it is possible to locate conical intersections reliably between states of differ-

ent polarity in solution, since the polarization Hamiltonian does not depend on a particular

state of interest. To demonstrate this, we take the dye with the largest solvatochromic shift,

7c, and search for the minimal energy conical intersection (MECI) between the S2and S1

states in n-hexane with the SA-3-CASSCF(4e,3o)/6-31g method: The minimal complete

active space contains 4 electrons in 3 orbitals. The HOMO is localized on the donor, while

the HOMO-1 and LUMO are the π and π∗ orbitals of the double bond in the acceptor. The

lowest 3 singlet states (ground, CT and LE states) are included in the state averaging.

The optimization is performed in two ways: one with electrostatic embedding only

(QM/MM) and another with electrostatic and polarizable embedding (QM/MM-IEDRF).

The coordinates of the solvent molecules with coarse-grained polarizabilities are frozen dur-

ing the optimization, so that only the chromophore and the inner solvent shell is allowed to

move.

Starting from the Franck-Condon point of each snapshot, the S2/S1 MECI was optimized

with the gradient projection method using DL-FIND.70 Figures 6(a,b) show the optimized

MECI geometry together with the vectors that lift the degenercy of the branching space for

a representative snapshot. For both embedding schemes, the non-adiabatic coupling vector

and the gradient difference vector are fully localized on the chromophore, the components

of the vectors on the solvent atoms are too small be visualized. The MECI is characterized
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Figure 6: S2/S1 MECI geometry and energies of S1 and S2 in the branching space for 7c
in n-hexane. Left: electrostatic embedding (a and c). Right: electrostatic and polarizable
embedding (b, d). ∆X and ∆Y are the displacements along the green and blue arrows
(non-adiabatic coupling vector and gradient difference vector), which span the 2-dimensional
subspace lifting the degeneracy.

by an elongation of the double bond, a pyramidalization of the dicyanovinyl group and

an increased puckering of the cyclohexane ring at the sulfur atom, much like in the gas

phase. The MECI geometry and the branching space vectors are very similar for QM/MM

and QM/MM-IEDRF. Figures 6(c,d) show the potential energies in the two-dimensional

branching space where the degeneracy between the two states is lifted. The slope and

topology of the MECI changes very little between the two embedding schemes.

While the geometry of the MECI is hardly affected, the polarizable embedding scheme

lowers the energies of the CT state and the MECI, both of which have charge-transfer

character and couple more strongly to the environment than the LE state (see Fig. 7). At
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Figure 7: SA-3-CASSCF(4e,3o)/6-31g excitation energies of the dye 7c in n-hexane at
the Franck-Condon point (LE and CT) and at the S2/S1 MECI with QM/MM (left) and
QM/MM-IEDRF (right). The violin plots show the distribution of the excitation energies
in all snapshots.

the Franck-Condon point the S2 (LE) state is lowered on average by 0.17 eV, while the

S1 state (CT) is lowered by 0.44 eV relative to the elestrostatic embedding scheme. The

inclusion of the DRF Hamiltonian lowers the S2/S1 MECI by approximately 0.5 eV. The CT

and LE states are mixed to some degree, even away from the MECI. This explains why the

CT state can be observed in the absorption spectrum. Therefore a polarizable environment

also has a modest stabilizing effect on the LE state.

4 Open Question: DRF and DFT.

Before concluding, we point out a fundamental open question on how to combine DRF with

density functional theory. For large QM regions, time-dependent density functional the-

ory is the most practical electronic structure method. From a technical perspective there

is no obstacle to combining DFT (and TD-DFT) with QM/MM-IEDRF, by applying the

DRF operators to density matrix elements of the non-interacting Kohn-Sham (KS) reference

state. However, the theoretical justification for using the same exchange correlation func-

tionals as in vacuum requires some further considerations. In particular, the first Hohenberg-
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Kohn Theorem (HK1) holds for external potentials that are one-electron operators.71 The

DRF polarization Hamiltonian therefore does not qualify as an external potential. On the

other hand, the DRF Hamiltonian modifies the electron-electron Coulomb interaction due

to screening by the environment and since HK1 is not limited to any particular form of the

electron-electron interaction, it guarantees that there is an appropriate density functional.

However, the exact functional would be different for each solvent configuration and polariz-

able environment. To some extent, our use of optimally tuned range-separated hybrids in the

IEDRF environment captures a difference in the exchange correlation potential between the

vacuum and condensed phase, and ensures that the functional satisfies Janak’s theorem.72

The resulting tuned range-separation parameters are higher than in vacuum. This procedure

is seen to improve overall agreement with experiment: using the smaller vacuum values for

ωopt instead directly with DRF leads to an overestimation of the solvatochromic shifts.

To verify that our QM/MM-IEDRF TD-DFT calculations are reasonable, we ran SA-3-

CASSCF(4e,3o)/6-31g calculations with QM/MM and QM/MM-IEDRF embedding schemes

for the same optimized snapshot geometries. Since CASSCF lacks dynamic correlation, the

excitation energies are overestimated by more than 1 eV and cannot be directly compared

with experiment, but one can still compare the solvatochromic shifts by subtracting the gas-

phase energies from the solution-phase energies. Fig. 8 shows that the solvatochromic shifts

of the CT state computed with density-functional-based and wavefunction-based methods

actually correlate reasonably well also for QM/MM-IEDRF, and within the observed cor-

relation of the (positive) QM/MM-computed solvatochromic shifts between CASSCF and

TD-DFT. This can be understood by noting that the solvent polarization, and therefore

solvatochromic shift, should be dominated by the total electrostatic field arising from the

real-system QM charge distribution, which is by construction reproduced by the KS reference

state.
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Figure 8: Correlations between solvatochromic shifts computed with TD-DFT vs. CASSCF
for all snapshots and dyes.

5 Conclusions

A polarizable embedding scheme for QM/MM simulations involving excited states has been

presented, which is based on the direct reaction field method. In addition to having point

charges, the MM atoms are equipped with point dipoles, which interact with each other

and react to the motion of the electrons in the QM region. The orientation of the solvent

molecules is responsible for the static polarization of the solvent, which varies widely between

polar and non-polar solvents, while the induced dipoles capture the (infinite frequency)

electronic polarization, which is rather similar for most solvents.

Different excited states of the QM part induce state-dependent polarization responses

in the MM region. Nevertheless, the interaction between QM and MM regions is described

by a single Hamiltonian that is the same for all electronic states. We improve upon the

original method by evaluating the polarization integrals exactly, lending to the name IEDRF.

Induction and dispersion are accounted for by the polarization Hamiltonian while Pauli

repulsion is mimicked by effective core potentials placed on the MM atoms. The fact that all

excited states are eigenfunctions of the same Hamiltonian allows electronic state crossings
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of solvated molecules to be defined in a consistent manner. This point has been illustrated

by optimizing the minimal energy crossing point of a solute dye for two excited states with

different polarities in a solvent shell.

Our implementation of the direct reaction field exploits TeraChem’s formulation of quantum-

chemistry methods in terms of a minimal set of basic kernel operations (Coulomb and ex-

change builds). The polarization Hamiltonian can be absorbed into the one- and two-electron

integrals. After modifying the core Hamiltonian and the Coulomb and exchange operators,

many quantum-chemistry methods work straight out of the box in combination with IEDRF

embedding. Expressions were given for the additional core Hamiltonian, J- and K-parts as

well as all necessary derivatives needed for analytic gradients and couplings.

We illustrated the method for a series of bichromophoric dyes for which the absorption

maxima of the lowest charge transfer states in n-hexane were estimated from QM/MM-

IEDRF calculations in combination with TD-DFT. Since n-hexane is a non-polar solvent, the

solvatochromic shifts relative to gas-phase TD-DFT values are mostly due to the electronic

polarizability of the environment. Optimization of a conical intersection in n-hexane suggests

that key geometries are changed only very little by the solvent, presumably due to the short-

range intramolecular nature of the CT states in the Pasman dyes and the lack of specific

solvent interactions. However, it is important to stress that the crossing point in solution

can only be found if the DRF contribution is included in the gradient and non-adiabatic

coupling vector.

Although the computational cost of the current implementation precludes excited-state

dynamics simulations with a large solvation shell, the method has a computational scaling

and wall time much below full-system QM calculations of the same size. QM/MM-IEDRF

is thus already practical for single-point vertical excitation energy calculations, geometry

optimizations, and conical intersection searches, as demonstrated in this work. Future work

will seek to lower the computational scaling with respect to QM system size to enable excited-

state dynamics simulations.
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(2) Klamt, A.; Schüürmann, G. COSMO: a new approach to dielectric screening in solvents

with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin

Trans. 2 1993, 799–805.

(3) York, D. M.; Karplus, M. A smooth solvation potential based on the conductor-like

screening model. J. Phys. Chem. A 1999, 103, 11060–11079.

(4) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic

40

https://doi.org/10.26434/chemrxiv-2022-j8rgj-v2 ORCID: https://orcid.org/0000-0002-2908-5680 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-j8rgj-v2
https://orcid.org/0000-0002-2908-5680
https://creativecommons.org/licenses/by-nc-nd/4.0/


properties of molecules in solution with the C-PCM solvation model. J. Comp. Chem.

2003, 24, 669–681.

(5) Lange, A. W.; Herbert, J. M. A smooth, nonsingular, and faithful discretization scheme

for polarizable continuum models: The switching/Gaussian approach. J. Chem. Phys.

2010, 133, 244111.

(6) Reichardt, C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 1994, 94,

2319–2358.

(7) Würthner, F. Aggregation-induced emission (AIE): a historical perspective. Angew.

Chem. Int. Ed. 2020, 59, 14192–14196.

(8) Kirmaier, C.; Holten, D. Primary photochemistry of reaction centers from the photo-

synthetic purple bacteria. Photosynth. Res. 1987, 13, 225–260.

(9) Thompson, M. A.; Schenter, G. K. Excited states of the bacteriochlorophyll b dimer

of Rhodopseudomonas viridis: a QM/MM study of the photosynthetic reaction center

that includes MM polarization. J. Phys. Chem. 1995, 99, 6374–6386.

(10) Sirohiwal, A.; Neese, F.; Pantazis, D. A. Protein matrix control of reaction center

excitation in photosystem II. J. Am. Chem. Soc. 2020, 142, 18174–18190.

(11) Steffen, M. A.; Lao, K.; Boxer, S. G. Dielectric asymmetry in the photosynthetic reac-

tion center. Science 1994, 264, 810–816.

(12) Saggu, M.; Fried, S. D.; Boxer, S. G. Local and global electric field asymmetry in

photosynthetic reaction centers. J. Phys. Chem. B 2019, 123, 1527–1536.

(13) Senn, H. M.; Thiel, W. QM/MM methods for biomolecular systems. Angew. Chem.

Int. Ed. 2009, 48, 1198–1229.

41

https://doi.org/10.26434/chemrxiv-2022-j8rgj-v2 ORCID: https://orcid.org/0000-0002-2908-5680 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-j8rgj-v2
https://orcid.org/0000-0002-2908-5680
https://creativecommons.org/licenses/by-nc-nd/4.0/


(14) Bondanza, M.; Nottoli, M.; Cupellini, L.; Lipparini, F.; Mennucci, B. Polarizable em-

bedding QM/MM: the future gold standard for complex (bio) systems? Phys. Chem.

Chem. Phys. 2020, 22, 14433–14448.

(15) Curutchet, C.; Munoz-Losa, A.; Monti, S.; Kongsted, J.; Scholes, G. D.; Mennucci, B.

Electronic energy transfer in condensed phase studied by a polarizable QM/MM model.

J. Chem. Theory Comput. 2009, 5, 1838–1848.
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(57) Sachse, T.; Martińez, T. J.; Presselt, M. On combining the conductor-like screening

model and optimally tuned range-separated hybrid density functionals. J. Chem. Phys.

2019, 150, 174117, DOI: 10.1063/1.5064730.

(58) Refaely-Abramson, S.; Sharifzadeh, S.; Jain, M.; Baer, R.; Neaton, J. B.; Kronik, L.

Gap renormalization of molecular crystals from density-functional theory. Phys. Rev.

B 2013, 88, 081204, DOI: 10.1103/PhysRevB.88.081204.

(59) Zheng, Z.; Egger, D. A.; Brédas, J.-L.; Kronik, L.; Coropceanu, V. Effect of Solid-State

Polarization on Charge-Transfer Excitations and Transport Levels at Organic Interfaces

from a Screened Range-Separated Hybrid Functional. J. Phys. Chem. Lett. 2017, 8,

3277–3283, DOI: 10.1021/acs.jpclett.7b01276.

(60) Bhandari, S.; Cheung, M. S.; Geva, E.; Kronik, L.; Dunietz, B. D. Fundamen-

tal Gaps of Condensed-Phase Organic Semiconductors from Single-Molecule Cal-

culations using Polarization-Consistent Optimally Tuned Screened Range-Separated

Hybrid Functionals. J. Chem. Theory Comput. 2018, 14, 6287–6294, DOI:

10.1021/acs.jctc.8b00876.

47

https://doi.org/10.26434/chemrxiv-2022-j8rgj-v2 ORCID: https://orcid.org/0000-0002-2908-5680 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-j8rgj-v2
https://orcid.org/0000-0002-2908-5680
https://creativecommons.org/licenses/by-nc-nd/4.0/


(61) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and

testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174.

(62) Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. Automatic atom type and bond

type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006, 25,

247–260.

(63) D.A. Case, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E. Cheatham, III, V.W.D.

Cruzeiro, T.A. Darden, R.E. Duke, D. Ghoreishi, M.K. Gilson, H. Gohlke, A.W. Goetz,

D. Greene, R Harris, N. Homeyer, Y. Huang, S. Izadi, A. Kovalenko, T. Kurtzman,

T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D.J. Mermelstein, K.M.

Merz, Y. Miao, G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan,

R. Qi, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling,

J. Smith, R. Salomon- Ferrer, J. Swails, R.C. Walker, J. Wang, H. Wei, R.M. Wolf,

X. Wu, L. Xiao, D.M. York and P.A. Kollman (2018), AMBER 2018, University of

California, San Francisco.

(64) Mart́ınez, L.; Andrade, R.; Birgin, E. G.; Mart́ınez, J. M. PACKMOL: a package for

building initial configurations for molecular dynamics simulations. J. Comput. Chem.

2009, 30, 2157–2164.

(65) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N log (N) method for

Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092.

(66) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. Numerical integration of the cartesian

equations of motion of a system with constraints: molecular dynamics of n-alkanes. J.

Comput. Phys. 1977, 23, 327–341.

(67) Berendsen, H. J.; Postma, J. v.; Van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molec-

ular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690.

48

https://doi.org/10.26434/chemrxiv-2022-j8rgj-v2 ORCID: https://orcid.org/0000-0002-2908-5680 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2022-j8rgj-v2
https://orcid.org/0000-0002-2908-5680
https://creativecommons.org/licenses/by-nc-nd/4.0/


(68) Haynes, W. M.; Lide, D. R.; Bruno, T. J. CRC handbook of chemistry and physics ;

CRC press, 2016.

(69) Marefat Khah, A.; Reinholdt, P.; Olsen, J. M. H.; Kongsted, J.; Hättig, C. Avoiding

electron spill-out in QM/MM calculations on excited states with simple pseudopoten-

tials. J. Chem. Theory Comput. 2020, 16, 1373–1381.
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