
  

 

  

 

 

 

 

ChemBERTa-2: Fine-Tuning for Molecule’s HIV Replication 
Inhibition Prediction 

Sylwia Nowakowska*a b

Two versions of Large Language ChemBERTa-2 models, pre-trained 

with two different methods, were fine-tuned in this work for HIV 

replication inhibition prediction. The best model achieved AUROC 

of 0.793. The changes in distributions of molecular embeddings 

prior to and following fine-tuning reveal models’ enhanced ability 

to differentiate between active and inactive HIV molecules. 

AI-based tools hold considerable promise in improving and 

accelerating the drug discovery process1–3. Among the various 

applications in that field, these tools can be employed to predict 

key molecular properties4–11 . To facilitate model comparison 

and benchmarking, MoleculeNet datasets have been 

released12. The collection contains datasets for the molecular 

properties’ prediction on different levels: quantum, physical 

chemistry, biophysics, and physiology.  Among many AI 

approaches, Graph Neural Networks (GNNs) have been used for 

such tasks, due to their ability to encode the inherent graph-like 

nature of molecules, enabling the incorporation of spatial and 

contextual information13–16.  

An alternative method for representing molecular structures is 

a string-based SMILES notation, which can serve as a direct 

input to Large Language Models (LLMs)8,17. This approach was 

used among others by Chithrananda et al., who pre-trained 

RoBERTa transformer18 on 10M SMILES curated from PubChem 

with the use of the masked-language modelling (MLM) method. 

The pre-trained model, ChemBERTa, was fine-tuned for the 

prediction of molecule toxicity, blood-brain barrier penetration 

(BBBP), and HIV replication inhibition on the MoleculeNet 

datasets, achieving promising results, with AUROC for the HIV 

inhibition task of 0.622. In the later work, the authors pre-

trained the RoBERTa transformer on bigger dataset containing 

77M SMILES from PubChem with the use of either MLM or 

multi-task regression (MTR) method. During MLM pre-training 

15% of the tokens in each input SMILES string was masked and 

the model was trained to identify them correctly. The MTR pre-

training relied on simultaneous prediction of 200 molecular 

properties. The obtained ChemBERTa-2 model variations were 

fine-tuned for the downstream tasks of predicting various 

molecular properties, achieving competitive outcomes with 

state-of-the-art architectures. In that context, the authors 

reported that the models pre-trained with MTR tended to 

perform better highlighting the criticality of comprehensive 

Figure 2) The comparison of performance of ChemBERTa-2 model pre-trained with 

either MLM or MTR after fine-tuning on HIV inhibition prediction task A) receiver 

operating characteristics (ROC) curves with reported area under the curve (AUC); B-

C) corresponding confusion matrices.  
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Figure 1) Examples of molecules from the HIV dataset with the corresponding SMILES 

representation. 
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assessment of pre-training approaches. The performance of the 

HIV inhibition task was not reported in that work5. The MTR pre-

trained ChemBERTa-2 model was also fine-tuned for aqueous 

solubility prediction achieving comparable results with the 

published models6.  

In the view of the importance of the pre-training method on the 

models’ performance on the downstream task after fine-tuning, 

the present study puts an emphasis on the evaluation of the 

MLM/MTR approaches using ChemBERTa-2 models for HIV 

inhibition prediction. 

 

In this work, the benchmark MoleculeNet HIV dataset 

containing 39684 inactive and 1443 active molecules was used. 

Examples of molecules drawn with RDKit‡ are shown in Fig. 1. 

The default training/validation/test 80/10/10 scaffold splitting 

from DeepChem library was utilized19. The ChemBERTa-2-77M-

MLM and ChemBERTa-2-77M-MTR from Hugging Face20 were 

fine-tuned using T4 GPU on Google Colab using the 

simpletransformers library21. To compensate for the class 

imbalance, automatic weight balancing was used. To prevent 

overfitting, early stopping based on validation loss was used 

during hyperparameter tuning. Each model was evaluated on 

the holdout test set with AUROC and confusion matrix. The code 

for the model training is released in a GitHub repository§. 

 

In Fig. 2 the performance of best MLM and MTR models after 

hyperparameter tuning is illustrated.  The MLM model exhibited 

Figure 3) Latent representations of the embeddings of the molecules contained in the test set for both MLM and MTR models prior and after fine-tuning. In the 

inserts the explained variance ratio for the first 2 principal components (PCs) is plotted and the cumulative variance is reported. 
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better performance characterized by AUROC of 0.790, while the 

MTR scored 0.733.   

 

For deeper understanding of the pre-training approach, the 

embeddings of the molecules from the test set were computed 

for the MLM and MTR models. These embeddings were derived 

from the final hidden layer, both before and after the fine-

tuning process. As each molecule's representation consisted of 

384 embeddings, Principal Component Analysis (PCA) was 

performed subsequently for dimensionality reduction. The 

obtained representations in 2D latent space together with the 

explained variance ratio are illustrated in Fig. 3. In case of the 

MLM model prior to fine-tuning, the representations are 

dispersed randomly within the latent space. However, after 

fine-tuning, the representations corresponding to molecules 

classified by the model as HIV inactive exhibit lower values of 

PC1 (cf. light and dark blue points), while representations of 

molecules classified as HIV active are having higher PC1 values 

(cf. magenta and red points). In the case of the MTR model prior 

to fine-tuning, molecules correctly classified as HIV active tend 

to cluster together in their representations. On the other hand, 

the remaining points are scattered randomly with several 

outliers. Following fine-tuning, the distribution of 

representations becomes similar to that of the MLM model. The 

changes in the distributions of the embeddings before and after 

fine-tuning indicate that the models become more adept at 

distinguishing between HIV active and inactive molecules. 

 

The outcomes of this study align with the notion that 

transformer models hold significant promise for predicting 

molecular properties. Zhu et al. showcased an effective strategy 

employing the RoBERTa transformer architecture integrated 

with a Graph Neural Network (GNN)7. This approach enabled 

inputting to the model two distinct molecular representations - 

the chemical structure and SMILES notation - concurrently 

during the pre-training phase, a concept termed dual-view pre-

training. The training objective for the transformer branch was 

to predict masked token, i.e., MLM method. Moreover, a third 

objective was to maximize the consistency between the two 

high-level representations produced by each branch. After pre-

training, the fine-tuned transformer branch achieved state-of-

the are performance on different molecular property prediction 

tasks, with  HIV activity precision task characterized by AUROC 

of 0.81022.  Further research into impact of various pre-training 

methods on molecular property prediction in downstream task, 

employing either the transformer alone or in conjunction with 

GNN has the potential to drive additional progress in these 

domains. This could result in the development of robust models 

capable of revolutionizing the drug discovery process. 

In conclusion, the analysis presented in this study showcases 

how both pre-training methods of the RoBERTa architecture, 

namely MLM and MTR, empower the models to grasp 

significant representations of molecular structures. Notably, 

the MLM model attains a performance level nearly on par with 

the current best results in predicting HIV activity in a 

downstream task. 
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