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ABSTRACT:	A	new	approach	to	the	enantiocontrolled	synthesis	of	a-amino	ketone	derivatives	is	disclosed	by	employing	a	
decarboxylative	acylation	strategy.	Thus,	when	an	acyl	chloride	and	an	a-amido-containing	redox-active	ester	are	exposed	to	
Ni-catalysis,	a	chiral	ligand,	and	metal	reductant,	a-amido	ketones	are	produced	in	good	yield	and	high	ee.	The	reaction	ex-
hibits	broad	substrate	scope,	can	be	easily	scaled	up,	and	is	applied	to	dramatically	simplify	the	synthesis	of	several	known	
structures.	

			Chiral	 a-amino	 ketones	 represent	 valuable	 building	
blocks	serving	as	key	 intermediates	 for	 the	synthesis	of	a	
vast	array	of	natural	products	and	medicines.1	Thus	far,	the	
most	common	retrosynthetic	disconnections	involve	classic	
2e-based	 disconnections	 relying	 on	 either	 a-amination	
strategies2	 or	 the	 homologation	 of	 chiral	 pool-derived	a-
amino	acids.3	For	instance,	building	block	1	(Figure	1A),	an	
intermediate	used	 for	 the	 synthesis	of	ACE	 inhibitors	has	
been	constructed	via	the	latter	strategy	from	L-phenylala-
nine	in	6-8	steps4	wherein	most	of	the	reaction	steps	do	not	
forge	strategic	bonds	resulting	in	low	ideality.	In	principle,	
a	far	more	direct	means	of	accessing	1	would	employ	a	rad-
ical	retrosynthetic	strategy5	wherein	the	redox	active	ester	
(RAE)	of	phenylalanine	(2,	 racemic	or	enantiopure)	could	
be	combined	with	the	simple	succinate	derivative	3	through	
an	 enantioselective	 decarboxylative	 acylation.	 Forging	 C-
acyl	bonds	 through	radical	 cross	 coupling	 is	not	new.6	As	
shown	 in	 Figure	 1B,	 three	 basic	 strategies	 have	 been	 re-
ported	for	the	construction	of	a-chiral	ketones	through	Ni-
catalysis.7	In	the	first	of	these	(Strategy	A),	an	alkyl	halide8	
or	dihydropyridine9	motif	serves	as	a	radical	precursor	for	
reductive	(chemical	or	photochemical)	activation	before	en-
tering	the	Ni-catalytic	cycle	and	reacting	with	an	activated	
acyl	group.	In	the	second	strategy	(B),	photoinduced	HAT	of	
labile	 C−H	 bonds	 (benzylic	 or	 adjacent	 to	 a	 benzamide)	
leads	to	the	requisite	radical	donor.10	The	final	strategy	(C)	
uses	a	terminal	olefin	input	in	a	three	component	coupling	
with	a	chloroformate	and	suitable	radical	donor.11	Building	
on	 these	 pathpointing	 disclosures,	 the	 targeted	 transfor-
mation	to	access	4	was	explored	as	shown	in	Figure	1C	us-
ing	2	and	3.	Unfortunately,	as	the	aforementioned	methods	
(Strategy	A)	were	largely	developed	using	alkyl	halides,	ap-
plying	these	conditions	to	substrates	2	and	3	all	gave	un-
fruitful	results	with	only	trace	quantities	of	4	observed	(Fig-
ure	1C).	It	is	worthing	noting	that	RAE	2	was	fully	consumed	
under	the	conditions	of	Reisman	and	co-workers8a	while	it	
largely	remained	intact	using	the	protocols	of	Wang8b	and	
Chen.8c	Herein	a	highly	enantioselective	and	general	Ni-cat-
alyzed	decarboxylative	acylation	 is	described	that	can	de-
liver	68%	yield	(92%	ee)	of	4	through	a	simple	protocol	that	

can	 be	 used	 repeatedly	 to	 simplify	 the	 synthesis	 of	 such	
structures.	
Optimization	studies	began	with	the	reductive	decarboxyla-
tive	acylation	of		RAE	2	and	acid	chloride	3	(Table	1).	Exten-
sive	investigation	revealed	that	the	final	optimal	conditions	
utilized	NiCl2•glyme	 (10	mol%),	 a	 commercially	 available	
chiral	ligand	L9	(15	mol%)	and	Mn	powder	(3.0	equiv)	in	
CH3CN/DME	(1:1,	0.1	M)	at	room	temperature	for	5	h,	af-
fording	ketoester	4	in	68%	isolated	yield	and	92%	ee.	An	in	
situ	 activation	 protocol	 offered	 comparable	 reaction	 effi-
ciency	(entry	1).	Numerous	reaction	paramters	were	exam-
ined,	 some	 of	 which	 are	 summarized	 in	 Table	 1.	 Using	
Ni(acac)2	as	the	nickel	source	significantly	diminished	the	
reaction	 efficiency	 (entry	 2).	 Surprisingly,	 replacing	 Mn	
with	Zn	as	reductant	completely	failed	to	provide	any	prod-
uct	 (entry	3).	An	unusual	 solvent	 choice	proved	 to	be	ex-
tremely	 critical	 to	 both	 reactivity	 and	 asymmetric	 induc-
tion,	with	a	1:1	mixture	of	CH3CN	and	DME	proving	superior	
to	a	single	solvent	(entries	4–5).	A	wide	variety	of	chiral	lig-
ands	were	also	tested	(entries	6–12),	and	chiral	bis(oxazo-
line)	ligands	(L1,	L2,	L8,	L9)	generally	gave	higher	yield	and	
ee	 than	 other	 types	 of	 chiral	 ligands	 (L4–L7),	which	was	
consistent	with	previous	reports.8-11	A	fine-tuning	of	the	ste-
ric	properties	of	BOX	ligands	showed	that	L9	was	optimal.	
Control	experiments	indicated	that	essentially	no	detecta-
ble	product	formed	when	reactions	were	conducted	with-
out	nickel	catalyst	or	chiral	ligand	(entries	13–14).	The	re-
action	was	not	very	sensitive	to	oxygen	because	only	a	slight	
loss	of	yield	was	observed	when	the	reaction	was	conducted	
under	air	in	a	capped	vial,	although	the	deliberate	addition	
of	water	(1.0	equiv)	significantly	reduced	the	reaction	effi-
ciency	(entries	15–16).	Other	acyl	surrogates,	including	in	
situ	activation	protocols	(entries	17–18)	and	an	isolated	thi-
oester	precursor	(entry	19),	did	not	produce	any	product.	
In	all	cases,	both	starting	materials	2	and	3	were	mostly	re-
covered.	
With	a	concrete	set	of	conditions	in	hand,	the	generality	of	
the	substrate	scope	was	evaluated,	as	depicted	in	Table	2.	A	
broad	array	of	acid	chlorides	derived	from	primary	carbox-
ylic	acids	were	tested,	delivering	the	desired	chiral	a-amino	
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Figure	1.	Historical	Context	and	Precedent	Related	to	Enan-
tioselective	Decarboxylative	Acylation.	
	
ketones	in	moderate	to	good	yields	and	with	excellent	en-
antioselectivity.	Aside	from	simple	alkyl	chains	(5,	6,	9,	13,	
16,	18	and	19),	a	wide	range	of	functional	groups	could	be	
tolerated,	such	as	alkyl	halides	(7,	8),	esters	(10),	terminal	
alkenes	(11),	ethers	(12,	14),	internal	alkenes	(21,	22),	ke-
tones	 (23,	24),	electron-rich	aromatic	 rings	 (15,	20),	and	
aryl	bromides	(25).	Acid	chlorides	derived	from	secondary	
carboxylic	acids	and	aromatic	acids	were	also	suitable	cou-
pling	partners	(16,	17,	19,	25	and	26),	providing	desired	
products	in	moderate	yields	and	excellent	enantioselectiv-
ity.	Various	redox-active	esters	derived	from	easily	accessi-
ble	a-amino	acids	(racemic	or	enantiopure)	were	also	ap-
plied	in	this	enantioconvergent	coupling	reaction	(products	
5–14,	16,	17,	21,	27,	30,	34,	35	and	38–42	were	derived	
from	racemic	RAEs	while	15,	18-20,	22–26,	28,	29,	31,	32,	
33,	36	and	37	were	synthesized	from	L-a-amino	acids-de-
rived	RAEs).	Besides	RAEs	bearing	simple	alkyl	chains	(27,		

Table	1.	Reaction	Development	and	Optimizationa,b,c,d,e		

aIsolated	yield.	bYields	determined	by	crude	1H	NMR	using	
1,3,5-trimethoxybenzene	as	the	 internal	standard.	 cee	val-
ues	determined	by	 chiral	HPLC	 analysis.	 d0.5	mmol	 scale.	
eBoth	starting	materials	2	and	3	were	mostly	recovered.	n.d.	
=	not	determined.	
	
28,	30,	31,	35,	36	 and	37),	 those	with	 functional	 groups	
such	as	thioethers	(29),	carbamates	(32),	esters	(33),	ter-
minal	 alkenes	 (34),	 aryl	 halides	 (38,	41),	 trifluoromethyl	
groups	(40)	and	heterocycles	(42),	could	be	smoothly	cou-
pled	with	acid	 chlorides.	The	benzoyl	 substituents	on	 the	
amino	position	also	could	be	varied	(38–42).		
Diastereoselectivity	can	be	highly	controlled	by	chiral	 lig-
ands	rather	than	the	pre-existing	stereocenters	such	as	in	
the	cases	of	substrates	23,	24,	36	and	37.	With	the	excep-
tion	 of	 compounds	17,	23,	24,	26	 and	28,	 none	 of	 these	
structures	have	been	prepared	before	either	in	racemic	or	
enantioenriched	form.	With	regard	to	limitations,	switching	
the	protecting	groups	from	Bz	to	Boc	or	phthalimide	led	to	
considerable	loss	of	ee	(43,	44).	a-Chloro	acid	chlorides	and	
tertiary	acid	chlorides	were	not	competent	coupling	part-
ners	under	current	optimal	conditions	(45,	46).	
The	developed	chemistry	outlined	herein	can	have	a	tangi-
ble	simplifying	impact	on	the	synthesis	of	seemingly	simple	
structures	as	shown	in	Figure	2.	For	instance,	compound	1	
(Figure	2A)	was	previously	accessed	in	6-8	steps	using	po-
lar	 bond	 analysis	 requiring	 numerous	 protecting	 groups,	
functional	 group	 interconversions,	 redox	 manipulations,	
and	pyrophoric	reagents.	In	contrast,	this	method	enables	
single	step	access	through	enantioselective	decarboxylative	
acylation	of	2	with	3	 followed	by	hydrolytic	workup.	 	The	
enantiopure	allylated	a-amido-ketone	56	(Figure	2B)	was	
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Table	2.	Scope	of	Ni-Catalyzed	Enantioselective	Decarboxylative	Acylationa	

	
aYields	of	isolated	products	are	indicated	in	each	case	unless	otherwise	specified.	
	

Ni-Catalyzed Enantioselective Decarboxylative Acylation: Rapid, Modular Access to Chiral α-Amino Ketones
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Figure	2.	Enantioselective	Decarboxylative	Acylation	Can	Simplify	Synthesis.	
	
previously	accessed	using	classic	asymmetric	phase-trans-
fer	alkylation	chemistry12	again	requiring	a	number	of	con-
cession	steps	(7	steps	total).	The	current	method	simplifies	
this	route	considerably	accessing	the	same	structure	in	only	
one	step.	Similarly,	structures	59	and	65	(Figure	2C),	inter-
mediates	in	a	medicinal	chemistry	program	for	the	discov-
ery	of	anilide	inhibitors	against	the	SARS-CoV	3CL	protease,	
were	accessed	in	nine	step	routes	wherein	the	majority	of	

operations	do	not	form	strategic	bonds.13	In	contrast,	enan-
tioselective	 decarboxylative	 acylation	 furnishes	 the	 same	
structures	 in	 a	 fraction	 of	 the	 steps	 previously	 required.	
From	the	standpoint	of	logic	employed	in	a	medicinal	chem-
istry	setting	this	method	offers	increased	convergency	and	
modularity	that	is,	in	principle,	amenable	to	parallel	library	
synthesis.	

Enantioselective Decarboxylative Acylation Can Simplify Synthesis
A Synthesis of an Intermediate Used in the Synthesis of ACE Inhibitors

B Synthesis of a Derivative Previously Synthesized by an Enantioselective Phase-Transfer-Catalyzed Alkylation Methodology

C Synthesis of Intermediates Used in the Synthesis of Peptide Anilide Inhibitors against the SARS-CoV 3CL protease
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Figure	 3.	 Scalability,	 Downstream	 Transformations,	 and	
Other	RAE	Partners.	
	
In	terms	of	scalability,	the	reaction	is	easily	conducted	on	a	
gram-scale	 as	 exemplified	 with	 the	 preparation	 of	 com-
pound	28	without	significant	loss	of	reaction	efficiency	(Fig-
ure	3A).	To	further	demonstrate	the	synthetic	utility	of	this	
method,	chiral	a-amino	ketone	6	was	smoothly	reduced	to	
anti-1,2-amino	alcohol	68	 in	a	highly	stereoselective	fash-
ion.14	The	benzoyl	group	of	68	could	be	readily	removed	un-
der	mild	conditions	and	swapped	to	Boc	group	with	no	ero-
sion	of	enantiopurity	(Figure	3B).	In	addition,	the	optimal	
conditions	outlined	herein	provide	promising	preliminary	
results	for	the	coupling	of	acid	chloride	66	and	other	types	
of	substrates	70	and	72	(Figure	3C).	 It	 is	anticipated	that	
further	optimization	of	these	substrate	classes	through	lig-
and	screening	would	lead	to	general	methods.	In	terms	of	
the	mechanism	of	this	transformation,	it	is	likely	following	
a	similar	pathway	to	other	Ni-catalyzed	reductive	cross	cou-
pling	reactions	studied	previously.8	
To	conclude,	this	study	delineates	a	useful	and	practical	ap-
proach	to	the	synthesis	of	enantioenriched	a-amino/amido	
ketones	using	Ni-catalysis.	Predicated	on	a	radical	retrosyn-
thetic	strategy,	it	dramatically	simplifies	the	routes	to	such	
structures	allowing	for	convergent	assembly	of	two	carbox-
ylates,	 one	 of	which	 is	 a	 simple	 acyl	 chloride	 and	 one	 of	
which	is	an	a-amido-containing	RAE.	The	chemoselectivity	
of	 the	 reaction	 is	high	 and	as	 such	 the	 substrate	 scope	 is	
broad.	The	documented	ability	of	this	method	to	render	ac-
cess	to	known	structures	using	only	a	fraction	of	the	effort	
previously	required	bodes	well	for	its	widespread	adoption.	
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