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ABSTRACT 

Photocatalysis is becoming increasingly important in modern chemistry for efficient 

multicomponent one-pot synthesis. However, predicting the results of photocatalytic 

reactions using artificial intelligence remains challenging, mostly due to the insufficient 

number of photocatalytic reactions and the incomplete information on reaction 

conditions in existing reaction databases. In this study, we curated the Photocatalysis 

Database (PhotoCatDB), which consists of 6,523 photocatalytic reactions (of which 

6,175 are multicomponent) containing reaction condition information such as 

photocatalysts, bases or acids, additives, and solvents. Before adding reaction 

conditions to the training data, the attention-based deep learning model PhotoCat pre-

trained on USPTO and fine-tuned on PhotoCatDB had a Top-1 accuracy of 78.16%, 

which was 77.70% higher than the same model trained only on the USPTO database 

and 14.53% higher than the model fine-tuned by the photocatalytic reactions from 

Reaxys. After adding reaction conditions to the training data, the Top-1 accuracy of 

PhotoCat was further increased to 82.25%. In addition, the interpretability of the model 

was reflected in its attention weights, which can infer the model’s understanding of 

photocatalytic chemistry. Furthermore, five previously unreported photocatalytic 

reactions predicted by PhotoCat were successfully validated by wet-lab experiments, 

demonstrating the potential of the model in identifying and verifying novel 

photocatalysis reactions of real-world significance. 
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INTRODUCTION 

Recently, the rise and rapid development of photocatalytic technology has created 

exciting opportunities for organic transformations under mild conditions.1, 2 At the same 

time, multicomponent reactions (MCRs) have key attributes that are consistent with the 

principles of green chemistry, such as atom economy and energy efficiency.3 Thus, 

combining multicomponent approaches with photocatalysis opens new avenues for 

synthetic organic chemistry and meets the growing demand for sustainable and efficient 

reactions. In this context, multicomponent photocatalysis represents a major 

breakthrough that inspires chemists to explore uncharted territories and discover elusive 

reaction patterns.4, 5 However, conducting multicomponent photocatalysis in the 

laboratory presents considerable challenges - the discovery and optimization of each 

novel multicomponent photocatalytic reaction require years of effort by chemists. 

 

Deep learning models have made great strides in recent years, largely due to their 

remarkable ability to extract knowledge from massive amounts of data.6-10 In the field 

of organic synthesis, deep learning has brought about a revolution that has impacted 

several areas, including forward reaction prediction11-18, retrosynthesis planning19-22, 

mechanistic inference23, 24, inferring experimental procedures25, 26, and new reaction 

development27-29. Specifically, deep learning models have proven to be effective in 

predicting specific types of reactions, including enzyme-catalyzed reactions30, 31, 

carbohydrate reactions32, and electrochemical reactions33. In addition, the application 

of deep learning in the field of photocatalysis has garnered significant attention, 

particularly in the design and optimization of photocatalysts34, 35. 

 

However, to the best of our knowledge, no deep learning models specifically targeting 

photocatalytic reactions have been reported to date, not only because of the challenging 

nature of exploring photocatalytic reactions4, 5 that leads to the scarcity of 
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photocatalytic reaction data, but also due to the limitation of currently available reaction 

databases. Although acknowledged chemical reaction databases like Reaxys 

(https://www.reaxys.com) can provide photocatalytic reaction data through keyword 

searches, they may have limitations such as incomplete reaction condition information. 

For example, the water as a reactant is hidden in the word 'wet', which was missed by 

the Reaxys dataset (Reaction ID: 49168884). Another initiative to address the database 

format issue is the Open Reaction Database (ORD) framework proposed by Kearnes et 

al.36 ORD displays chemical reaction data in a structured format, which provides strong 

support for machine learning prediction of chemical reactions. However, ORD 

currently contains fewer than 300 photocatalytic reactions, which is insufficient to train 

deep learning models effectively. 

 

In this study, a database of multicomponent photocatalytic reactions, named 

PhotoCatDB, was established through a comprehensive literature search and these 

reactions were scrutinized by human experts. Our group also added some 

experimentally recorded reaction data to the database. Most importantly, we added the 

essential reaction conditions, such as photocatalysts, bases or acids, additives, and 

solvents, to PhotoCatDB to reflect real-world reaction scenarios. After organizing 

PhotoCatDB, we developed PhotoCat, an advanced deep learning model based on the 

Transformer architecture, specifically designed to predict photocatalytic reactions. We 

used PhotoCat to successfully identify and experimentally validate five previously 

unreported photocatalytic reactions of practical significance. This study marks a 

significant progress in predicting multicomponent photocatalytic reactions and 

provides a powerful tool to accelerate the discovery and validation of novel 

photocatalytic reactions with diverse applications, thus advancing the field of green 

chemistry synthesis. 
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RESULTS 

PhotoCatDB, a multicomponent photocatalytic reaction database with reaction 

conditions. We tried to collect multicomponent photocatalytic reactions as many as 

possible to increase the uniqueness of PhotoCatDB. Currently, PhotoCatDB contains 

6,523 validated photocatalytic reactions, of which 6,175 are multicomponent reactions. 

The predominant reaction types are three- and four-component reactions, which 

accounted for 58% and 33% of the database, respectively (Fig. 1a). Various components 

of reaction conditions are collected, including 59 photocatalysts, 34 acids or bases, 53 

additives (of which 37 are ligands), and 42 solvents. We tried to avoid overcollection 

of similar photocatalytic reactions, which is reflected by a normal distribution of 

product molecular weights, ranging from 85 to 1251 (Fig. 1b).  

 

Fig. 1 Data distribution and composition analysis of PhotoCatDB. (a) Multicomponent reactions 

dominate the dataset, with three- and four-component reactions highlighted in pink and green, 
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respectively. (b) Molecular weights of reaction products follow a normal distribution. 

 

PhotoCatDB is specifically designed to summarize the unique features of photocatalytic 

reactions. It is structured into distinct records, each consisting of three key components: 

1) Reaction equations represented using the SMILES37 (Simplified Molecular Input 

Line Entry System) notation - a specialized system for converting chemical structures 

into a computer-readable format. In this notation, the “>>” symbol is the dividing line 

between reactants and products, while the “.” symbol delineates different reactants. 2) 

Reaction conditions classified into four essential elements: photocatalyst, base or acid, 

additives, and solvent. Certain reactions, such as those involving quinoxalinone, 

azobenzene, or EDA complex, do not require an external photocatalyst because the 

reactants themselves are photosensitizers. These reactions are categorized as 

“autocatalysis”. 3) Additional information including reaction time, yield, and literature 

sources. An example of a PhotoCatDB data instance is provided in Fig. 2, and additional 

examples are provided in Tables S1-S12. 

 

Entry 3251 Category Three-component photocatalysis 

Reaction 

 

Reaction 
equation 

CC(Br)(C)C.BrC1=CC=C(C(OC)=O)C=C1.C=CB2OC(C)(C)C(C)(C)O2 

>>CC(C(C)(C)O3)(C)OB3C(C4=CC=C(C(OC)=O)C=C4)CC(C)(C)C 

Reaction 

condition 

Photocatalyst Acid or base Additive Solvent 

4CzIPN TMEDA Ni(bpy)Cl2 MeCN 

Additional 

information 

Reaction time (h) Yield (%) Literature sources 

20 73 Angew. Chem., 2020,132, 4400–4404 

Fig. 2 An example of PhotoCatDB data. 

 

For a more insightful analysis of the dataset, TMAP38, a tree-based unsupervised 

learning algorithm, was utilized to visualize the chemical reaction mapping of the 
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PhotoCatDB (Fig. 3a). Despite the wide variety of photocatalysts in the PhotoCatDB, 

clustering of reactions catalyzed by the same photosensitizer was observed. However, 

different clustering was observed when reactions were colored according to other types 

of reaction conditions, such as bases or acids, additives, and solvents (Fig. S2-S4 in 

ESI), which demonstrates the multivariate effect of reaction conditions and suggests 

the necessity to include multiple components of reaction conditions in the database. To 

further demonstrate the advantages of the PhotoCatDB, the photocatalytic reactions 

collected from Reaxys were also visualized using TMAP38 (Fig. 3b). PhotoCatDB 

adopts common names to represent complex photocatalyst structures, making data 

reading and storage easier. In contrast, photocatalysts in Reaxys were represented with 

IUPAC names, which makes them more difficult to be classified and understood by AI 

models. Meanwhile, PhotoCatDB exhibits a higher diversity in reaction types, avoiding 

the aggregation of similar reactions observed in Reaxys data. 
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Fig. 3 Comparison of PhotoCatDB and photocatalysis dataset from Reaxys. (a)PhotoCatDB uses 

common names for photocatalysts, while (b) photocatalysis dataset from Reaxys employs lengthy 

IUPAC names. Additionally, (a) does not show aggregation of similar reactions as “multiple clusters” 

as in (b). 

 

PhotoCat, a reaction-prediction model trained with USPTO and PhotoCatDB. 

PhotoCat uses the Transformer model from the OpenNMT framework39 as the basis of 

its model architecture (Fig.4). First, the model was pre-trained using the USPTO 

database containing 1 million instances of chemical reactions to gain basic knowledge 
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of chemical reactions. After that, the model was fine-tuned using PhotoCatDB. To 

demonstrate the need for transfer learning, we let the Baseline-1 model be trained only 

by USPTO and the Baseline-2 model be trained only by PhotoCatDB. In addition, we 

introduced photocatalytic reaction data from Reaxys (named Reaxys-photocatalysis) to 

investigate the effect of fine-tuning datasets. We fine-tuned the USPTO-pretrained 

model using the combined dataset of Reaxys-photocatalysis and PhotoCatDB 

(Baseline-3) and only the Reaxys-photocatalysis dataset (Baseline-4), respectively. It 

is important to note that to fairly compare the role of the reactions in USPTO and 

PhotoCatDB in model training, the PhotoCatDB data for training in this section does 

not contain any reaction conditions. Training using the complete PhotoCatDB data 

containing reaction conditions is discussed in the next section. 

 

Fig. 4 The Transformer model and training schematic. Sequence-2-sequence prediction of 

photocatalytic reactions (Upper), and the training schematic of PhotoCat and four baseline models 

(Lower). 

 

As is shown in Figure 5a, the average Top-1 accuracy of the pre-trained and fine-tuned 

PhotoCat was 78.16%, and the Top-2 to Top-5 accuracies were all above 84%. In 

contrast, the prediction accuracy of the Baseline-1 model trained only on USPTO was 

significantly lower, with an average Top-1 accuracy of only 0.46% and similar low 
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Top-2 to Top-5 accuracies. In addition, the Baseline-2 model, trained solely on 

PhotoCatDB, also exhibited lower prediction accuracies than PhotoCat. Fig. 5b 

provides an alternative perspective on this comparison. Figure 5b depicts the proportion 

of invalid SMILES predicted by PhotoCat (0.80%), which was lower than that of the 

Baseline 1 and 2 models. The results above suggest that the USPTO provides the 

necessary information for the model to understand chemical reactions, while 

PhotoCatDB provides the model with the ability to target photocatalytic reactions.  

 

Figure 5a shows that the Top-1 accuracy of Baseline-3, which was fine-tuned by 

combining PhotoCatDB and Reaxys-photocatalysis, is about 3% lower than that of 

PhotoCat, suggesting that expanding the fine-tuning set does not improve the predictive 

performance of the model. On the other hand, the Top-1 accuracy of Baseline-4 fine-

tuned only with Reaxys-photocatalysis was 14.53% lower than that of PhotoCat. Based 

on the results of Baseline-3 and Baseline-4, we can conclude that the quality of Reaxys-

photocatalysis is lower than that of PhotoCat. This lower quality not only leads to lower 

prediction accuracy when training with this dataset alone, but also has a negative impact 

when used in combination with higher-quality datasets.  
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Fig. 5 Comparison of prediction accuracies of PhotoCat and baseline models. (a) The comparison 

of Top-1 to Top-5 accuracies; (b) Percentage of Invalid SMILES and incorrect predictions in Top-

1 accuracies for Baseline-1 and -2 models and PhotoCat. 

 

Reaction conditions improve accuracy and efficiency of reaction prediction. After 

incorporating detailed chemical reaction conditions into the fine-tuning phase of 

PhotoCat, the Top-1 accuracy was significantly improved by 4.01% to 82.25% (Fig. 6). 

We further investigated the effect of the number of reaction conditions on prediction 

accuracy. The reaction conditions started with only photocatalysts, and then bases or 

acids, additives, and solvents were added sequentially. As the number of input reaction 

conditions increased, the accuracy of reaction predictions continued to rise (Fig. 6a). 

PhotoCat’s predicted Top-1 accuracies were 78.1%, 79.8%, and 81.9% when one, two, 

and three reaction conditions were included in the training, respectively, which were all 

higher than fine-tuned model that did not include information about the reaction 

conditions. 

https://doi.org/10.26434/chemrxiv-2023-cc43d-v2 ORCID: https://orcid.org/0000-0002-6544-3959 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-cc43d-v2
https://orcid.org/0000-0002-6544-3959
https://creativecommons.org/licenses/by-nc/4.0/


12 

 

 

Integrating reaction conditions also speeds up the training process. Fig. 6 shows that 

the training curve grows faster for the models with more reaction conditions provided 

in their training. With only 0 reaction conditions (blue), the accuracy reaches about 76% 

after 40,000 training steps. In contrast, when all four reaction conditions are considered 

(purple), the training accuracy grows faster, reaching over 80% after only 30,000 steps. 

Meanwhile, in both the validation set (Fig. S11) and test set (Fig. S12-13), the Top-K 

accuracy (with K values ranging from 2 to 5) grows in a similar trend as the Top-1 

accuracy. These observations demonstrated the importance of incorporating detailed 

and comprehensive reaction conditions during the training and prediction phases, which 

promotes superior model performance and faster convergence to peak prediction 

accuracy. 

 

Fig. 6 Effects of reaction condition inputs on model predictions and training Efficiency. (a) As the 

quantity of input reaction conditions grows, there’s a consistent ascent in prediction accuracy. (b) 

The adaptive inclusion of various reaction condition inputs significantly amplifies the model's 

training agility. 
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Photocatalytic synthesis planning with PhotoCat. In this section, we demonstrate 

how PhotoCat can assist the synthetic planning of photocatalytic reactions. The first 

step is to use PhotoCat to screen the human-designed reactions through a dry 

experiment, where the reactants and reaction conditions of these reactions were input 

to PhotoCat (Fig. 7). Human experts in our group designed six photocatalytic reactions 

(Fig. 8), which had not reported in literature or validated by wet-lab experiments. Of 

the main products predicted by PhotoCat, reactions a-d were consistent with those 

anticipated by human experts, reaction e was inconsistent, and the main product of 

reaction f had an invalid SMILES. 

 

Fig. 7 The process of conducting dry experiments using PhotoCat 
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Entry 
Chemists' designed photocatalytic reactions  

and predicted main product structures 

Main product structure 

Predicted by 

PhotoCat 

Repeatable by 

wet-lab 

experiment 

a 

 

Correct Correct 

b 

 

Correct Correct 

c 

 

Correct Correct 

d 

 

Correct Correct 

e 

 

  

f 

 

Invalid 

SMILES 
N.D. 

Fig. 8 The dry experimental outcomes of 6 photocatalytic reactions (including 4 multi-component 

photocatalytic reactions) that remain unverified through practical experimentation, as determined 

using the PhotoCat.  

 

Wet-lab experiments were conducted to further investigate these reactions (Fig. 8). The 

results show that reactions a-d, unanimously recognized by PhotoCat and human 

experts, generated the expected products with high yields in the laboratory. Reaction e 

generated the main product 17, which was consistent with PhotoCat’s prediction, rather 

than product 16 expected by human experts. Reaction f that failed in the PhotoCat 

remained unsuccessful despite extensive exploration by the three chemists for a month, 
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unable to obtain the desired products.  

 

In addition to validating PhotoCat’s predictions, the five successfully completed 

reactions are of great scientific importance to the field of photocatalysis. In reaction a, 

pyruvate 1 and nitrobenzene 2 combine under photocatalytic conditions to produce 

aromatic ketone 3. This reaction is reminiscent of the Friedel-Crafts acylation reaction. 

The introduction of strong electron-withdrawing groups, like the nitro group, 

desensitizes the benzene ring, making the execution of the Friedel-Crafts acylation 

reaction more challenging.40 Furthermore, a significant advantage of reaction a is its 

ability to sidestep the customary reliance on large amounts of Lewis acids, such as 

AlCl3, typically required in traditional Friedel-Crafts acylation procedures. In reaction 

b, using N-methyl quinoxalinone 4 and NCS 5, the 3-chlorinated product 6 is obtained 

without the need for an external photocatalyst. While recent literature has described 

photocatalytic synthesis methods for the production of compound 6, reaction b 

introduces innovative approaches, expanding the chemist’s repertoire with additional 

options.41 In reaction c, the photocatalytic synthesis of α-trifluoromethyl-substituted 

ketone 7 is achieved using cinnamic acid 8 and CF3SO2Na 9, without the necessity of 

metals, external oxidants, or photocatalysts.42 To the best of our knowledge, this 

represents the inaugural documentation of an oxidative decarboxylative 

trifluoromethylation of α,β-unsaturated carboxylic acid employing cost-effective 

CF3SO2Na via any photocatalytic approach.43 In reaction d, a photo-triggered oxo-

amination of an inactivated alkene 10 is developed, leading to the synthesis of α-amino 

ketones 12.44 This strategy showcases a vicinal heterodifunctionalization of widely 

accessible olefin feedstock, enabling the construction of the target product in a single 

step. In reaction e, bicyclo[1.1.1]pentane (BCP), a nonclassical bioisosteric 

replacement of aryl45 and internal alkynes 17 was achieved in good yields in the absence 

of any additives. Detailed experimental procedures and mechanism derivation can be 

found in the ESI, Fig. S18 to S25. 
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DISCUSSION 

Unlike previous studies that considered only a few commonly used reagents11-16 or 

ignored reaction conditions altogether17,18, this study shows that the inclusion of 

reaction conditions can improve the predictive accuracy and training efficiency of 

chemical reaction prediction models. There are two main reasons for this improvement. 

First, in previous studies that considered reaction conditions, the reactants were input 

simultaneously as mixtures, which may increase the challenge of the model in 

interpreting the reaction conditions. In this study, the photocatalytic reaction conditions 

were methodically grouped into four different types, which significantly reduced the 

complexity of the model in grasping the intricate chemical reaction conditions. In 

addition, the terminology of the reaction conditions was simplified by using concise 

common names or identifiers, which establishes a direct correspondence between the 

structure of the reagents and their names (Fig. 9) and simplifies model learning.  

 

 

Fig. 9 Simplification strategy for describing reaction conditions in PhotoCatDB. (a) Given the 

limited dataset of 59 photosensitizers, extensive SMILES notations are circumvented in favor of 

deep learning. Common names are employed to effectively denote photocatalysts, capturing 

intricate conjugate structures with central metals. (b) Molecular structures of widely-used hydrogen 

atom transfer (HAT) catalysts can often be more intricate than those of photocatalysts. To achieve 
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concise representation, common names are utilized. (c) Since ligands frequently feature chiral 

configurations, SMILES notations are not ideal. Instead, common names are favored for depicting 

ligand structures. Some ligands are abbreviated with labels (L1 to L32; refer to Fig S6 for 

comprehensive details), and prevalent ligands retain their common names. 

 

Fig. 10 illustrates the improvement of model interpretability by adding reaction 

conditions to model training.46 When the reactants (styrene 18, DMSO 19, NHP ester 

20) are subjected to a trivalent ruthenium photocatalyst and light, ketone 21 is the main 

product in the absence of acid. However, when a strong acid (e.g., 

trifluoromethanesulfonic acid) is present, the reaction shifts to alkene 22 as the main 

product (Fig. 10a). A high concentration of protons prevents the deprotonation of the 

alkoxysulfonium intermediate 23, thus hindering the formation of ketone 21 (Fig. 10b). 

Based on complete reaction conditions, PhotoCat precisely predicts the main product 

(Fig. 10c). In this case, [B0] indicates the absence of “base or acid”, while [B31] 

represents the inclusion of trifluoromethanesulfonic acid in the reaction conditions. In 

the attention heatmap, the thickness of the lines represents the attention weight between 

the input and output. Fig. 10d-e show that PhotoCat clearly focuses on the input reaction 

conditions (highlighted in purple) when predicting the main product. Notably, PhotoCat 

gives higher attention to [B0] when outputting the key ketone carbonyl group “C=O” 

(Fig. 10d), and [B31] when projecting the critical alkene group “C=C” (Fig. 10e). This 

is consistent with human experts’ approach in determining the main products of 

photocatalytic reactions based on reaction conditions.  
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Fig. 10 Interpretability and attentional analysis of PhotoCat. (a) Presence or absence of 

trifluoromethanesulfonic acid in the reaction system dictates the main product outcome46, producing 

aldehyde 21 or alkene 22. A plausible reaction mechanism is presented in (b). (c) PhotoCat 

accurately predicts main products when provided with corresponding reaction conditions ([B0] and 
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[B31] respectively refer to “base or acid” being “none” and “TfOH”). In the attention heatmaps (d) 

and (e), the upper strings represent the SMILES of the main product from the photocatalytic reaction 

(output), while the lower strings denote the SMILES of the reactants and the input of the four 

reaction conditions. The output of the product's SMILES places a particular emphasis on the input 

of the four reaction conditions (highlighted in purple). Notably, when the key functional group of 

ketone carbonyl “C(=O)” (d) or alkene “C=C” (e) is outputted, PhotoCat pays special attention to 

the corresponding inputs of [B0] and [B31], respectively.  

 

CONCLUSION 

This study introduces a novel Transformer-based deep learning model, PhotoCat, which 

is designed to predict photocatalytic reactions. The model was trained by PhotoCatDB, 

a new photocatalysis database curated by our group, and achieved a top-1 accuracy of 

78.16% in predicting complex multicomponent photocatalytic reactions. This accuracy 

was further improved to 82.25% by introducing the reaction conditions that were 

properly simplified and classified in PhotoCatDB. In addition, the analysis of the 

model's attention weights is consistent with chemists’ assessments, demonstrating the 

interpretability of the model. Most importantly, five previously unreported 

photocatalytic reactions were successfully predicted by PhotoCat and subsequently 

validated by wet-lab experiments. This study highlights the impact of reaction 

conditions on the reaction prediction using deep learning models. PhotoCat provides 

chemists with a predictive tool for photocatalytic reactions, facilitating the application 

of photocatalysis as a green chemical synthesis technique. Meanwhile, this research 

broadens the scope of deep learning applications in chemical synthesis, providing 

insightful discussions for scientists engaged in the development of scientific databases. 

 

METHODS 

PhotoCatDB. The PhotoCatDB is based on a review of multicomponent photocatalytic 

reactions and our group's experience in photocatalytic reactions47-51. All the records 

included in the dataset are sourced exclusively from published literature. Data from pre-

printed versions of papers or papers deemed subjectively unreasonable were 

deliberately excluded. We assembled a team of 15 data collectors who extracted 

reactions from literature sources. By analyzing the mechanisms, they organized the 

information into three main categories: reaction equations (expressed using SMILES, 
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standardization of all reactions was performed using RDKit52.), reaction conditions, and 

additional details. After cross-checking, the collected data was incorporated into 

PhotoCatDB. 

 

Reaxys-Photocatalysis. The dataset was compiled from photocatalysis reactions 

obtained from Reaxys53 by directly querying the keywords “visible light induced” in 

the search field. This process resulted in a dataset of approximately 87K photocatalytic 

reactions. To ensure the reliability of the dataset for model testing, a restriction was 

imposed, including only reactions with “irradiation” specified in the reaction conditions, 

and duplicates and erroneous reactions were removed. This refining process led to the 

creation of a dataset contains approximately 14.7K photocatalytic reactions. 

 

USPTO dataset. The reactions were originally from Lowe’s dataset, extracted from 

patents filed in the United States Patent and Trademark Office (USPTO). The dataset 

was preprocessed by removing reagents, solvent, temperature, and other reaction 

conditions, and subsequently filtered to eliminate duplicate, incorrect, and incomplete 

reactions. 

 

Transformer model. Transformer model proposed by Schwaller et al.14 was used. The 

model's backend deep learning language of choice was PyTorch. Hyperparameters are 

as follows:  

Both encoder and decoder with 6 layers. 

Word vectors, and RNN of size = 512. 

the gradient was accumulated 8 times (maximum vector norm of 0.0). 

optimizer = adam (β1 = 0.9, β2 = 0.998). 

Batch size = 4096, the batch type and the gradient normalization method were tokens, 

Learning rate = 2.0. 

decay method = noam. 

Dropout and label smoothing (ε) = 0.1. 

Parameter initialization was disabled, and position encoding was enabled. 

 

Transfer learning. Multi-task transfer learning was implemented using a convex 

weighting scheme for the USPTO and fine-tuning dataset, with weights of 9 and 1, 

respectively, as described by Pesciullesi32.  

 

Cross-validation. Cross-validation, a widely adopted machine learning evaluation 

technique, assesses a model's performance and generalization ability by dividing the 

dataset into exclusive subsets for training and validation. It effectively tackles 

overfitting and underfitting concerns while offering a comprehensive understanding of 

the model's real-world performance. In this paper, all models were constructed and 

evaluated using 5-fold cross-validation, ensuring the robustness of the results. 
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Chemical synthesis. Reaction a: A mixture of nitrobenzene 1 (0.2 mmol), pyruvic acid 

2 (0.4 mmol), and THF (2 mL) were added to a reaction tube. The tube was evacuated 

and backfilled with N2 for three times. The mixture was then irradiated by 360–365 nm 

(10 w) for 24 h. After completion of the reaction, the resulting mixture was extracted 

with CH2Cl2, and the organic phase was then removed under vacuum. The residue was 

purified by column chromatography using a mixture of petroleum ether and ethyl 

acetate as eluent to give the desired product 3 with 70% yield. 

 

Reaction b: A mixture of 1-methylquinoxalin-2(1H)-one 4 (0.2 mmol), NCS 5 (0.4 

mmol), and MeCN (2 mL) were added to a reaction tube. The tube was evacuated and 

backfilled with N2 for three times. The mixture was then irradiated by blue light for 24 

h. After completion of the reaction, the resulting mixture was extracted with CH2Cl2, 

and the organic phase was then removed under vacuum. The residue was purified by 

column chromatography using a mixture of petroleum ether and ethyl acetate as eluent 

to give the desired product 6 with 71% yield. 

 

Reaction c: A mixture of cinnamic acid 7 (0.2 mmol), CF3SO2Na 8 (0.4 mmol), and 

DMSO (2 mL) were added to a reaction tube. The reaction mixture was opened to the 

air and stirred at room temperature under the irradiation of purple light for 5 h. After 

completion of the reaction, the resulting mixture was extracted with CH2Cl2, and the 

organic phase was then removed under vacuum. The residue was purified by column 

chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give 

the desired product 9 with 75% yield. 

 

Reaction d: In an oven-dried reaction tube equipped with a magnetic stirrer bar was 

charged with α-methylstyrene 10 (0.9 mmol), benzotriazole 11 (0.3 mmol), caesium 

carbonate (0.9 mmol), Eosin Y (3.0 mol %) and DCE (2.0 mL). The tube was then 

exposed to blue LEDs irradiation at room temperature under O2 atmosphere with 

stirring for 36 h. After completion of the reaction, the resulting mixture was extracted 

with CH2Cl2, and the organic phase was then removed under vacuum. The residue was 

purified by column chromatography using a mixture of petroleum ether and ethyl 

acetate as eluent to give the desired product 12 with a 63% yield. 

 

Reaction e: A mixture of ethyl bromodifluoroacetate 13 (0.2 mmol), 

bicyclo[1.1.1]pentane 14 (0.4 mmol), selenosulfonate 15 (0.2 mmol) and MeCN (2 mL) 

were added to a reaction tube. The tube was evacuated and backfilled with N2 for three 

times. The mixture was then irradiated by 400-405 nm for 24 h. After completion of 

the reaction, the resulting mixture was extracted with CH2Cl2, and the organic phase 

was then removed under vacuum. The residue was purified by column chromatography 

using a mixture of petroleum ether and ethyl acetate as eluent to give the product 17 

with 67% yield. 
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Unless otherwise specified, all reagents and solvents were obtained from commercial 

suppliers and used without further purification. The NMR spectra were recorded on a 

Bruker Avance 400 or 500 spectrometer at 400 or 500 MHz in CDCl3 with 

tetramethylsilane as the internal standard. Chemical shifts (δ) are reported in parts per 

million (ppm) and coupling constants (J) are reported in hertz (Hz). Melting points were 

determined using a Büchi B-540 capillary melting point apparatus. High-resolution 

mass spectra were obtained with a Bruker Impact II UHR-QTOF by electrospray 

ionization (ESI) on a time-of-flight (TOF) mass analyzer. Steady-state and time-

resolved emission spectroscopy were conducted using an Edinburgh FLS1000. Column 

chromatography was performed on silica gel (200–300 mesh). 
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