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Abstract 

Molecular docking is a widely used technique for leveraging protein structure in 

ligand discovery, but as a method, it remains difficult to utilize due to limitations that 

have not been adequately addressed. Despite some progress towards automation, 

docking still requires expert guidance, hindering its adoption by a broader range of 

investigators. To make docking more accessible, we have developed a new utility called 

DockOpt, which automates the creation, evaluation, and optimization of docking models 

prior to their deployment in large-scale prospective screens. DockOpt outperforms our 

previous automated pipeline across all 43 targets in the DUDE-Z benchmark dataset, 

and the generated models for ~84% of targets demonstrate sufficient enrichment to 

warrant their use in prospective screens, with normalized LogAUC values of at least 

15%. DockOpt is available as part of the Python package Pydock3 included in the 

UCSF DOCK 3.8 distribution, which is available for free to academic researchers at 

https://dock.compbio.ucsf.edu and free for everyone upon registration at 

https://tldr.docking.org. 

 

https://doi.org/10.26434/chemrxiv-2023-6h2c9-v3 ORCID: https://orcid.org/0000-0002-1195-6417 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-6h2c9-v3
https://orcid.org/0000-0002-1195-6417
https://creativecommons.org/licenses/by/4.0/


 

Introduction 

Molecular docking is a widely used for ligand discovery, both in industry and 

academia1-3. The goal of docking is to predict the binding affinity and pose of small 

molecules in the binding site of a target protein. The method can screen libraries of 

billions of molecules and, unlike ligand-based methods, often discovers novel ligands 

entirely unrelated to those previously known2, 4-13. In some cases, docking can lead to 

the discovery of compounds in the sub-nM range4, 5, 8, 10, with some of these being 

active in vivo5, 8-10. However, compared to other techniques in computational biology, 

such as homology modeling14-16 and sequence database searching17, docking as a 

procedure remains labor-intensive and intimidating to new users, thereby limiting its 

wider adoption and hindering its application on a proteomic scale. Docking software is 

typically complicated and comes with a steep learning curve, making it difficult to use to 

its full potential. This is especially true during the model optimization stage of the 

docking process, which involves fine-tuning numerous parameters of the model to 

improve its accuracy and reliability. It does not help that, even when performed by 

experts, docking can still sometimes fail to accurately reproduce experimentally 

determined binding characteristics for some targets. These liabilities have diminished 

the technique's overall impact, not only by deterring researchers coming from limited 

computational backgrounds, but also by making it arduous even for experienced 

computational researchers to deploy docking models at a large scale on the order of 

billions of molecules. 

 

Automating the several stages of the docking process all in a single pipeline 
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could significantly reduce the need for expert involvement, which would enhance the 

accessibility of docking as a technology. An ideal pipeline would simplify the preparation 

of the docking model for those with less experience while still allowing experts the 

option to adjust the model as needed. Moreover, beyond merely create a docking 

model, an optimal pipeline would also optimize the model’s parameters to ensure that 

its performance is at least comparable to that of a model produced by an expert 

provided the same initial data. For this to be possible, the pipeline must first be capable 

of evaluating the quality of candidate models. Typically, this evaluation is performed 

using retrospective docking18. This method involves assessing a model's ability to (1) 

accurately predict the binding characteristics of known ligand structures, such as pose, 

and (2) consistently assign them more favorable docking scores compared to 

designated decoy molecules. These decoy molecules may be property-matched to the 

known ligands or selected by other methods48. 

 

Several attempts have been made to automate some parts of the docking 

process over the past 14 years19-21, a few of which have web interfaces22-26. While many 

of these computational pipelines excel at automating the routine aspects of generating 

docking models, they usually lack the capability to integrate the nuanced practices of 

evaluation and optimization that experts commonly apply in the preparation of models 

for large-scale screening18, 27-30. As both evaluation and optimization are essential for 

developing models that can reliably distinguish between binding and non-binding 

compounds18, integrating them into these pipelines represents a crucial milestone 

toward automating the specialized skills of docking experts. 
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Our work on automating the docking process began in 2009 with the introduction 

of the web-based tool DOCK Blaster19. Although it successfully performed retrospective 

docking on thousands of targets, DOCK Blaster had noteworthy limitations. Notably, it 

lacked a framework for evaluating results, leaving it difficult to trust the predicted binding 

modes of resultant models without further assessment. Consequently, it was also 

unable to optimize the parameters of the DOCK scoring function, which estimates the 

binding affinity between a candidate molecule pose and the target protein. In effect, 

DOCK Blaster served merely as a prototype, composed of isolated scripts that made it 

fragile and difficult to maintain or develop further. In short, although DOCK Blaster 

demonstrated potential, its shortcomings highlighted the need for a more robust 

automated pipeline. 

 

Since the appearance of DOCK Blaster, several other web-based docking 

pipelines have surfaced31 24, 32-34, some designed with the scalability of the cloud in 

mind35-37. There have also been many reports of increasingly automated docking 

software without web interfaces6, 37-46. 

 

Given the mentioned limitations of existing methods, we focused our efforts on 

improving our own techniques to streamline the docking process. To that end, we re-

wrote the command-line tool for creating docking models, Blastermaster, making it more 

modular and feature-rich47, and standardized and published our lab’s docking 

protocol18. Despite these advancements, expert supervision remained necessary for 
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conducting model evaluation and optimization, and the absence of a web interface 

curtailed the potential for wider accessibility to these improvements. 

 

To address the mentioned challenges, we introduce DockOpt, a new automated 

docking pipeline that enables the creation, evaluation, and optimization of docking 

models using a single tool. DockOpt is part of the Python package Pydock3, a toolkit 

dedicated to the standardization and enhancement of docking methodologies, 

specifically designed to complement UCSF DOCK 3.8 and subsequent versions. To 

evaluate the utility of DockOpt, we benchmarked it against the DUDE-Z dataset48. 
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Methods 

The Python package Pydock3 is part of the DOCK 3.8 software distribution and 

is compatible with python>=3.8.1,<3.11. DOCK 3.8 is compatible with modern 

Linux operating systems. The scripts DockOpt and Blastermaster are included with 

Pydock3, and all dependencies are defined in the pyproject.toml file49. 

 

Transitioning from Blastermaster to DockOpt 

Blastermaster 47 is a command line tool that generates docking models for 

protein target binding sites. DockOpt builds upon Blastermaster by creating multiple 

models in a single pass and then optimizing parameters based on the retrospective 

docking performance observed for these models. DockOpt evaluates models using a 

specified criterion, such as normalized LogAUC (also called 

 “enrichment score” 50. To efficiently evaluate many candidate models, DockOpt 

employs a designated job scheduler (e.g., Slurm) to test several models in parallel. In 

summary, DockOpt enhances the functionality of Blastermaster by integrating model 

evaluation and concurrent optimization into the process of generating docking models. 
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Figure 1. Schematic representation of the DockOpt algorithm. The retrospective 

dataset provided by the user consists of (1) a receptor structure, (2) a ligand structure, 

(3) positive-class molecules (e.g., known ligands), and (4) negative-class molecules 

(e.g., property-matched decoys). The parameters in the dockopt_config.yaml file 

determine the structure of the blaster directed acyclic graph (blaster DAG), which takes 

the receptor and ligand structures as input and produces all candidate DOCK 

parameterizations as output. The blaster DAG is so called because it uses the 

subroutines of Blastermaster to create DOCK parameterizations. Each resultant 

parameterization modifies the DOCK program as a unique docking model. All the 

models are used to dock the provided molecules, each labeled as belonging to either 

the positive class or the negative class. The output docking scores and poses are used 

by the specified criterion to evaluate the parameterizations, which are then ranked 
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accordingly. At this point, the parameters in the dockopt_config.yaml file determine 

(1) whether the program should iterate, and if so, (2) what proportion of top 

parameterizations to advance to the next iteration, (3) how to modify these advanced 

parameterizations, and (4) what new parameterizations to generate. This description 

holds for all iterations. 

 

Creating docking models with DockOpt 

The DockOpt pipeline algorithm can be summarized in a diagram (Figure 1).  

The docking program DOCK is parameterized by several files, each controlling different 

aspects of the program's behavior, such as the sampling algorithm for molecular poses 

or the scoring function for estimating the free energy of binding for each molecular pose. 

These files are known as "dockfiles" and exist in custom formats exclusive to DOCK 

and related software (e.g., matching_spheres.sph). In this work, we use the term 

DOCK parameterization to refer to a specific set of dockfiles, and we take a DOCK 

parameterization combined with a DOCK executable to constitute a docking model. 

 

A DOCK parameterization can be generated from the information contained in a few 

input files: (1) a receptor structure, (2) a crystallographic ligand structure, and (3) the 

dockopt_config.yaml parameters file. During the model creation phase (see the arrow 

labeled “creates” in Figure 1) of the DockOpt pipeline, a directed acyclic graph (blaster DAG) is 

used as the data structure for managing the transformation of the input files (root nodes) into 

several DOCK parameterizations (leaf nodes) through a multiplex process involving the 

controlled variation of numerous intermediate files. An edge in the blaster DAG represents a 

dependency relation between a certain input-output pair part of a particular step in the pipeline 
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(i.e., a step s takes {x, ...} as input and produces {y, ...} as output, so output y depends on input 

x). For example, matching_spheres.sph depends on rec.crg.pdb in the matching 

spheres generation step51. A child node can be created only once all its parent nodes exist. The 

input files completely determine the blaster DAG, which is automatically derived from them by a 

deterministic process. Starting from the root nodes of the blaster DAG, a multitude of different 

branching paths are taken, with each path leading to a distinct leaf node. A specific combination 

of leaf nodes represents a specific DOCK parameterization, and their respective paths from the 

root nodes in sum completely define how it is created from the input files. Once initialized, the 

blaster DAG serves as a pipeline of steps that generates the DOCK parameterizations 

corresponding to all valid combinations of leaf nodes. 

 

Parameter search algorithms  

Two parameter search algorithms are currently supported by DockOpt: grid 

search and beam search55. Grid search explores the search space through a predefined 

grid of potential parameter value combinations. Due to its exhaustive nature, this 

approach can theoretically find the optimal parameter combination(s), given a 

sufficiently fine discretization of parameter space. However, when searching through 

anything but the coarsest resolutions of parameter space, this method can rapidly 

become computationally expensive to the point of intractability. In contrast, beam 

search narrows its search space by applying a selection criterion at each step to retain 

only the top fraction of candidate DOCK parameterizations for the next step. The range 

of considered values can be progressively refined, facilitating a more focused 

exploration of promising solutions. As a result, beam search may not explore all 

possible options, but it is more computationally efficient, as it constrains exploration to 
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regions of parameter space likely to hold promising parameterizations, based on certain 

assumptions. For example, one assumption is that locally optimal choices (i.e., high-

scoring candidate solutions at each step) will yield globally optimal or near-optimal 

solutions. This may not always be true, as locally suboptimal choices can sometimes 

lead to better overall solutions. 

 

In its pre-release version, DockOpt used grid search as its search algorithm, 

exhaustively testing all possible combinations of parameters values, with each 

parameter taking a pool of possible values. For example, distance-to-surface values for 

electrostatic thin spheres52 might be the set {1.0, 1.1, …, 1.9} and distance-to-surface 

values for ligand desolvation thin spheres might be the set {0.1, 0.2, …, 1.0}, resulting in 

a Cartesian product space of 10 × 10 = 100 combinations. This strategy works well 

enough for small numbers of parameters with a limited number of values per parameter. 

However, it is too inefficient to serve as a general search algorithm, as it would subject 

users to exponentially increasing computational cost when exploring higher dimensional 

parameter spaces at finer resolutions. Consequently, the latest release of Pydock3 

configures DockOpt to use beam search by default. Below, we demonstrate that our 

implementation of beam search consistently finds superior parameterizations to those 

found by grid search using comparable computational expense. 

 

DockOpt is controlled by parameters in the dockopt_config.yaml file  

The dockopt_config.yaml  file defines the architecture of the DockOpt 

pipeline and controls the range of values that are explored for each parameter. The 
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blaster DAG is derived automatically from the settings in the dockopt_config.yaml 

file, and a single step in a DockOpt pipeline generates several different docking models 

which are then evaluated in parallel. A sequence of steps may be defined with optional 

iteration and/or early stopping, and recursive embedding of step sequences is 

supported. 

 

DockOpt allows rigorous, reproducible experimentation 

The DockOpt pipeline comprises predefined step sequences, which may be 

defined once and then reused. Thus DockOpt greatly simplifies benchmarking by 

facilitating the rigorous comparison of different DOCK parameterizations, DOCK 

executables, and even evaluation criteria. Moreover, different evaluation criteria can be 

applied in different steps within the same DockOpt pipeline, such as using a measure of 

enrichment first, followed by a measure of pose reproduction, and so on. Therefore, an 

entire experiment intended to measure the efficacy of several variables or search 

strategies can be defined in a single DockOpt pipeline and reproduced later simply by 

re-running the saved pipeline configuration. 

 

DockOpt pipelines are flexible 

The range of possible pipeline structures in DockOpt is far wider than the default 

configuration may suggest. Although we recommend that new users try the default 

configuration first, a wide range of search strategies are available to be explored and 

customized as users gain more experience and familiarity with the software. These 
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strategies can be tailored to suit the specific requirements of the users' respective 

research objectives, providing versatility and flexibility in docking optimization. 

 

DockOpt reports 

DockOpt generates comprehensive reporting, including a CSV file of results for 

each docking model tested and an HTML format report containing visualizations, 

including: a histogram of the performance across tested models, also showing a 

statistical significance threshold; linear-log ROC plots showing enrichment; bar plots for 

performance of individual multi-valued parameters; heatmaps comparing performances 

across two multi-valued parameters; a ridge plot showing the breakdown of energy 

terms by binary class; a violin plot showing the charge distribution by binary class. 
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Results 

New software enabling automatic optimization of docking models is now 

available as part of the UCSF DOCK 3.8 release. This software is available for free to 

academic researchers (see: dock.compbio.ucsf.edu) and at modest cost otherwise 

(email: dock_industry@googlegroups.com). First, we describe the software and how to 

use it on the command line. Second, we test the software’s utility by using it to perform 

retrospective docking against the 43 targets of the DUDE-Z benchmark48. Third, we 

introduce a web service for this software. The resulting docking model can be 

downloaded and deployed for prospective docking on the user's on-premises 

computers, a cloud platform (such as AWS53), or any other system capable of large-

scale docking. We take up each of these themes in turn. 

 

DockOpt is a single command for generating and evaluating many different 

docking models when a retrospective dataset of molecules is available. The 

performance of a docking model may be evaluated by retrospective docking, where the 

ability of the model to distinguish between reported binders (positive class) and 

presumed non-binders (negative class) is assessed. DockOpt wraps the generation, 

evaluation, and optimization of docking models all in a single tool. 

 

There are dozens of parameters whose values may affect the quality of the 

docking models produced by DockOpt, but a few tend to have the most impact. These 

include the thickness of the layer of low dielectric and ligand desolvation regions in the 

binding site, which affect the electrostatic and the ligand desolvation scores, 
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respectively52. Other important parameters include the number and position of 

orientation spheres (also known as “hotspots” or “matching spheres”), which affect how 

ligand poses are sampled in the binding site51. Still other significant parameters include 

the target number of poses to generate (match_goal), how overlap between ligand and 

protein is treated (bump_maximum and bump_rigid), and whether conformations are 

biased for compatible matches during sampling (chemical_matching)54, 55. 

 

DockOpt performs retrospective docking on multiple docking models in parallel 

using a job scheduler, such as Slurm or SGE. Although these two schedulers are the 

only ones currently supported, it should be straightforward to incorporate any queueing 

system into DockOpt. After docking, the docking models are evaluated by the specified 

criterion (e.g., normalized LogAUC) and then ranked by their performance. Depending 

on the user’s specification of the configuration file controlling the program, the 

optimization process may repeat until the stopping criterion is met. A report in HTML 

format of the best parameter set choices is generated, together with figures 

summarizing all candidate models tested (see Methods, and below). A CSV file of their 

performance is saved as results.csv. The sets of “dockfiles” for the 

parameterizations found to perform best are saved in a dedicated directory 

best_retrodock_jobs/. Dockfiles for all other parameterizations can be found in the 

directory working/, as indexed in results.csv. 

 

In the absence of known ligands, Blastermaster (the successor of 

blastermaster.py from earlier work47) will produce a ready-to-use DOCK 
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parameterization by means of standard, unoptimized parameter choices. 

 

To install this new software and run it on your own computer, see Supporting 

Information S1. For the target of interest, you need (1) a PDB file of the receptor, (2) a 

PDB file of a corresponding ligand (presumably an experimental structure), (3) the 

identity as SMILES of at least a single known ligand (though a higher number is better), 

and (4) decoy molecules as SMILES for each known ligand. A ratio of 50 decoys per 

ligand is typically used18. The DUDE-Z dataset contains 43 examples of such files in a 

ready-to-use format (see: dudez2022.docking.org).  

 

How well does DockOpt work? 

To evaluate the performance of DockOpt, we benchmarked it against all 43 

DUDE-Z targets, using only the data available on the DUDE-Z website 

(dudez2022.docking.org). For instructions on how to download DUDE-Z and how to 

benchmark DockOpt against it, see Supporting Information S2. 

 

For all 43 DUDE-Z targets, the normalized LogAUC (also called “enrichment 

score” 50) of annotated ligands over property-matched decoys produced by the default 

DockOpt configuration was found to be better than that produced by the unoptimized, 

human-made DOCK parameterization included for that target in DUDE-Z48  (Figure 2), 

whose parameters are the same as the default parameters of our previous protocol47, 48. 

Comparing the human-made parameterizations published in DUDE-Z to those produced 

by both grid search and beam search (Figure 3), we observed an average increase in 
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normalized LogAUC of 5.7 percentage points and 14.9 percentage points, respectively. 

Using grid search we observed a maximum increase of 31.6 percentage points for the 

target KITH, and using beam search we observed a maximum increase of 44.2 

percentage points, also for the target KITH.  

  

 

Figure 2. Comparison of beam search and grid search parameter optimizations 

with the previously published default protocol18.  
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a       b 

  

Figure 3. Quality of molecular docking performance as measured by enrichment 

of known ligands over property-matched decoys for 43 DUDE-Z systems. Recall 

that normalized LogAUC satisfies: a max value of 1 corresponding to a perfect 

classifier; a value of 0 for a random classifier; a positive value for a better-than-random 

classifier; a negative value for a worse-than-random classifier. (3a): Comparison of 

DOCK parameterizations published in the DUDE-Z paper48 (blue) with 

parameterizations found by the two search algorithms supported by DockOpt, grid 

search (orange) and beam search (green).  (3b): Improvement in enrichment using 

DockOpt. Top: from DUDE-Z (human-made) to grid search; Middle: from grid search to 

beam search; Bottom: from DUDE-Z (human-made) to beam search. 

 

DockOpt creates a comprehensive report for each target, which can be accessed 

at dudez2022.docking.org. In this paper, we illustrate the features of these reports using 

actual results for two DUDE-Z targets as examples, HIV-1 protease (HIVPR) and 

coagulation factor VIIa (FA7) (Figure 4). Each report includes a linear-log ROC plot of 

the enrichment of the positive class over the negative class. (Figure 4A). This plot 
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captures the performance of a docking model in a single visualization, with the area 

under the curve (AUC) serving as a quantitative measure of model quality. Next, the 

report includes additional plots that provide insight into the respective contributions of 

the terms of the scoring function of the docking program, thereby revealing potential 

biases that may influence the evaluation of docking models (e.g., imbalanced 

representations of properties in the dataset, such as charge). The split violin charts 

(Figure 4B) show the scores of the binary classes grouped by net molecular charge. 

The ridgeline plots (Figure 4C) show how the binary classes compare across the 

energy terms whose sum constitutes the predicted free energy of binding. Boxplots of 

the evaluation criterion are generated for parameters for which multiple values were 

tested, providing a visual comparison across different parameter values (Figure 4D). 

Finally, heatmaps (Figure 4E) summarizing the distribution of the evaluation criterion as 

a function of two variables are generated for every pair of parameters for which multiple 

values were attempted. The value of each 2D coordinate in the heatmap corresponds to 

the maximum criterion value obtained across all parameterizations that used the 

combination of parameter values indicated by the coordinate; for example, a heatmap 

may show the behavior of the normalized LogAUC as a function of the electrostatic 

spheres (thin layer) and the desolvation spheres (thin boundary). Returning to the 

examples of HIVPR and FA7, we observe that HIVPR shows consistently low 

enrichment across candidate models, irrespective of how the parameters are varied, 

while FA7 shows a strong dependency on these parameters, thereby indicating the 

viability of pinpointing an optimal or near-optimal parameter combination for at least 

some targets. Examining the heatmaps in HTML reports for a pair of consecutive steps 
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exemplifies the ability of the beam search algorithm to effectively “zoom in” on regions 

of parameter space that seem more promising (Figure 5). 

 

Collectively, these auto-generated plots provide the user with a better 

understanding of the docking models produced by DockOpt, highlight any biases they 

may have, and help gauge how they would perform in a prospective docking screen. 

Comprehensive reports featuring these visualizations for all DUDE-Z systems can be 

accessed at dude2022.docking.org. 

 

A. 

 

B. 
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C. 

 

D. 

 

E. 

  

Figure 4. Selected graphical reports of docking models optimized for two targets. 

Left: coagulation factor VIIa (FA7). Right: HIV-1 protease (HIVPR). A. Linear-log 

ROC plot of enrichment of ligands vs decoys. B. Violin plots of the distribution of 
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charges. C. Unidimensional plots of the distribution of energy terms for docked ligands 

vs. decoys. D. Unidimensional plot of the distributions of enrichment across different 

values of desolvation thin spheres radii. E. 2D plots of enrichment as function of 

electrostatic and desolvation thin spheres radii. 

 

 

Figure 5. Heatmaps produced by two adjacent steps in a DockOpt pipeline for 

target CSF1R, demonstrating the ability of beam search to narrow the range of 

considered values in a greedy fashion. Left: The heatmap for the former step shows 

a coarser resolution of exploration with a wider range of parameter values on both axes. 

The optimum tested coordinate is found to be (0.8, 1.9). Right: The heatmap for the 

latter step shows a finer resolution of exploration in the neighborhood around the 

optimum witnessed in the previous step. Note the nontrivial degree of fluctuation in 

enrichment across tested coordinates, even at the finer resolution. 

 

Docking models that consistently produce incorrect poses for known ligands are 

defective, regardless of whether they yield high enrichment. Although we typically do 

not know the exact pose of every known ligand in the retrospective dataset, we 

generally expect that most predicted poses should overlap the crystallographic ligand 
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pose and mirror its receptor interactions. We illustrate such pose-oriented 

considerations in two UCSF Chimera56 sessions, each displaying a superimposition of 

the receptor, the crystallographic ligand, and the predicted poses of the known ligands 

for comparison (Figure 6). In some cases, most ligands present a compact 

superimposition with high overlap, which often occurs when a single “warhead” 

dominates receptor-ligand interactions, as seen in coagulation factor VIIa (FA7). In 

other cases, the superimposition might be less defined, but it can still confirm that the 

predicted poses occupy the same region as the experimentally observed ligand, as 

seen in HIV-1 protease (HIVPR).  

 

  

Figure 6. Superimposition of the crystallographic ligand (sticks) and the docked 

ligands (wire). Hydrogen bonds and polar interactions with the protein are shown 

in mustard. Left. Coagulation factor VIIa (FA7). Right: HIV-1 protease (HIVPR). 

 

Encouraged by the ability of DockOpt to produce docking models apparently 

suitable for prospective docking (Figure 3), we built a web-based interface for it at 

tldr.docking.org under the “DockOpt” module (Figure 7). Registration is free. Sample 

data for 43 targets in ready-to-use formats are available at dudez2022.docking.org.
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Figure 7. A web interface for DockOpt via tldr.docking.org. 

 

 

Figure 8. Linear regression on DockOpt runtime vs. retrospective dataset size. 

The variability in observed runtimes from the regression model can be primarily 

attributed to the varying levels of exploration required by the parameter search 

algorithm, depending on the characteristics of the target data and retrospective dataset. 

This regression was calculated with the constraint that the y-intercept be equal to 2 
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hours, corresponding to the minimum time necessary to generate the candidate docking 

models using the default DockOpt configuration. 

 

For the latest version of Pydock3, DockOpt jobs using the default configuration, 

can be expected to take up to a day for larger retrospective datasets of several 

thousands of molecules (Figure 8), though the exact time will depend on the server 

load as well as to what degree the parameter search algorithm converges to similar 

parameterizations over time. Upon completion of the job, the user receives an email, at 

which point they may download the best model(s), the predicted poses in Tripos Mol2 

format, the results CSV file, and a report in HTML format containing various plots about 

the performance of the tested docking models across different sets of parameters 

(Figure 4). The downloaded model can be deployed in a large-scale docking screen on 

any system with the necessary compute resources, such as a departmental cluster or 

via a cloud platform (e.g., AWS53). 

 

Without controls, it is difficult to ascertain how well docking is performing, short of 

running a prospective screen. While ligand-free evaluation is not yet supported, its 

future incorporation into DockOpt is planned. Until then, we recommend using 

Blastermaster in the absence of known ligands. Blastermaster uses sensible, typical 

values for the parameters otherwise optimized by DockOpt. For instructions on how to 

install Pydock3 and use Blastermaster, see Supporting Information S1. 

 

Both DockOpt and Blastermaster are now available and ready to use. They may 
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be accessed either by licensing and installing DOCK 3.8 or via tldr.docking.org as 

previously described. 

 

The normalized LogAUC of a random classifier tends to 0% as the numbers of 

positive-class molecules and negative-class molecules both go to infinity 50. However, 

whereas a typical retrospective docking campaign usually involves between 10 to 30 

known ligands, curated datasets such as DUDE-Z often have targets with more than 

100 ligands. To obtain a conditional probability distribution of normalized LogAUC 

produced by a random classifier given a specific number of positive-class molecules, we 

performed 1 billion simulations for each number of positives, ranging from 1 to 100, with 

all datasets maintaining a negative-to-positive ratio of 50:1. The empirical distributions 

obtained from these simulations (Supporting Information S3) allow us to compute the 

probability that a perfect random classifier scoring n positives and 50n negatives would, 

purely by chance, produce a normalized LogAUC greater than or equal to a given value. 

 

To evaluate the possibility that the increased enrichment observed during 

optimization with DockOpt could simply be due to the large number of docking models 

tested, we employ the Bonferroni correction to adjust the p-value threshold for statistical 

significance (Figure 9). The Bonferroni correction is a widely used method to control the 

family-wise error rate in multiple hypothesis testing, accounting for the increased 

likelihood of false positives when conducting a larger number of tests. The correction 

involves dividing the desired p-value by the number of tests performed; for example, a 

p-value of p = 0.01 (the default in DockOpt) corrected for 1000 tests would become 10-5. 
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The Bonferroni correction assumes that all tests performed are independent, which is 

not necessarily the case for parameterizations generated by DockOpt, as 

parameterizations nearby in parameter space are expected to yield similar results. 

However, the significance threshold obtained by the Bonferroni correction is strictly 

more stringent than that obtained by any method that accounts for dependent tests, so 

using it only further mitigates the risk of falsely identifying insignificant results as 

significant. Consequently, it's important to recognize that this conservative approach 

may increase the risk of false negatives, particularly in contexts of high test correlation. 

However, the priority generally lies in avoiding false positives. 

 

Figure 9.  An example histogram of the performance of 2600 tested docking 

models for the target ADA. Using p = 0.01 with a Bonferroni correction to account for 

the multiple tests (2600 total), a significance threshold of 0.100 normalized LogAUC 

was derived from a cumulative distribution function of the conditional empirical 

distribution of normalized LogAUC produced by a random classifier. A single tested 

model’s enrichment exceeding the Bonferroni-corrected significance threshold is all that 
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is necessary to reject the null hypothesis that the enrichment scores observed in the 

tested models could have come from a random classifier. 

 

By implementing the Bonferroni correction in our analysis, we can more 

rigorously evaluate the statistical significance of the observed enrichments. This 

safeguards against attributing apparent improvements in docking performance to the 

mere artifact of having tested multiple docking models. Our findings substantiate that 

the performance superiority of DockOpt over the previously published DUDE-Z 

parameterizations remains statistically significant even after adjusting for multiple 

comparisons, thereby offering a reliable metric for assessing the efficacy of our method. 
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Discussion 

Three themes emerge from this study. First, a new automated pipeline for 

docking model creation, evaluation, and optimization has been developed. Second, the 

automated procedure can optimize the docking parameters significantly better than our 

previous automated system, and for most targets produces docking models that are 

suitable for large-scale prospective screens. Third, the new pipeline can be installed 

locally or accessed via a new web interface we have created, and the resultant docking 

model may be downloaded and deployed for large-scale docking, either on-premises or 

in the cloud53. We take up each of these themes in turn. 

 

DockOpt implements many of the best practices in our standard lab protocol26 in 

an automated fashion. We have augmented this procedure to include optimization 

techniques that capture many, but not all, of the current best practices in our lab. For 

example, the boundaries of the regions of low dielectric and ligand desolvation in the 

binding site are optimized. Work in our lab suggests that defining these boundaries is 

often critical to obtaining satisfactory retrospective enrichment during model 

optimization52. The pipeline also optimizes the matching spheres used for sampling 

ligand orientations, which play a key role in determining whether a docking model is 

likely to succeed in a prospective screen. Furthermore, the software has been designed 

with flexibility in mind, allowing for the optimization of dozens of additional parameters, 

and minimal development effort is required to incorporate and optimize any new 

parameters or search strategies that a researcher might consider desirable. 
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DockOpt demonstrates competent docking performance against the DUDE-Z 

benchmark regularly used in our research. In 36 out of the 43 DUDE-Z systems (~84%), 

this fully automated procedure with beam search produces a docking model exhibiting a 

normalized LogAUC of at least 15%. This threshold is a good heuristic for whether a 

docking model is suitable for prospective docking. This performance represents a 

striking improvement compared to the human-made docking models published in 

DUDE-Z, which resulted in only 13 successes (~30%) by the same standard. 

 

The use of the Bonferroni correction in our analysis provides a check for judging 

the efficacy of DockOpt. By adjusting the significance threshold to account for the use of 

multiple tests, the Bonferroni correction effectively reduces the probability of Type I 

errors (i.e., false positives). This statistical correction serves as a key control 

mechanism, providing confidence that the performance improvements we report in this 

work are not merely statistical contrivances but indeed genuine indicators of the ability 

of DockOpt to effectively optimize docking models. Although the Bonferroni correction 

assumes that the tests are independent, which is likely not the case with DockOpt, it 

nevertheless provides a reliable conservative measure of statistical significance.  

 

We set up a public web interface for DockOpt at https://tldr.docking.org, which 

showcases this software’s ability to build and refine docking models completely 

automatically, given a retrospective dataset of molecules labelled positive or negative. 

This platform also evaluates the resultant model's suitability for prospective docking 

screens, estimating the likelihood of the model to consistently prioritize new ligands. 
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There are several caveats to this work. The latest version of DockOpt still 

requires a retrospective dataset to perform optimization. Without these molecules to 

serve as controls, DockOpt cannot assess whether a given model is of sufficient quality 

to warrant its use for prospective docking. Furthermore, while DockOpt is effective on 

most DUDE-Z targets, it does not work on all of them. Therefore, our approach should 

not be mistaken for a universal solution to automatic optimization of docking models.  

Because measures of enrichment capacity do not incorporate any structural information 

of predicted poses, the use of normalized LogAUC as the single criterion for model 

evaluation means that there is the possibility of the model overfitting to the ligands 

provided by the user, which usually number at most a few dozen. However, this 

potential issue could be ameliorated by using an alternate criterion measuring pose 

reproduction, or perhaps even a criterion measuring both enrichment and pose 

reproduction. Until such evaluation criteria are implemented in DockOpt, users are 

advised to provide as many diverse known ligands as possible to mitigate the risk of 

overfitting. Future versions of DockOpt could incorporate the use of a validation set to 

more rigorously address the potential issue of overfitting. This set would consist of 

ligands not included in the training data, thereby serving as an independent measure for 

evaluating the model's generalization performance. Such an approach would provide a 

more robust metric for assessing the efficacy of the model in predicting poses and 

ligand enrichment for unseen compounds. 

 

These caveats should not obscure the main results of this work. We have 
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developed a fully automated tool for the creation, evaluation, and optimization of 

docking models, which is now available as part of the UCSF DOCK 3.8 distribution. In 

addition to being offered free of charge to academic researchers via 

https://dock.compbio.ucsf.edu, the software can also be used for free by non-academic 

researchers upon registration at https://tldr.docking.org. It is important to note that we 

cannot guarantee the results of any docking screen using DockOpt; this software is to 

be utilized at the user's own risk. For best outcomes, we strongly encourage the use of 

sanity checks and controls at every stage of the docking process, as discussed 

throughout this work. 
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