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Abstract. An intramolecular iron-catalyzed nitroso ene reaction was developed to afford six- or seven-
membered N-heterocycles from nitroarenes using an earth abundant iron catalyst and phenylsilane as the 
terminal reductant. The reaction can be triggered using as little as 3 mol % of iron(II) acetate and 3 mol % 
of 4,7-dimethoxyphenanthroline as the ligand. The scope of the reaction is broad tolerating a range of 
electron-releasing or electron-withdrawing substituents on the nitroarene, and the ortho-substituent can be 
modified to diastereoselectively construct benzoxazines, dihydrobenzothiazines, tetrahydroquinolines, 
tetrahydroquinoxalines, or tetrahydrobenzooxazepines. Mechanistic investigations indicated that the 
reaction proceeds via a nitrosoarene intermediate, and kinetic analysis of the reaction revealed a first order 
rate dependence in catalyst- and nitroarene concentration, and an inverse kinetic order in acetate was 
observed. The difference in rates between PhSiH3 and PhSiD3 was found to be 1.50 ± 0.09, and investigation 
of the temperature dependence of the reaction rate revealed that the activation parameters to be ΔH‡ = 13.5 
kcal•mol–1 and ΔS‡ = –39.1 cal•mol–1•K–1. These data were interpreted to indicate that the turnover-limiting 
step to be hydride transfer from iron to the coordinated nitroarene, which occurs through an ordered 
transition state with little Fe–H bond breaking. 
 
 
The development of C–N bond forming reactions by accessing electrophilic N-aryl nitrogen reactive 
intermediates from nitroarenes has spurred considerable interest from the synthetic community because of 
the availability and stability of nitroarenes.1 While the creation of sp2-C–NAr bonds is legion,2,3,4 the 
construction of sp3-C–N bonds from nitroarenes has developed more slowly.5 Nitrosoarenes, in contrast, 
are well established to create sp3-C–NAr bonds through [4+2] cycloaddition reactions,6,7 nitroso ene 
reactions,8,9 or through nucleophilic addition.10,11 Consequently, the synthesis of sp3-C–NAr bonds through 
the in situ generation of a nitrosoarene intermediate from a nitroarene has emerged as a strategy. Cenini and 
Nicholas reported that a ruthenium- or iron complex could be used to catalyze the transformation of a 
nitroarene into an allylic amine 1 through a nitroso ene reaction.5a, 12 This reaction, however, required high 
temperatures, high pressures of CO, and its success was dependent on the electronic environment of the 
nitroarene with those bearing electron-releasing groups affording only trace products. Baran and co-workers 
reported that sp3-C–NAr bonds could be formed using 30 mol % of iron acetate and phenyl silane as the 
terminal reductant by intercepting nitrosoarene intermediate 4 with alkyl radical 3, which was produced 
from the insertion of an olefin into an Fe–H bond followed by homolytic cleavage of the resulting Fe–H 
bond.5c Our group showed that as little as 1 mol % Fe(OAc)2 and 1 mol % of 4,7-(MeO)2phenanthroline 
catalyzed the conversion of 2-nitrostyrenes 6 into indoles 8 using phenylsilane as the terminal reductant.3o 
Subsequently, we reported that intramolecular sp3-C–NAr bond formation could be achieved by trapping 
nitrosoarene 10 with a pendant enol.5g This reaction, however, required the use of Pd(OAc)2 and 
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phenanthroline as the catalyst and CO as the terminal reductant and was primarily limited to the formation 
of five-membered rings. We were curious if larger N-heterocycles 14 could be formed through a nitroso ene 
reaction from nitroarenes, such as 12, using an earth abundant catalyst and milder silane reductant,13 or if 
intramolecular hydroamination would occur instead to afford 15. 
 

 
Scheme 1. Formation of sp3-C–N bonds from nitroarenes. 

 
To determine if the nitrosoarene intermediate could be intercepted by the ortho-crotyl substituent in an ene 
reaction, the reactivity of nitroarene 12a was tested toward reduction conditions (Table 1).14 The substrate 
for the optimization study was synthesized in one-step through an SN2 reaction between 2-nitrophenol and 
E-crotylbromide. To our delight, submitting nitroarene 12a to the combination of 3 mol % of Fe(OAc)2 and 
4,7-(MeO)2phen using 2 equiv of PhSiH3 as the terminal reductant resulted in the formation of 3-
vinylbenzoxazine 14a in 67% with 13% of the nitroarene remaining (entry 1). 3-Ethylbenzoxazine was not 
observed. Our efforts to improve the yield by changing the identity of the silane reductant resulted in only 
reduced reaction yields (entries 2 and 3). Modifying the identity of the iron salt also had a detrimental effect 
on the yield of 14a (entries 4 and 5). The identities of the ligand also played a critical role in the reaction 
outcome (entries 6 and 7). Changing the ligand to 2,10-di-tert-butylbipyridine resulted in complete 
consumption of the nitroarene, but only 55% of the 3-vinylbenzoxazine product (entry 6). Reducing the 
electron-donating nature of the phenanthroline ligand also resulted in diminished yield (entry 7). We posited 
that the modest solubility of the catalyst might be negatively impacting the reaction outcome. To test this, 
we screened a variety of solvents and co-solvents (entries 8 – 11). While using DMF as the reaction medium 
resulted in a homogeneous solution, the yield was reduced. We were able to improve the reaction outcome 
using the combination of DMF and DME (1:4) to afford 83% of benzoxazine 14a. The effect of lowering 
the catalyst loading was examined (entry 12), and we found that Fe(OAc)2 and 4,7-
dimethoxyphenanthroline could be reduced to 1 mol % and still afford 14a, albeit in an attenuated yield. 
As a result, we chose to explore the scope and limitations of this reaction using 3 mol % of the Fe(OAc)2 
and 4,7-(MeO)2phen in a 1:4 mixture of DMF and DME using PhSiH3 as the terminal reductant. 
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Table 1. Development of the optimal conditions for Fe-catalyzed nitroso ene reaction of nitroarenes. 

 
entry Fe salt (mol %) ligand (mol %) reductant (equiv) solvent time (h) 14a (12a) yield, %a 

1 Fe(OAc)2 (3) 4,7-(MeO)2phen (3) PhSiH3 (2) DME 8 67 (13) 
2 Fe(OAc)2 (3) 4,7-(MeO)2phen (3) Ph2MeSiH (2) DME 8 11 (70) 
3 Fe(OAc)2 (3) 4,7-(MeO)2phen (3) (MeO)2MeSiH (2) DME 8 13 (72) 
4 Fe(OTf)2 (3) 4,7-(MeO)2phen (3) PhSiH3 (2) DME 8 8 (80) 
5 FeBr2 (3) 4,7-(MeO)2phen (3) PhSiH3 (2) DME 8 11 (68) 
6 Fe(OAc)2 (3) dtbpy (3) PhSiH3 (2) DME 8 55 (trace) 
7 Fe(OAc)2 (3) phen (3) PhSiH3 (2) DME 8 50 (33) 
8 Fe(OAc)2 (3) 4,7-(MeO)2phen (3) PhSiH3 (2) DMF 8 40 (40) 
9 Fe(OAc)2 (3) 4,7-(MeO)2phen (3) PhSiH3 (2) MeCN/DME (1:4) 5 45 (36) 

10 Fe(OAc)2 (3) 4,7-(MeO)2phen (3) PhSiH3 (2) DMA/DME (1:4) 5 62 (20) 
11 Fe(OAc)2 (3) 4,7-(MeO)2phen (3) PhSiH3 (2) DMF/DME (1:4) 8 83 (7) 
12 Fe(OAc)2 (1) 4,7-(MeO)2phen (1) PhSiH3 (2) DMF/DME (1:4) 5 54 (20) 

a As determined using 1H NMR spectroscopy using CH2Br2 as an internal reference. 
       

 
Using the optimal conditions, the effect of changing the nitroarene component of 12 was investigated (Table 
2). We found that both E- and Z-isomers were reactive, but a lower yield of benzoxazine 14a was observed 
from the Z-isomer (entries 1 and 2). After establishing the difference in reactivity between isomers, we 
applied the reaction conditions to different nitroarenes with E-crotyl substituents. Both electron-releasing 
groups and electron-withdrawing groups at meta-R2-substituent were found to be tolerated (entries 3 – 7). 
The effect of para-R1-substituents on the reaction outcome was also explored, and benzoxazines 14g – 14j 
were formed (entries 8 – 11). Lastly, we examined the effect of increasing the steric environment around 
the nitro group on the transformation by adding an R3-methyl group to the nitroarene (entry 12). While 
submission of 12k to reaction conditions produced benzoxazine 14k the yield was attenuated in comparison 
to the other substrates examined. 
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Table 2. Scope and limitations with regards to the nitroarene. 

 
entrya 12 R1 R2 R3 14 yield, %b 

1 E-a H H H 78 
2 Z-a H H H 52 
3 E-b H OMe H 65 
4 E-c H Me H 71 
5 E-d H F H 70 
6 E-e H CF3 H 67 
7 E-f H CN H 60 
8 E-g F H H 60 
9 E-h Cl H H 60 

10 E-i CO2Me H H 68 
11 E-j CF3 H H 67 
12 E-k H H Me 45 

a conditions: 0.1 mmol of 12, 0.03 mmol of Fe(OAc)2, 0.012 mmol of 4,7-
(MeO)2phen, 0.2 mmol of PhSiH3, 0.2 mL of DMF, 0.8 mL of DME. b 
Isolated after silica gel chromatography. 

 
We next surveyed the effect of modifying the ortho-alkenyl identity on N-heterocycle formation (Table 3). 
The γ-alkenyl substituents were first varied by changing identity of moiety linking the crotyl substituent to 
the nitroarene (entries 1 – 5). While thioether 12l was effectively converted to benzothiazine 14l in 70%, 
we found that a secondary amine 12n (entry 2) was not tolerated in the reaction. This result could be rescued 
by protecting the nitrogen with a Ms-group to afford 14n in 65% (entry 3). Carbon-linkers were also 
investigated (entries 4 and 5), and while only a small amount of product was observed using a methylene 
group (12o), submission of malonate 12p to reaction conditions smoothly converted it to 
tetrahydroquinoline 14p (entry 5). The effect of changing the reaction site was probed with substrates 12q 
– 12u (entries 6 – 10). We found that the ene reaction occurred smoothly at a methylene position to afford 
benzoxazine 14q as a single isomer (entry 6), and that prenyl substituted substrates could be effectively 
converted to N-heterocycles 14r and 14s irrespective if they were connected to the nitroarene via an oxygen-
atom or a malonate-group (entries 7 and 8). While a slight drop in the yield was observed for 12u, we were 
delighted to see that sterically congested C–N bonds could be constructed in benzoxazine 14u (entry 10). 
The diastereoselectivity of the transformation was examined with nitroarenes 12v and 12x (entries 11 and 
12). We found that nitroarenes bearing an allylic- or homoallylic substituent produced the N-heterocyclic 
product as a 3:1 mixture of diastereomers. The diastereoselectivity was not improved when Z-12v was 
submitted to the reaction conditions (entry 13). Finally, the effect of lengthening the tether between the 
nitro-group and the alkene was examined with 12y and 12z (entries 14 and 15). To our delight, increasing 
the tether length by one methylene did not prevent reaction: exposure of nitroarene to 12y to reaction 
conditions produced tetrahydrobenzazepine 14y albeit in 45%. In contrast, when the oxygen-atom was 
replaced with a malonate, the reaction outcome changed from seven-membered ring formation to form 
tetrahydroquinoline 14z in 84%. 
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Table 3. Effect of o-alkenyl identity on N-heterocycle formation. 
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The formation of benzoxazine 14 from nitroarene 12 could occur through a catalytic cycle involving an ene 
reaction of nitrosoarene 22 (Scheme 2). Reduction of phenanthroline iron acetate 16 with phenylsilane 
produces iron hydride 17.15 Coordination of nitroarene 12 to 17 produces 18 or 19 depending on whether 
the acetate is directly coordinated to iron.16 We anticipate that hydride transfer to the nitro-group occurs via 
transition state TS-20, where the iron-hydride bond breaks simultaneously with nitrogen-hydrogen bond 
formation. The resulting iron species (κ1- or κ2-coordinated)17 fragments to produce nitrosoarene 22 and 
iron hydroxide 23.18 This species could dimerize to produce 2419 or react with phenylsilane to produce iron 
silicate 25, which transfers a hydride via σ-bond metathesis transition state TS-26 to regenerate the active 
catalyst and produce phenylsilanol.15b, c This silanol could react with phenylsilane to produce silyl ether and 
dihydrogen. Nitroso ene reaction of 22 generates N-hydroxy-benzoxazine 23, which is reduced by silane or 
iron hydride to produce 14a. 
 

 
Scheme 2. Potential catalytic cycle. 

 
Several experiments were performed to gain more insight into the mechanism of benzoxazine formation 
(Scheme 3). To rule out the formation of radical catalytic intermediates, several radical traps (TEMPO, 
BHT, and cyclohexadiene) were added to the reaction mixture and benzoxazine was still produced. The 
reaction could be monitored by 1H NMR spectroscopy and neither paramagnetic species nor nitroso- or N-
hydroxy-compounds were observed. We anticipated that examination of the reaction kinetics might clarify 
the catalytic cycle. If the resting state of the catalyst was dimer 23, we anticipated that a kinetic order of 
less than one would be observed in catalyst. Further if reduction of iron hydroxide 22 was turnover limiting, 
then a zero order in nitroarene would be expected,3o and a significant difference in rates between PhSiH3 
and PhSiD3 would be anticipated.15b, c To address these questions, the reaction kinetics were examined using 
1H NMR spectroscopy in a 1:4 mixture of DMF-d7 and THF-d8. The reaction was found to be first order in 
nitroarene-, first order in catalyst-, and inverse first order in acetate anion concentration. The first order rate 
dependence on nitroarene concentration differs from the kinetic behavior of our 4,7-
dimethoxyphenanthroline iron-catalyzed reductive cyclization of ortho-nitrostyrene, which exhibited a 
zero-order dependence in nitrostyrene,3o and suggests that reduction of iron hydroxide 22 is not turnover 
limiting. The observed first order in catalyst suggests that dimerization of 22 to give 23 is not occurring. 
Together with the inhibition by increasing acetate formation, these indicate that coordination of nitrosoarene 
to 16 or reduction to afford 20 is the turnover-limiting step. To distinguish between these possibilities, the 
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effect of using phenylsilane-d3 on the rate of the reaction was investigated. Observed rate constants were 
obtained using 1H NMR spectroscopy, and the difference in rate (kPhSiH3/kPhSiD3) was found to be 1.50 ± 0.09. 
This kinetic isotope is significantly smaller than the kH/kD = 3.0 ± 0.2 observed by Bleith and Gade for the 
rate-limiting reaction of an iron(II)-alkoxide with silane.15b, c While our smaller value could be interpreted 
that coordination of the nitroarene to 17 is rate-limiting, similar magnitude kinetic isotope effects have been 
observed previously by Tilley and co-workers and have been assigned to be primary and consistent with σ-
bond metathesis reaction mechanism with an early transition state where the hydrogen bond is not 
significantly broken.20 The temperature dependence on the reaction rate was also examined using 1H NMR 
spectroscopy, and the activation parameters were determined to be ΔH‡ = 13.5 kcal•mol–1 and ΔS‡ = –39.1 
cal•mol–1•K–1. The large negative ΔS‡ is consistent for a highly ordered transition state such as TS-20.21 We 
interpret our mechanistic experiments suggest that coordination of the nitroarene substrate to an iron 
hydride is reversible and that the turnover-limiting step is hydride transfer from iron to the coordinated 
nitroarene that occurs via a highly ordered transition state where the iron hydride bond is not significantly 
broken. 
 

 
Scheme 3. Mechanistic experiments. 

 
In conclusion, we have developed an intramolecular iron-catalyzed reductive nitroso ene reaction of 2-
substituted nitroarenes to afford six- or seven-membered N-heterocycles using phenylsilane as the terminal 
reductant. This reaction enables diastereoselective access to benzoxazines, dihydrobenzothiazines, 
tetrahydroquinolines, tetrahydroquinoxalines, or tetrahydrobenzooxazepines. Kinetic studies, kinetic 
isotope effect measurements, and Eyring analysis provided mechanistic insight to suggest that the reaction 
proceeds via a nitrosoarene intermediate, and that the turnover-limiting step is the reduction of a κ1- or κ2-
coordinated nitroarene by an iron hydride that occurs via a highly ordered transition state. 
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