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ABSTRACT: b-Amino acids are useful building blocks of bioactive molecules, including peptidomimetics and pharmaceutical compounds. 
The current limited accessibility to b2,2-type amino acids which bear an a-quaternary center has limited their use in chemical synthesis and 
biological investigations. Disclosed herein is the development of a new N-heterocyclic carbene/photocatalyzed aminocarboxylation of olefins, 
affording b2,2-amino esters with high regioselectivity. The generation of nitrogen-centered radicals derived from simple imides via a sequence 
of deprotonation and single-electron oxidation allows for the subsequent addition to gem-disubstituted olefins regioselectively. The intermedi-
ate tertiary radicals then cross-couple with a stabilized azolium-based radical generated in situ to efficiently construct the quaternary centers. 
Mechanistic studies including Stern-Volmer fluorescence quenching experiments support the proposed catalytic cycle.

b-Amino acids are privileged chemical moieties found in biolog-
ically active molecules and natural products.1 This class of com-
pounds has attracted synthetic chemists due to their potential as pre-
cursors to g-amino alcohols, b-lactams,2 and other prevalent motifs 
in catalysis, synthesis and medicine. In addition to their utility as 
building blocks in small molecule synthesis, b-amino acid incorpo-
ration into peptides has been reported to improve their stability and 
biological activities.3 They can be classified based on their substitu-
tion patterns: b3-, b2-, b2,3-, b3,3-, b2,2-amino acids,4 with the last type 
being the most inaccessible due to the quaternary center at the a-
position. Whereas efficient methods to access to b3- and b2,3-amino 
acids have enabled thorough investigation of their bioactive applica-
tions, further exploration of b2,2 analogues5 has been hampered by 
their synthetic inaccessibility.  

Given their broad applicability in chemistry, there are numerous 
approaches to access b-amino acids,6 including classical reactions 
such as the Mannich reaction,7 conjugate addition of nitrogen-based 
nucleophiles,8 hydrogenation of b-amino a,b-unsaturated sys-
tems,7b and the Arndt-Eistert homologation from activated a-amino 
acids.9 Among those methods, the Mannich-type reaction is most 
thoroughly developed, including recent enantioselective reactions 
with chiral phosphoric acid catalysis10 or N-heterocyclic carbene 
(NHC) catalysts.11 However, a large majority of these methods af-
forded b3-, b2-, and b2,3-types, and a general approach to synthesize 
the b2,2-type still remains challenging.12 Consequently, the develop-
ment of methodologies for accessing b2,2-amino acids that comple-
ment established approaches would be of value to synthetic chemists 
and chemical biologists. 

Photocatalysis has become a powerful strategy in synthetic or-
ganic chemistry, featuring mild photoexcitation processes  

 
Figure 1. (A) b2,2-amino ester-containing bioactive compounds13 
(B) Recent reports of NCR generation and intermolecular alkene re-
activity (C) This work: dual NHC/photocatalysis for b2,2-amino es-
ter synthesis.  
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and single-electron redox pathways.14 Photocatalysis has enabled 
unique bond disconnections that were previously not attainable by 
traditional two-electron chemistry. Additionally, recent advances in 
photochemical approaches to nitrogen-centered radicals (NCRs) 
have accelerated the development of photocatalytic methodologies 
that access valuable nitrogenated compounds.15  

Compared to carbon-centered radicals, methods to access 
NCRs are still limited, despite an extensive history of their use in or-
ganic synthesis. Most of the photochemical methodologies utilize 
pre-oxidized N–X type NCR precursors,16 where a photocatalyst fa-
cilitates the N–X bond cleavage via single-electron transfer (SET) or 
triplet energy transfer (EnT). More recently, several methodologies 
have demonstrated access to a variety of NCR species from non-pre-
oxidized nitrogen sources.17 Those include proton-coupled electron 
transfer (PCET) chemistry18 by the Knowles group,19 an intriguing 
a-scission strategy using a phosphine catalyst by the Doyle group,20 
decarboxylative/decarbonylative SET models by the Studer21 and 
Leonori groups,22 and the Glorius group’s EnT protocol,23 which fea-
tures a decarboxylative radical fragmentation triggered by triplet 
EnT to release alkoxycarbonyl and iminyl radicals (Figure 1B). The 
alkoxycarbonyl radical species can add to olefins and the resultant 
carbon-centered radical intermediates can be trapped by the iminyl 
radical counterpart to afford b3-amino ester products. These meth-
ods typically require either prefunctionalization or the use of specific 
types of activating reagents. Qin and co-workers reported the use of 
N-benzoyl alkylsulfinamide as an NCR precursor, wherein a rela-
tively common base K2HPO4 deprotonated the imide, enabling pho-
tocatalytic oxidation of the imidyl anion.24 Nevertheless, in their 
work, the intermediate NCR rapidly fragments to afford even pri-
mary carbon-centered radicals, driven by the formation of N-sulfi-
nylbenzamide. To the best of our knowledge, there is no report for 
both NCR generation from a simple imide using a common inor-
ganic base and its use to prepare nitrogenous products. 

Besides NCR methods, the field of photocatalysis has also expe-
rienced a significant increase in C–C bond formation methodologies 
over the past decade. In particular, NHC-based radical intermedi-
ates have been demonstrated to effectively promote radical cross-
coupling to construct new C–C bonds.25 Ohmiya achieved single-
electron oxidation of Breslow intermediates using N-hydroxy-
phthalimide esters, leading to radical-radical coupling of the gener-
ated ketyl and tertiary radicals to prepare ketones with a-quaternary 
centers.26 In a different approach, our group reported the first exam-
ple of the radical coupling of catalytically generated acyl azoliums us-
ing photocatalysis, wherein Hantzsch ester-derived benzylic or alkyl 
radicals coupled with the NHC-derived ketyl radical, affording ke-
tone products.27 Following this initial report, similar types of trans-
formations using different radical coupling partners were achieved 
by our group,28 Studer,29 Chi,30 and other groups.31 While these ex-
amples include three component reactions, the use of geminal disub-
stituted olefins to construct a-quaternary carbonyl products re-
mains underexplored. More importantly, this azolium-based chem-
istry has focused on aryl and alkyl ketone products, not esters. Lastly, 
there are few examples of using heteroatom-centered radicals to 
form C–X and C–C bonds, affording b-heteroatom-substituted ke-
tones.32 

We envisioned that combination of NHC/photocatalysis to in-
corporate esters33 instead of ketones, and a novel protocol to gener-
ate NCRs would lead to a new platform for b2,2-amino  

Table 1. Optimization of Reaction Conditions and Control Ex-
periments  

 
[a] Reaction conditions unless otherwise indicated: 1a (0.1 
mmol), 2a (0.25 mmol), 3a (0.15 mmol), Az (0.015 mmol), base 
(0.15 mmol; DBU = 1,8-Diazabicyclo(5.4.0)undec-7-ene), PC (1 
μmol), and solvent (0.02 M; DMF = N,N-dimethylformamide, THF 
= tetrahydrofuran) irradiated for 18 h. [b] 1H NMR yield using 1,3,5-
trimethoxybenzene as internal standard. Isolated yield given in pa-
renthesis. 
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Table 2. Substrate Scope of Aminocarboxylation and Synthetic Application of the Products

 
Table 2. Reaction conditions unless otherwise indicated: imide (0.2 mmol), pyrocarbonate (0.5 mmol), styrene (0.3 mmol), Az-1 (0.03 
mmol), K2CO3 (0.3 mmol), PC-1 (2 μmol), and solvent (MeCN, 0.02 M) irradiated with 427 nm LEDs for 18h. [a] pyrocarbonate (0.6 mmol). 
[b] styrene (0.4 mmol), 40 h.
ester synthesis (Figure 1C). In this work, we deploy simple pyro-
carbonates and imides as a carboxyl group source and a nitrogen 
source, respectively. In our reaction design, a sterically and elec-
tronically tuned imide could be deprotonated by exposure to mild 
base and then undergo single-electron oxidation preferentially over 
direct transamidation with the pyrocarbonates. We hypothesized 
that in this manner NHC/photo-mediated generation of the key 
radical species would facilitate the key radical relay with geminal 
disubstituted olefins, thereby leveraging the stability of the inter-
mediate tertiary radicals to efficiently construct the a-quaternary 
centers, along with regioselective N–C and C–C bond-formation.  

Based on this plan, we selected N-Boc benzamide (1a) as an 
imide starting material, diethylpyrocarbonate (2a) as a carboxyl 
source, and a-methyl styrene (3a) as a model alkene substrate.  Af-
ter extensive screening of the reaction conditions, the desired a-
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yield was observed when replaced with iridium photocatalyst PC-
3 (entry 5).

Scheme 1. Mechanistic Studies and Proposed Catalytic Cycle 

 
A brief survey of bases showed that cesium carbonate was a viable 
alternative for this reaction system (entry 6) whereas organic base 
DBU did not afford any of the desired product (entry 7). Switching 
the solvent to DMF or THF, which are also commonly used in sim-
ilar photochemical reactions, provided lower yields of product 4a 
(entries 8, 9). A good yield of 70% was obtained when the loading 
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indicating that this reaction is dependent on both NHC and photo-
catalyst (entries 11-14).  
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along with E/Z isomerization of the cinnamyl moiety (4u). When b-
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product (4v,w) was obtained in a moderate yield with excellent 
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diastereoselectivity (>20:1). We also explored the scope of compat-
ible imide-type coupling partners. Alternate carbamate (4x) and 
benzoyl (4y) substitution was tolerated, providing the correspond-
ing products in good to excellent yields. N-benzoyl benzamide also 
delivered the desired ester in a good yield as well (4z). Finally, b2,2-
amino esters derived from commercial drugs ataluren (4aa) and 
probenecid (4ab) were prepared and isolated in 76% and 47%, re-
spectively. 

To demonstrate the synthetic utility of these products, the ben-
zoyl group of 4a was removed selectively using hydrazine hydrate to 
provide b-amino ester 5 in 82% yield. Ester 4a was also exposed to 
lithium aluminum hydride, undergoing a tandem reduction-depro-
tection and affording g-amino alcohol 6 in 74% yield. Hydrolysis of 
the ethyl ester moiety or removal of the Boc group of 5 would pro-
vide complementary b-peptide building blocks. Furthermore, b-car-
bamate esters like 5 have been previously reported to be directly 
converted into the corresponding b-lactam products.35 These trans-
formations showcase the broad variety of b-amino acid scaffolds ac-
cessible in a few steps from simple starting materials.  

We also investigated the mechanism of this transformation, 
starting with preliminary control experiments (Table 1, entries 11-
14). The omission of NHC catalyst, photocatalyst, irradiation, or 
base from the standard reaction conditions led to no conversion to 
the desired product. Furthermore, addition of three equivalents of 
TEMPO to the standard reaction conditions also suppressed prod-
uct formation (Scheme 1A), suggesting a radical mechanism. From 
the TEMPO-trapping reaction mixture, adduct 7 was detected by 
ESI-HRMS, supporting the intermediacy of an NHC-stabilized 
alkoxycarbonyl radical. Finally, a Stern-Volmer fluorescence 
quenching analysis was performed with the photocatalyst and the 
various reaction components (Scheme 1B). Pyrocarbonate 2a and 
styrene 3a both showed no photocatalyst quenching at concentra-
tions up to 0.1M. Isolated ester azolium IV’ provided a minor 
amount of photocatalytic quenching at 0.1M, but N-Boc benzamide 
1a demonstrated a higher rate of photocatalyst quenching at identi-
cal concentrations. Furthermore, analysis of equimolar mixtures of 
1a and potassium carbonate, despite the limited solubility of the lat-
ter in acetonitrile, yielded the highest rates of quenching among the 
components studied, supporting a reductive quenching pathway to 
generate the NCR. Nevertheless, due to the small amount of 
quenching observed due to azolium IV’, we cannot fully rule out an 
oxidative quenching pathway.  From these experiments we propose 
the following as the predominant mechanism (Scheme 1C). Fol-
lowing excitation, photocatalyst PC-1* can generate key imidyl rad-
ical intermediate II either through oxidation of imidyl anion I or di-
rect PCET of imide 1a. In either case, NCR II is rapidly trapped by 
styrene 3 to afford benzylic radical III. In the NHC catalytic cycle, 
the active carbene catalyst is formed by deprotonation of precatalyst 
Az-1. Nucleophilic addition to pyrocarbonate 2 yields ester azolium 
IV in situ, which can be reduced by PC-1 radical anion to form sta-
bilized radical V and turn over PC-1. In comparison with chlorofor-
mates, the employment of pyrocarbonates led to the generation of 
alkoxide ions, which maintained the basic conditions, providing 
higher reaction efficiency. Radical cross-coupling between III and V 
provides alkoxide VI, which rapidly collapses to afford b2,2-amino es-
ter 4 and the free carbene catalyst. We investigated the possibility of 
photocatalytic reduction of radical III to a benzylic anion followed 
by nucleophilic addition to 2 to form product 4, but the lack of reac-
tivity observed in the absence of Az-1 (Table 1, entry 11) suggests 
that this pathway is not operative. 

In summary, we have developed a dual NHC/photocatalyzed 
synthesis of b-amino esters. This mild and modular transformation 
combines styrenes, imides, and pyrocarbonates to yield a variety of 
sterically-congested b2,2-amino esters in moderate to excellent 
yields. Mechanistic studies support the generation of both a transi-
ent imidyl radical which is rapidly trapped by styrenes as well as a 
stabilized alkoxycarbonyl radical from an in-situ generated ester az-
olium. Notably, in comparison to the large variety of 
NHC/photocatalysis ketone syntheses, this is the first use of this 
platform to install a synthetically versatile carboxy group and har-
ness an intermolecular NCR relay process. 
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