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Abstract

Yield stress fluids flow through deformable conduits and are prevalent in nature and have nu-
merous technological applications [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In this paper, we focus on
investigating the impact of many factors such as the deformability of the channel wall, yield
stress, shear thinning, and shear thickening index in the presence of slip and compared it with
flow dynamics with no-slips as predicted by Garg and Prasad [12]. Using lubrication theory, we
have derived a model for the velocity profiles and flow rate using the Herschel–Bulkley rheolog-
ical model in rigid and deformable shallow channels with slip-walls. To model deformable walls,
we have utilized small displacement structural mechanics and perturbation theory presented by
Gervais et al. [13] and Christov et al. [14], respectively. Notably, our newly developed model
encompasses the flow characteristics of Newtonian fluids, power–law fluids, and Bingham fluids,
both with and without wall-slip, as observed in previous literature [13, 14, 15, 16]. We find that
the deformability increases the same effective channel height with and without wall-slip but the
flow rate is increased more when slips are present within the channel. We find many scalings
for the flow rate under different regimes of applied pressure and the deformability parameter.
It is known that due to the presence of yield stress, a threshold inlet pressure is required for the
onset of flow in the channels unlike in the case of the Newtonian or power–law fluids. Garg and
Prasad [12] finds that below this threshold, the flow is choked in the channels with plug height
the same as the channel height: we find the same observations in the presence of slips. Although
in case of deformable channels an early onset of flow with the pressure is found in comparison
to the rigid channel. We observe the back flow due to deformability in the channel when the
yield surface is between Ho/2 < Hp < (Ho + δ)/2, where Ho represents the initial height of
the channel without deformability. Hp is the height of the yield surface. δ is the increase in
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channel’s height due to the elastic walls. Beyond choked flow, the plug height starts to decrease
for both the rigid and the deformable channels with the pressure. We also observe that for
any given applied pressure and yield stress, the (Hp)deformable < (Hp)rigid. This suggests that
deformable elastic walls decrease the plug region in comparison to the rigid channel. We also
find that the wall-slip has no effect on the plug region and the onset of flow. In the presences of
wall–slip, we also find that increasing the yield stress leads to a decrease in the velocity in the
plug flow as well as in the non–plug flow regions. Increasing yield stress also leads to increasing
the yield surface height and the solid plug in the central region due to which there is decrease in
the flow rate similar to as found by Garg and Prasad [12]. Further, we also find that the shear
thinning/thickening index does not affect the plug height, although as the index increases, the
flow rate starts to decrease due to the corresponding increase in shear thickening of the material.

Keywords: Yield stress fluid flows, Wall-slips, Herschel–Bulkley fluids, deformable channels,
lubrication approximation.

1 Introduction

Slip, or the relative motion between a fluid and a solid boundary, can have a significant effect
on the flow behavior of yield-stress fluids in deformable channels [17, 18, 19]. Yield-stress
fluids are materials that do not flow until a critical stress is applied, after which they begin to
flow like a fluid. Examples include certain types of gels, pastes, and concentrated suspensions
[4, 5, 6, 20, 21].

Yield stress fluids exhibit slip at the channel walls during flow. When these fluids flows
through a channel, a thin layer close to the walls develops, where the fluid’s velocity is different
from the velocity of the wall [22, 23]. This slip behavior is common in yield stress fluids. The
slip phenomenon occurs due to the interaction between the fluid molecules and the solid surfaces
of the channel walls. At the wall, the fluid molecules experience different forces and interactions
compared to the bulk of the fluid away from the wall [24, 25, 26]. As a result, the fluid molecules
in the boundary layer near the wall can slip or slide along the surface. The presence of slip at
the channel walls can affect the overall flow behavior of an yield stress fluid [17, 27, 28]. Slip
reduces the effective shear rate at the wall, which, in turn, affects the effective viscosity of the
fluid near the wall [28]. This means that the fluid behaves as if it has a lower viscosity than it
would if no slip were present [29].

The extent of slip depends on various factors, including the nature of the fluid, yield stress
magnitude, the channel’s geometry, surface properties of the fluid, deformability, and the flow
conditions [30, 31]. Slip can have significant implications for fluid dynamics, heat transfer, and
mass transport in the channel [32]. The flow characteristics of yield-stress materials also highly
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depend on the flow geometry in which they flow [33], in particular, the features of the solid wall
surfaces that they are in contact with. In this context, slippery characteristics causes the macro
and micro scale drag reductions [34, 35, 36, 37], as well as fluid manipulations in microfluidic
devices [38, 39]. The shape and dimensions of the deformable channel affects how slip impacts
the flow behavior [40]. The interaction between slip and channel deformability can lead to
complex flow behaviors. When slip occurs, it reduces the apparent viscosity of the yield-stress
fluid near the wall [28]. This slip effect can be significant when the slip length is comparable
to or larger than the channel dimensions [41, 42]. This is the reason that narrow channels may
experience more significant slip effects than wider channels. Slip is pronounced at micro and
nano scale and plays an important role in flow dynamics of yield stress flow such as blood flow
in veins and arteries [43]. To reduce food and healthcare waste where yield stress materials
tend to get stuck, smart materials employs a stick-slip mechanism [44, 45, 46]. The stick-slip
mechanism involves alternating periods of static friction (stick) and dynamic motion (slip). In
this context, it can be used to facilitate the controlled release of yield stress materials that tend
to adhere to surfaces, like food and healthcare products [47]. Reducing the underwater adhesion
of barnacles on ships is an effective way to minimize drag and improve fuel efficiency [48]. When
barnacles attach to a ship’s hull, they create rough surfaces that increase resistance in the water,
resulting in higher fuel consumption and reduced vessel speed [49]. To address this issue, several
strategies are employed: biocide paints, copper-based antifouling paints, foul-release coatings,
bubble and air-curtain systems (Leidenfrost effect drag reduction) [50]. Most of these methods
induces slip to the ship vessels [51, 52, 53, 54]. Effect of slips depends on the magnitude of
the yield stress also. For example, in materials with a high yield stress, even a small amount
of slip can significantly impact flow behavior [55, 56, 57]. In contrast, for materials with low
yield stress, slip effects may be less pronounced. Even different flow regimes, whether laminar
or turbulent, affect the influence of slip on yield-stress flows differently. Turbulent flows may
disrupt the slip layer and lead to different flow characteristics compared to laminar flows [58, 59].

In order to model yield stress fluids, we use Herschel–Bulkley rheological model (described
in following Section 3.2), which describes all the yield stress, the shear thinning, and shear
thickening properties of the material. Herschel–Bulkley fluids flow in the deformable channels
are common with several applications. Examples include in food processing [1, 2, 3], in the oil
and gas industry [7], in the biomedical applications [8, 9] (flow through tubes, pipes, and hoses)
for conveying, distribution, and transport in polymer processing industries, such as extrusion
and injection molding [60, 61], in the pharmaceutical formulations and processing [62, 63, 64], in
the waste management [65, 66, 67]. To optimize the processing conditions, preventing blockages,
and ensuring consistent product quality, the understanding of the flow behavior of yield stress
materials in the flexible channels play a vital role. As the flow behaviour for yield stress materials
highly depends on the slips, the modelling of slip dynamics is essential for efficient handling and
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processing.
The methods devised to handle various non–Newtonian flows in deformable conduits face

varied analytical challenges and therefore, require computations [68, 69, 70, 71]. The existing
literature exhibits lack of advancements in most aspects of non–Newtonian flow in deformable
conduits, leaving several research gaps where common problems remain unexplored. Several
works have developed models for fluid flow in deformable conduits. The majority of these are
on Newtonian fluids, although some have considered non–Newtonian rheologies. An example of
the former is the widely adopted one–dimensional (1D) Navier–Stokes flow model, specifically
applied to deformable tubes in various studies [72, 73, 74, 75]. This 1D model is limited in the
sense that it is valid only for Newtonian flows with a large number of parameters, making it
impractical for any practical applications. Sochi [76] studied the flow of Newtonian and power–
law fluids in elastic tubes. However, both these models: the (1D) Navier–Stokes flow model and
the model derived by Sochi [76] are not for the channel studies. Fusi et al. [77] gave a lubrication
approximation method for solving Bingham plastic flows in symmetric long channels of non–
constant width. This model lacked considering the effects of shear thinning and shear thickening
properties of the fluid. Also, it did not account for the flexibility of the channel walls. Panaseti
et al. [78] extended the method of Fusi et al. [77] to study Herschel–Bulkley fluids to include the
shear thinning and shear thickening properties of the fluid with pressure–dependent consistency
index and yield stress, and derived analytical solutions for channels with linearly varying width.
But this investigation was only on rigid channel walls. Fusi and Farina [79] extended the
lubrication-approximation method for axisymmetric viscoplastic flows in long tubes of varying
radii assuming rigid walls of the tube. Housiadas et al. [80] used their method to solve the flow
in a tube of constant radius of a Bingham plastic with yield stress and plastic viscosity varying
linearly with pressure. Fusi et al. [81] adopted the method of Fusi and Farina [79] to study the
flow of a Bingham plastic in tubes of varying radius, e.g. expanding or contracting tubes, or
tubes with a stenosis. Howwever, this model focused solely on tubes. Also, it did not take into
account the influence of fluid characteristics that lead to shear thinning and shear thickening.
Vajravelu et al. [10] attempted to model the flow of Herschel–Bulkley fluids in elastic tubes as
a representation of non–Newtonian behavior. Although they derived their model with a crude
assumption that the ratio of the radius of tube to the radius of the yield surface is constant under
deformable walls. In addition, it’s worth noting that the study by Vajravelu et al. [10] did not
incorporate or account for the influence of slips in their modeling. Also, their research, unlike
our research, was conducted on tubes rather than channels (as in our case). Recently Garg and
Prasad [12] conducted studies on the Herschel–Bulkley fluid flow in deformable channels, but
without wall-slip effect. As evident from the above literature, that the slip effects are important
in the yield stress fluid flow. In this paper, we investigate the flow of Herschel-Bulkley fluids in
the rigid and deformable channels, taking into account the influence of wall-slip effects.

4

https://doi.org/10.26434/chemrxiv-2023-l3knn ORCID: https://orcid.org/0000-0003-4544-7036 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-l3knn
https://orcid.org/0000-0003-4544-7036
https://creativecommons.org/licenses/by-nc-nd/4.0/


The deformability of a shallow channel is an important factor that impacts both the effective
pressure drop across the channel and the resultant flow configuration [13, 14]. This happens
because the flow rate is highly influenced by the size of the cross–sectional dimensions, show-
ing a strong relationship to the fourth power [14]. Consequently, even a small perturbation in
the geometry of the channel can result in substantial changes in the pressure drop and flow
characteristics. Gervais et al. [13]’s model explains the alteration in flow rate caused by defor-
mations, linking a Hookean elastic response with the lubrication approximation for the Stokes
flow. However, the presence of a model parameter requiring empirical determination for each
channel shape makes their model difficult to use. Through a perturbation technique for the flow
Christov et al. [14] derived a relation to the parameter introduced by Gervais et al. [13] . In our
study, we assume the small displacement structural mechanics from Gervais et al. [13] and the
perturbation theory presented by Christov et al. [14]. Using these, we formulate a model for
a deformable channel wall for the yield stress fluid flows with wall-slip effect. Also, using the
lubrication assumption in shallow conduits (particularly, where the ratio of height to width and
height to length are both considered small),the impact of channel flexibility on velocity profiles
and the flow rate is also investigated. Further, the influence of fluid properties such as yield
stress and shear thinning/thickening index along with varying pressure conditions are analyzed
in the presence of wall-slip. 1

FIG. 1. Schematic of flow in a graphene deformable-wall tube.
Figure 1: Schematic diagram of the upper half part of the shallow channel of length L, cross–sectional
width W , and height H. The Cartesian axis is taken at the mid plane of the channel.

We consider a shallow rectangular channel characterized by dimensions: length L, width W ,
and height H, satisfying the conditions H ≪ W and H ≪ L, as depicted in Figure 1. The upper
surface of this channel is comprised of an elastic sheet securely attached along the edges of the
vertical channel wall enabling it to undergo deformation. A pressure difference prompts a flow
rate Q in the x direction. The flow’s normal stresses acting on the walls cause the flexible upper
wall of the channel to deform upwards in the positive z direction, away from the x − y plane.
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This deformation shapes the constant configuration of the channel’s top surface, represented as
z = H(x, y) = Ho + δ(x, y), where δ(x, y) symbolizes the vertical deformation, as illustrated in
Figure 1. At x = 0, a pressure field p(x) is introduced at the reservoir, while the exit pressure
is considered zero for reference. Presently, we abstain from assuming any specific magnitude
for the displacement. However, under small displacement of the deformable walls, we anticipate
that, the magnitude |δ| remains significantly smaller than W within our context.

The structure of the paper is outlined as follows. Section 2 describes the governing equations,
while the Section 3 presents the model’s derivation. In the Section 4, we present and analyze the
results. This includes the investigation of the impact of slips with and without yield stress fluid
flows on the necessary applied pressure required to induce flow. We also discuss its influence
on the yield surface’s shape. Additionally, we probe the consequences of slips with the shear
thinning/thickening indices on both the plug and shearing velocity profiles along with the flow
rate. In the same section, finally we will discuss the flow reversal in the deformable channels
and effect of deformability and slip on the plug height.

2 Governing equations

2.1 Cauchy equations

The Cauchy’s equation and the continuity equation for an incompressible fluid are given by

ρ

(
∂v

∂t
+ (v ·∇)v

)
= −∇p− ρg +∇.τ ,

∇ · v = 0,

(1a,b)

where v = [u, v, w] is the fluid velocity, p is the fluid pressure, ρ is the fluid density, g is the
gravitational body force, and τ is the total deviatoric stress tensor.

2.2 Boundary conditions

Boundary conditions play an important role in determining the solution. We assume that the
fluid cannot penetrate the channel wall. Therefore, on the boundary Γ

v · nwall = 0, (2)

where nwall is the unit outward normal vector on the wall. Generally, the no-slip boundary
condition at the fluid-solid interface is a fundamental notion in fluid mechanics. However, wall-
slip is a common phenomenon in yield-stress fluids. Therefore, this requires a certain degree of
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tangential velocity (Navier slip) in order to match experimental observations [82, 83, 84, 85] .
This leads to

Θv.mwall + (1−Θ)τnwall.mwall = 0, (3)

where mwall is the tangential unit vector along the channel wall. Also, the arbitrary parameter
Θ meets 0 ≤ Θ ≤ 1. Here, Θ = 0 and 1 correspond to pure-slip and no-slip boundary conditions.
The symmetry boundary condition at the centreline of the channel z = 0 demands the velocity
normal to the centreline and the velocity gradient vg tangential to the centreline (and with in
the plug) are both zero. These two conditions can be expressed as

v · ncentreline = 0, and vg ·mcentreline = 0, (4a,b)

respectively, where ncentreline and mcentreline are the unit normal and unit tangent vector to the
symmetry boundary, respectively.

3 The model

3.1 Structural mechanics: small displacement mechanics

Gervais et al. [13] performed the scaling analysis and showed that if the top wall is thick and
the deformations are shallow, then the internal strains along vertical (δ/W along z direction)
and lateral (∆W/H) directions are proportional to p/E, where p is the pressure and E is the
elastic modulus. For H/W ≪ 1, the strains could be rearranged to δ/H = cpW/EH, where δ

is the change in height due to shallow deformations and c is an unknown constant. Therefore,
Gervais et al. [13] approximated, the width–averaged height of the channel along the length as

H(x) = Ho

(
1 + α

p(x)W

EHo

)
, (5)

where p(x) is the pressure at any longitudinal direction x and 0 < α < 2/3. Ho is the initial
height of the channel when δ = 0. However, α is a fitting parameter that varies with the geometry
of the channel and needs to be calculated explicitly from experiments. To overcome this issue,
[14] performed the perturbation analysis using the isotropic quasi–static plate bending and the
Stokes equations. They found that for rectangular cross–section α = (1/60)(W/T )3(1 − ν2),
where T is the thickness of the upper horizontal wall and µ is the Poisson’s ratio of the material
(for incompressible material ν = 0.5 [86]).

3.2 Herschel–Bulkley fluid model

We study the flow of yield stress, shear thinning , and thickening fluids in the flexible channels.
To model the fluid behavior, we use the Herschel–Bulkley fluid model, which in one dimension
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is given by
γ̇ = 0, if τ < τy

τ = τy + ηoγ̇
n, if τ ≥ τy

(6)

where τ and τy are the stress and yield stress, respectively. Here, γ̇ is the shear-rate and ηo,
n are the consistency and shear-thinning/thickening indexes, respectively. If n = 1, the model
represents the Bingham model. For τy = 0, the model is the power–law fluid. For the cases,
n < 1 and n > 1 represent the shear thinning and shear thickening fluids, respectively. Finally,
τy = 0 and n = 1 represents the Newtonian fluids.

3.3 2D planar model

We consider fully developed, steady laminar flow of an incompressible yield stress Hershcel–
Bulkley fluid between two parallel plates under lubrication limits in a rectangular channel of
height H and width W as shown schematically in Figure 1. The channel is assumed to be
sufficiently long and wide in comparison to the height (that is, H/W ≪ 1, and H/L ≪ 1) to use
a two–dimensional planar model [14, 87, 21]. We further assume a very small displacement due
to deformability in comparison to the height of the channel, δ/H ≪ 1, which is caused by the
pressure difference between the fluid and the atompheric conditions in the deformable channel.
The mid–plane between the plates will be taken as the origin with the flow domain extending
from z = −H/2 to z = +H/2.

Further suppose that the Cartesian velocity components u and w along longitudinal and
vertical directions x and z, respectively. The z coordinate is measured from the channel’s mid–
plane. Therefore, using the lubrication assumptions in the shallow cross–section of the channel
as shown in [14], we retain the leading order terms. Using the impermeable solid–wall boundary
condition, we get w(z = −H(x)/2) = w(z = H(x)/2) = 0. In the leading order terms, using
the impermeable solid-wall boundary condition, the normal velocity vanishes everywhere, that
is,

w(z, t) = 0. (7)

Further, we neglect the pressure gradient and velocity components normal to the channel wall.
Also, we neglect all body forces. Under these assumptions, for H/W ≪ 1, and H/L ≪ 1,
we show a fluid element ABCDD′A′B′C ′ in Figure 1. The force balance on this element can

be calculated as the pressure p and p +
∂p

∂x
dx acting on the AA′D′D, and BB′C ′C surfaces,

respectively along the positive and negative x directions. Also, the shear stress τxz is acting
along the negative x direction on both the surfaces DD′C ′C and AA′B′B. Dropping the xz

notation from the stress, the force balance can be written as [16]

2Wpz − 2W
(
p+

∂p

∂x
dx
)
z = 2Wτ dx, (8)
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which implies

τ = −∂p

∂x
z, (9)

where τ is the shear stress for the Herschel–Bulkley fluids. From equation (6), τ is given by

τ = τy + ηo

(
− ∂u

∂z

)n

, (10)

and ηo is a Herschel–Bulkley consistency index (Bingham consistency index for n = 1). Using
equation (9) and (10), we get

−∂u

∂z
=

1

η
1/n
o

(
− ∂p

∂x
z − τy

)1/n

. (11)

Integrating equation (11), we get

−u =
n

(n+ 1)

1

η
1/n
o

(
− ∂p

∂x

)(− ∂p

∂x
z − τy

)(1+n)/n

+ c1, (12)

From equation (9), the stress on the upper channel wall is

τwall = −∂p

∂x

H

2
, (13)

Also, the yield surface Hp or the plug height below which the flow will be like a plug says that

at z = Hp,
∂u

∂z
= 0. This implies from equations (9) and (10) that

Hp = τy

/(
− ∂p

∂x

)
. (14)

The slip boundary condition says u = λ
∣∣∣∂u
∂z

∣∣∣ at z = H/2, where λ = µvp(1−Θ)/Θ ≥ 0 and

µvp = |τ |
/∣∣∣∂u

∂z

∣∣∣ is the effective viscoplastic viscosity. Using the slip boundary condition and
equations (13) and (14) in equation (12), we get

u =
n

(n+ 1)

H

2

(
τwall

ηo

)1/n[(
1−2

Hp

H

)(1+n)/n

−

(
2
z

H
−2

Hp

H

)(1+n)/n]
+λ

(
τwall

ηo

)1/n(
1−2

Hp

H

)1/n

,

(15)
From above, the velocity in the plug, that is, up at z = Hp, is

up =
n

(n+ 1)

H

2

(
τwall

ηo

)1/n(
1− 2

Hp

H

)(1+n)/n

+ λ

(
τwall

ηo

)1/n(
1− 2

Hp

H

)1/n

. (16)
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It is crucial to emphasize that the equations (15) and (16) governing flow velocities are valid
exclusively when Hp is less than or equal to H/2. If this condition is not met, both u and up

become zero within the channel, resulting in a fully plugged fluid without any movement. The
volume flow rate in a deformable nanochannel is given by

Q = 2W

∫ H(x)/2

0

udz = 2W

∫ Hp

0

updz + 2W

∫ H(x)/2

Hp

udz, (17)

Integrating the right–hand–side of the above equation (17) and using equations (13), (14) with
rearrangment, we get

Q =
2Wn

(2n+ 1)(n+ 1)

(
− ∂p

∂x

1

2ηo

)1/n

(H − 2Hp)
(n+1)/n

(
(n+ 1)H

4
+

nHp

2

)

+WHλ

(
− ∂p

∂x

1

2ηo

)1/n(
H − 2Hp

)1/n

.

(18)
Now, from equation (5), that

H(x) = Ho

(
1 + α

p(x)W

EHo

)
= Ho

(
1 + βp(x)

)
, (19)

where β = α
W

EHo

. Substituting equation (19) in equation (18), we integrate along the channel

length L by assuming a constant pressure gradient and a pressure p(x) at x with respect to the
pressure at the outlet of the channel, where we assumed the outlet pressure p(x = L) = 0. This
yields∫ L

x

Qndx = −

(
2Wn

(2n+ 1)(n+ 1)

)n
1

2ηo

∫ 0

p(x)

(
Ho

(
1 + βp(x)

)
− 2Hp

)n+1
(
(n+ 1)Ho

(
1 + βp(x)

)
4

+
nHp

2

)n

dp.

(20)

∫ L

x

Qndx =
−W n

2ηo

∫ 0

p(x)

(
Ho

(
1 + βp(x)

)
− 2Hp

)[( 2n

(2n+ 1)(n+ 1)

)(
(n+ 1)Ho

(
1 + βp(x)

)
4

+
nHp

2

)(
Ho

(
1 + βp(x)

)
− 2Hp

)
+ λHo

(
1 + βp(x)

)]n
dp.

(21)
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The term in big-square bracket in above equation (21) can be re-written as

[(
2n

(2n+ 1)(n+ 1)

)(
(n+ 1)Ho

(
1 + βp(x)

)
4

+
nHp

2

)(
Ho

(
1 + βp(x)

)
− 2Hp

)
+λHo

(
1 + βp(x)

)]n
=

[
ζ + θβp(x) + ϕ(βp(x))2

]n
,

(22)

where

ζ =

(
n

2(2n+ 1)(n+ 1)

)(
(n+ 1)Ho + 2nHp

)(
Ho − 2Hp

)
+ λHo, (23)

θ =

(
n

(2n+ 1)(n+ 1)

)(
(n+ 1)H2

o −HoHp

)
+ λHo, (24)

and

ϕ =

(
2n

(2n+ 1)(n+ 1)

)(
(n+ 1)H2

o

4

)
, (25)

There will now be two asymptotic limits of the integral in equation (21).

Case 1: Under small displacement assumption, where βp(x) ≪ 1 such that
θ

ζ
βp(x) ≪ 1,

and
ϕ

ζ
βp(x) ≪ 1, therefore the expression in the integral can we approximated to the leading

order of βp(x) as

(
Ho

(
1 + βp(x)

)
− 2Hp

)[
ζ + θβp(x) + ϕ(βp(x))2

]n

= ζn

[
(Ho − 2Hp) +

(
Ho + (Ho − 2Hp)

nθ

ζ

)
βp(x)

]
+O((βp(x))2) + ....

(26)

Using the leading order terms of the integral from equation (26) in equation (21), we get

Qn(L− x) =
ζnW n

2ηo
p(x)

(
(Ho − 2Hp) +

(
Ho + (Ho − 2Hp)

nθ

ζ

)
β
p(x)

2

)
. (27)
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Using x = 0, where p(x) = pin = −∆p (as px=L = 0), we rewrite the above expression as

Q = Wζ(Ho − 2Hp)
1/n

(
−∆p

2ηoL

)1/n(
1 +

(
Ho

(Ho − 2Hp)
+

nθ

ζ

)
β
(−∆p)

2︸ ︷︷ ︸
X

)1/n

. (28)

It is important to highlight that equation (28) governing the volume flow rate is valid for
Hp ≤ H/2. Otherwise, the flow is completely choked in the channel.

Case 2: We have another asymptotic limit, where βp(x) ≫ 1 such that
θ

ζ
βp(x) ≫ 1, and

ϕ

ζ
βp(x) ≫ 1. In this limit, the perturbation due to flexibility is large and the predicted flow

rate can have large errors. Under this limit, the expression in the integral in equation (21) can
be approximated to(

Ho

(
1 + βp(x)

)
− 2Hp

)[
ζ + θβp(x) + ϕ(βp(x))2

]n
≈ ϕn Ho(βp(x))

2n+1. (29)

Using the leading order terms of the integral from equation (29) in equation (21), we inte-
grate, which gives the flow rate as

Qn(L− x) =
W n

4(n+ 1)ηo
ϕn Hoβ

2n+1(p(x))2n+2. (30)

Using x = 0, where p(x) = pin = −∆p (as px=L = 0), we rewrite the above expression as

Q =

(
W n

4(n+ 1)ηoL
ϕn Hoβ

2n+1(−∆p)2n+2

)1/n

. (31)

3.4 Limiting cases

3.4.1 For the Bingham fluid flow with slip in the flexible channel: n = 1

Using equation (28) under small displacement assumption, for the Bingham fluid flow with slip
in the deformable channel, that is, n = 1, we get

Q = Wζ(Ho − 2Hp)

(
−∆p

2ηoL

)(
1 +

(
Ho

(Ho − 2Hp)
+

θ

ζ

)
β
(−∆p)

2

)
, (32)

where

ζ =

(
1

12

)(
2Ho + 2Hp

)(
Ho − 2Hp

)
+ λHo, (33)
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θ =

(
1

6

)(
2H2

o −HoHp

)
+ λHo. (34)

To the best of our knowledge, we have not seen the above derived equation (32) in the literature
so far.

3.4.2 For the Herschel-–Bulkley fluid flow without slip in the flexible channel: λ = 0

Using equation (28) under small displacement assumption, for the Herschel-–Bulkley fluid flow
without slip, that is, λ = 0, we get

Q =
2Wn

(2n+ 1)(n+ 1)

(
−∆p

2ηoL

)1/n[
(Ho − 2Hp)

(n+1)/n

(
(n+ 1)Ho + 2nHp

4

)
(
1 +

(n+ 1)β(−∆p)Ho

2(Ho − 2Hp)
+

n(n+ 1)Hoβ(−∆p)

2(n+ 1)Ho + 4nHp

)1/n]
.

(35)

The above expression (35) is also derived by Garg and Prasad [12] for β|∆p| ≪ 1.

3.4.3 For the Bingham fluid flow without slip in the flexible channel: n = 1, λ = 0

Using equation (28) under small displacement assumption, for the Bingham fluid flow without
slip, that is, n = 1 and λ = 0, we get

Q =
W

12

(
−∆p

ηoL

)[(
Ho − 2Hp

)2(
Ho +Hp

)(
1 +

3H2
o

(Ho − 2Hp)(Ho +Hp)

β(−∆p)

2

)]
. (36)

The above expression (36) is also derived by Garg and Prasad [12] for β|∆p| ≪ 1.

3.4.4 For the Newtonian fluid flow with slip in flexible channel: n = 1, Hp = 0

Similarly, using equation (28) under small displacement assumption, for the Newtonian fluid
flow with slip, that is, n = 1, τy = 0 =⇒ Hp = 0, we get

Q =
W

12

(
−∆p

ηoL

)
H3

o

[(
1 +

3β(−∆p)

2

)
+

6λ

Ho

(
1 + β(−∆p)

)]
. (37)

The above expression (37) is also derived by Garg [15] for β|∆p| ≪ 1.
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3.4.5 For the Newtonian fluid flow without slip in flexible channel: n = 1, Hp = 0, λ = 0

Similarly, using equation (28) under small displacement assumption, for the Newtonian fluid
flow without slip, that is, n = 1, λ = 0, τy = 0 =⇒ Hp = 0, we get

Q =
W

12

(
−∆p

ηoL

)
H3

o

(
1 +

3β(−∆p)

2

)
. (38)

The above expression (38) is also derived by Gervais et al. [13], Christov et al. [14], Garg
[15], Garg and Prasad [12] for β|∆p| ≪ 1.

3.4.6 For the Herschel–Bulkley fluid flow in the rigid channel: β = 0

Using equation (28) under small displacement assumption, for the Herschel–Bulkley fluid flow
in the rigid channel, that is, β = 0, we get

Q =
2Wn

(2n+ 1)(n+ 1)

(
−∆p

2ηoL

)1/n[(
Ho − 2Hp

)(n+1)/n
(
(n+ 1)Ho + 2nHp

4

)]
. (39)

A similar expression, but for the Bingham fluid flow in the rigid channel is given in Chhabra
and Richardson [16].

3.4.7 For the Bingham fluid flow in the rigid channel: β = 0, n = 1

Using equation (28), for the Bingham fluid flow in the rigid channel, we get

Q =
W

12

(
−∆p

ηoL

)(
Ho − 2Hp

)2(
Ho +Hp

)
, (40)

which is also given in Chhabra and Richardson [16].

3.4.8 For the power-law fluid flow in the rigid channel: β = 0, τy = 0

Using equation (28), for the power-law fluid flow in the rigid channel, we get

Q =
HoWn

(2n+ 1)

(
1

2

)(1+n)/n(
−∆p

ηoL

)1/n(
Ho

)(n+1)/n

, (41)

which is also given in Chhabra and Richardson [16].
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3.4.9 For the Newtonian fluid flow in the rigid channel: β = 0, n = 1, Hp = 0

Using equation (28), for the Newtonian fluid flow in the rigid channel, we get

Q =
W

12

(
−∆p

ηoL

)
H3

o , (42)

which is a classical result of Hagen-Poiseuille flow in channels as given in [88, 89, 90, 16, 15].

4 Results and discussion

4.1 Effect of yield stress on the flow in the rigid and deformable channel with and
without wall-slip
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FIG. 1. Velocity profiles at varying yield stress for the rigid (β = 0, in black) and deformable (β = 0.005, in red) channels.
The Solid line, dashed line, and dotted lines show the data at yield stress values of 0 Pa, 2 Pa, and 4 Pa, respectively.
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FIG. 1. Velocity profiles at varying yield stress for the rigid (β = 0), and deformable (β = 0.005) channels. The Solid line,
dashed line and dotted lines show the data at yield stress values of 0 Pa, 2 Pa and 4 Pa, respectively.

(b)

Figure 2: Velocity profiles at varying yield stress for the rigid (β = 0 in black) and deformable (β = 0.005

in red) channels. The solid line, dashed line, and dotted lines show the data at yield stress values of 0
Pa, 2 Pa, and 4 Pa, respectively. In (a) λ = 0 (Taken from Garg and Prasad [12], although using these
parameters with λ = 0, we can also calculate the same using the current model derived in this paper)
and in (b) the slip-length λ = 0.1 m.

For the discussions in the results section, we set Ho = 0.1 m, L = 0.5 m, W = 1 m,
and ηo = 0.7 Pa everywhere. From equation (14), we calculate the values of plug height as
Hp = τyL/|∆p|. Using equations (15) (for z > Hp) and (16) (for 0 ≤ z ≤ Hp), we show the
velocity profiles at |∆p| = 60 Pa, n = 1 at varying yield stress for the rigid (β = 0 Pa−1 in
the black color), and deformable (β = 0.005 Pa−1 in the red color) channels in Figure 2(a,b).
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The solid line, dashed line, and dotted lines show the data at yield stress values of τy = 0 Pa,
τy = 2 Pa, and τy = 4 Pa, respectively in both figures (a) and (b). In (a) λ = 0 (Taken from
Garg and Prasad [12], please note that we can also calculate the same using the current model
derived in this paper with λ = 0) and in (b) the slip-length λ = 0.1 m. We find that due to
flexibility (β = 0.005 Pa−1) in the channel, the channel height increases by 30% for both slip
lengths.

Further, for τy = 0 Pa, we find that as the deformability parameter increases from 0 to
0.005 Pa−1, the maximum velocity at the centerline increases from approximately 0.21 m/s to
0.36 m/s for λ = 0, whereas it increases from approximately 1.1 m/s to 1.5 m/s for λ = 0.1 m.
This trend has been found at non–zero yield stress values too. This suggests irrespective of yield
stress and deformability parameter, the slip increases the velocity and wall-slip shifts the flow
curve to the right. Due to increased velocity, the flow rate also increases. In the presence of
yield stress, the velocity profiles are divided into two parts, the plug velocity within the central
region where the bulk of the fluid moves with a constant velocity as a solid material. On the
other hand, for z > Hp, the velocity profile is dictated as the fluid is flowing normally with
finite shear stresses (> τy). We refer the flow profile discussion when the slip effects are absent
from [12]. For λ = 0.1 m and τy = 2 Pa, the centerline plug velocity increases from 0.65 m/s in
the rigid channel to 1 m/s in the deformable channel with β = 0.005 Pa−1 as shown in Figure
2(b) with dashed black and red lines respectively. A similar increment due to deformation is
found at τy = 4 Pa. This indicates that the deformability increases the velocity and hence the
flow rate in the deformable channel for a given pressure and material properties. We also find
that as the yield stress is increasing, the plug height keeps increasing and the maximum velocity
decreases which also decreases the flow rate in the channel. This trend is the same with and
without wall-slip. We also find that the slip has no effect on the height increment of the channel
due to deformability.

4.2 Effect of shear-thinning/thickening on the flow in the rigid and deformable
channel with and without wall-slip

We show the velocity profiles at |∆p| = 60 Pa, τy = 2 Pa at varying shear thinning/thickening
index n for the rigid (β = 0 Pa−1 in the black color), and deformable (β = 0.005 Pa−1 in the
red color), channels in Figure 3(a,b). The solid line, dashed line, and the dotted lines show the
data at shear thinning/thickening index n of n = 0.8, n = 1, and n = 1.2, respectively. In (a)
λ = 0 (Taken from Garg and Prasad [12], please note that we can also calculate the same using
the current model derived in this paper with λ = 0) and in (b) the slip-length λ = 0.1 m. The
central region within the dashed blue line indicates the plug flow region.

We find that due to non–zero yield stress in all predictions, the velocity profiles are divided
into two parts, the plug velocity in the central region and the normal shearing velocity towards
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FIG. 1. Velocity profiles at varying shear thinning and thickening index for the rigid (β = 0, in black), and deformable
(β = 0.005, in red) channels. The Solid line, dashed line, and dotted lines show the data at shear thinning/thickening index
values of n = 0.8, n = 1, and n = 1.2, respectively. The central region within the dashed blue line indicates the plug flow
region.
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FIG. 1. Velocity profiles at varying shear thinning and thickening index for the rigid (β = 0), and deformable (β = 0.005)
channels. The Solid line, dashed line and dotted lines show the data at shear thinning/thickening index values of n = 0.8,
n = 1 and n = 1.2, respectively.

(b)

Figure 3: Velocity profiles at varying shear thinning and thickening index for the rigid (β = 0 in black)
and deformable (β = 0.005 in red) channels. The solid line, dashed line, and dotted lines show the data
at shear thinning/thickening index values of n = 0.8, n = 1, and n = 1.2, respectively. In (a) λ = 0

(Taken from Garg and Prasad [12], please note that we can also calculate the same using the current
model derived in this paper with λ = 0) and in (b) the slip-length λ = 0.1 m. The central region within
the dashed blue line indicates the plug flow region.

the channel wall. For n = 1 (Bingham fluid), as the deformability parameter increases from 0
to 0.005 Pa−1, the maximum velocity at the centerline increases from approximately 0.09 m/s
to 0.2 m/s for λ = 0, whereas it increases from approximately 1.1 m/s to 1.5 m/s for λ = 0.1 m
as shown with dashed lines. This trend has been found in shear thinning (n = 0.8) and shear
thickening (n = 1.2) materials too. This suggests irrespective of yield stress and deformability
parameter, the slip increases the velocity and wall-slip shifts the flow curve to the right. Due to
increased velocity, the flow rate also increases. We refer the flow profile discussion when the slip
effects are absent from [12]. For λ = 0.1 m and n = 0.8, the centerline plug velocity increases
from 0.65 m/s in the rigid channel to 1 m/s in the deformable channel with β = 0.005 Pa−1 as
shown in Figure 3(b) with dashed black and red lines respectively. A similar increment due to
deformation is found at n = 1.2. This indicates that the deformability increases the velocity and
hence the flow rate in the deformable channel for a given pressure and material properties. We
also find that as the shear thinning/thickening index n is increasing, although the plug height
remains the same but the maximum velocity decreases which also decreases the flow rate in the
channel. This trend is the same with and without wall-slip. We also find that the slip has no
effect on the plug height. Further, we find that, the slip has no effect on the channel height
increment due to deformability.
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FIG. 1. Velocity profiles at varying shear thinning and thickening index for the rigid (β = 0), and deformable (β = 0.005)
channels. The Solid line, dashed line and dotted lines show the data at shear thinning/thickening index values of n = 0.8,
n = 1 and n = 1.2, respectively.

Figure 4: We show the flow rate (with λ = 0.1 m) in the rigid (β = 0 Pa−1) channel at varying |∆p|,
and shear thinning/thickening index n at τy = 0 Pa in (a), and τy = 1 Pa in (c), respectively. The red
arrow indicates the increasing values of shear thinning/thickening index n with 0.5, 0.75, 1, 1.25, 1.5,
1.75, 10, 20, and 500 from blue triangle to red circles, respectively. In Figures (b) and (d), we show the
corresponding plug height with varying pressure for all n at τy = 0 Pa, and τy = 1 Pa, respectively.

4.3 Effect of yield stress and shear thinning/thickening index on the flow rate in
the rigid channel with wall-slip

Using equation (28) with λ = 0.1 m, we calculate the flow rate in the rigid (β = 0 Pa−1)
channel at varying |∆p| and shear thinning/thickening index n at τy = 0 Pa in Figure 4(a)
and τy = 1 Pa in Figure 4(c), respectively. The red arrow indicates the increasing values of
shear thinning/thickening index n with values 0.5, 0.75, 1, 1.25, 1.5, 1.75, 10, 20, and 500 from
blue triangle to red circles, respectively. We find that for n < 1, the flow rate curve is like an
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upward parabola, whereas for n = 1, it is a straight line and n > 1, it is a rightward parabola.
Due to that, for |∆p| ≤ 10 Pa, the flow rate for n < 1 is lower than for n > 1, whereas it
becomes the opposite for |∆p| > 10 Pa. In the case of a rigid channel wall, the flow rate scales
as Q ∼ (|∆p|)1/n. We find that for n = 10, 20, Q is significantly dependent on |∆p|, whereas in
case of no-slip (that is λ = 0 m), it was weakly dependent as observed by Garg and Prasad [12].
Further at |∆p| ≈ 0, the flow rate is significant with slips, whereas it was one-third of it, when
slip was not considered by Garg and Prasad [12]. We also find that as the n ≫ 1 such as for
n = 500 (shown with red asterisk), the flow rate becomes independent to |∆p|. This behaviour
is consistent with the scaling also, where Q ∼ (|∆p|)1/n and as n =⇒ ∞, Q ∼ (|∆p|)0 . In
Figure 4(b), we show the corresponding plug height with varying pressure for all n. We find
that for τy = 0 Pa, Hp = 0 for all n and the data collapse on the same line. This behaviour is
the same as when the slip was absent as observed by Garg and Prasad [12].

On the other hand for τy = 1 Pa in Figure 4(c), we observe that below |∆p| = 10 Pa,
Hp = Ho/2. Thus, the material inside the channel is plugged and cannot flow, hence it shows
no flow rate. As the pressure difference increases, the flow rate starts to build and show similar
trends as in Figure 4(a). We find that for n = 10, 20, Q is significantly dependent on |∆p|,
whereas in case of no-slip (i.e. λ = 0 m), it was weakly dependent as observed by Garg and
Prasad [12]. Further at |∆p| ≈ 10, the flow rate is significant with slips while it was zero when
slip was not considered by Garg and Prasad [12]. We also observe that for given |∆p| and n,
the flow rate decreases as yield stress is increased. We show the corresponding plug height at
τy = 1 Pa with varying pressure for all n in Figure 4(d). We see that the plug height Hp collapse
on the same curve for all n. We also find that for τy = 1 Pa, Hp = Ho/2 for |∆p| ≤ 10 Pa. As
the pressure increases the Hp monotonically decreases as Hp ∼ |∆p|−1, which is consistent with
equation (14). This behaviour is the same as when the slip was absent as observed by Garg and
Prasad [12]. Further, the shear thinning/thickening index does not affect the plug height in the
presence of slips, which is same as when the slip was absent as predicted in Garg and Prasad
[12]. This behaviour is also consistent with what we saw in the velocity profiles in the previous
section 4.2.

4.4 Effect of yield stress and shear-thinning/thickening index on the flow rate in
the deformable channel with wall-slip

Using equation (28) with λ = 0.1 m, we calculate the flow rate in the deformable (β =

0.005 Pa−1) channel at varying |∆p|, and shear thinning/thickening index n at τy = 0 Pa
in Figure 5(a) and τy = 1 Pa in Figure 5(c), respectively. The red arrow indicates the increasing
values of shear thinning/thickening index n with 0.5, 0.75, 1, 1.25, 1.5, 1.75, 10, 20, and 500
from blue triangle to red circles, respectively. We find that for n < 1.75, the flow rate curve is
like an upward parabola, whereas for n = 1.75, it is a straight line, and n > 1.75, it is a right-
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FIG. 1. Velocity profiles at varying shear thinning and thickening index for the rigid (β = 0), and deformable (β = 0.005)
channels. The Solid line, dashed line and dotted lines show the data at shear thinning/thickening index values of n = 0.8,
n = 1 and n = 1.2, respectively.

Figure 5: We show the flow rate (with λ = 0.1 m) in the deformable (β = 0.005 Pa−1) channel at varying
|∆p|, and shear thinning/thickening index n at τy = 0 Pa in (a), and τy = 1 Pa in (c), respectively. The
red arrow indicates the increasing values of shear thinning/thickening index n with 0.5, 0.75, 1, 1.25,
1.5, 1.75, 10, 20, and 500 from blue triangle to red circles, respectively. In Figures (b) and (d), we show
the corresponding plug height with varying pressure for all n at τy = 0 Pa and τy = 1 Pa, respectively.

ward parabola. We see that for n = 10, 20, the Q is significantly dependent on |∆p| whereas in
case of no-slip (i.e. λ = 0 m), it was weakly dependent as observed by Garg and Prasad [12].
Further at |∆p| ≈ 0, the flow rate is significant with slips whereas it was one-third of it, when
slip was not considered by Garg and Prasad [12]. In case of deformable wall channel, the flow
rate scales as Q ∼ (|∆p|)1/n for X ≲ O(10−1) (the X , which is shown as the under–brace term
in equation (28). On the other hand the flow rate scales as Q ∼ (|∆p|)2/n for X ∼ O(100).
We truncated our expansion in equation (26) because of the small displacement deformability,
otherwise for much larger pressure, we need to take those terms into account which gives the
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scaling as Q ∼ (|∆p|)2+2/n as shown in equation (31) (although the theory could predict large
errors in this asymptotic limit. For n = 1, we find that the flow rate Q ∼ (|∆p|)4, which is
consistent as found in [14, 13, 15]). In Figure 5(b), we show the corresponding plug height with
varying pressure for all n. Also, for τy = 0 Pa, Hp = 0. This behaviour is the same as when the
slip was absent as observed by Garg and Prasad [12].

On the other hand for τy = 1 Pa in Figure 5(c), we observe that below |∆p| = 10 Pa,
Hp = H/2, similar to as in the case of no-slip (i.e. λ = 0 m) where the complete material inside
the channel is plugged and can not flow. For slightly higher pressure from 10 Pa, we find that, as
the pressure difference increases, the flow rate starts to abruptly build and show similar trends
as in Figure 5(a). We find that for n = 10, 20, the Q is significantly dependent on |∆p| whereas
in case of no-slip (i.e. λ = 0 m), it was weakly dependent as observed by Garg and Prasad [12].
We further find that for given |∆p|, and n, the flow rate decreases as yield stress is increased
similar to as in the case of λ = 0. We show the corresponding plug height at τy = 1 Pa with
varying pressure for all n in Figure 5(d). We find that for τy = 1 Pa, Hp = H/2 for |∆p| ≤ 10 Pa
similar to as in the case of no-slip, as predicted in Garg and Prasad [12]. This suggests that
slip does not affect the yield surface/ plug height. As the pressure increases, Hp monotonically
decreases as Hp ∼ |∆p|−1. We also find that in the case of the deformable channel as well,
the shear thinning/thickening index does not affect the plug height in the presence of slips,
which is same as when the slip was absent as predicted in Garg and Prasad [12]. This is also
consistent with what we saw in the velocity profiles in the previous section 4.2. On comparison
of Figure 4(a,c), and 5(a,c), we further find that at given pressure and material properties, due
to deformability, the flow rate increases with and without slips, but with slips the flow rate
increases more than without slips.

4.5 Back/reversal flow in the deformable channel

We show the flow rate (with λ = 0 m) in the deformable (β = 0.005 Pa−1) channel at varying
|∆p|, and shear thinning/thickening index n at τy = 4 Pa in Figure 6(a). We find that the
Hp > H/2 for pressure upto |∆p| = 35 Pa. In this regime, the flow is completely choked and
Q = 0. Further, when we increase the pressure in the range between 35 Pa to 40 Pa, the plug
height in the channel becomes Ho/2 < Hp < H/2. As we know at the outlet of the channel
pressure is assumed to be zero (that is p(x = L) = 0), which gives the outlet deformable channel
height as Ho/2. Also, the deformable channel height due to elasticity between the reservoir and
the outlet is greater than the Ho/2 (as p(x ̸= L) ̸= 0). Due to that in this flow regime, the
outlet of the channel is completely blocked by the plug height. On the other hand, the flow
comes in from the reservoir as the plug height at the reservoir is less than the height H(x = 0)/2

of the channel. We believe that when the elastic wall of the channel becomes blocked at the
outlet, it creates a pressure buildup due to the blockage. As the fluid might not readily deform

21

https://doi.org/10.26434/chemrxiv-2023-l3knn ORCID: https://orcid.org/0000-0003-4544-7036 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-l3knn
https://orcid.org/0000-0003-4544-7036
https://creativecommons.org/licenses/by-nc-nd/4.0/


1

0 10 20 30 40 50 60
−0.001

0

0.001

0.002

0.003

0.004

|∆p| [Pa]

Q
m

3
/
s

(a) (b)

0 10 20 30 40 50 60

0

0.25

0.5

0.75

1

|∆p| [Pa]

2
H

p
/
H

 

 

n = 0.5
n = 0.75
n = 1
n = 1.25
n = 1.5
n = 1.75
n = 10
n = 20
n = 500

FIG. 1. Figure (a) shows the mass flow rate and (b) shows the percentage change in flow rate with respect to rigid wall of
the channel as a function of varying reservoir pressure. The black and red arrows indicate the increasing and corresponding
decreasing values of upper capping wall thickness T and α, respectively.
Figure 6: We show the flow rate (with λ = 0 m) in the deformable (β = 0.005 Pa−1) channel at
varying |∆p|, and shear thinning/thickening index n at τy = 4 Pa in (a). In Figure (b), we show the
corresponding plug height with varying pressure for all n.

or flow out in the direction of outlet, it moves in the reverse direction where the walls are wider
and have less resistance to the flow. Further, as the pressure is increased beyond 40 Pa in the
reservoir, the plug height becomes less than the outlet height of the channel (i.e. Hp < Ho/2).
In this flow regime the outlet blockage is removed and the flow starts to move normally in the
forward direction. If we further increase the pressure, the flow rate increases normally with the
same trend with the pressure as observed and discussed in the previous section too.

In Figure 6(b), we show the corresponding plug height with varying pressure for all n. We
find that as the yield stress increases to 4 Pa, the flow is completely choked upto 35 Pa, whereas
it was choked upto 10 Pa for τy = 1 Pa as shown in figure 5(d). Further increment in pressure
decreases the plug height, but we find that in comparison to τy = 1 Pa, the plug height is more
for τy = 4 Pa. We will discuss the effect of slip and deformability on the plug height in the next
section.

4.6 Effect of wall-slip and deformability

We study the variation of plug height in this section. In Figure 7, we show the plug height in
the rigid channel (in (a)) and in the deformable (β = 0.005 Pa−1) channel (in (b)), respectively.
We calculated the plug height using both λ = 0 m and λ = 0.1 m for n = 0.5 at varying |∆p| for
the yield stress between 0 (in black) to 5 Pa (in green). The curves for the rigid and deformable
channels for both λ = 0 m and λ = 0.1 m superimpose on each other for both the rigid and
the deformable channels. This suggests that the slip does not affect the plug height in both the
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FIG. 1. Figure (a) shows the mass flow rate and (b) shows the percentage change in flow rate with respect to rigid wall of
the channel as a function of varying reservoir pressure. The black and red arrows indicate the increasing and corresponding
decreasing values of upper capping wall thickness T and α, respectively.
Figure 7: We show the plug height at both λ = 0 m and λ = 0.1 m for the n = 0.5 in the rigid channel
(in (a)) and in the deformable (β = 0.005 Pa−1) channel (in (b)) at varying |∆p| for the yield stress
between 0 (in black) to 6 Pa (in green).

rigid and the deformable channels. We observed that the plug height is zero for τy = 0 Pa in
both the rigid and the deformable channels as shown with black data curve. We find that as τy
increases the 2Hp/H remains one for larger magnitude of the applied pressure. This is because
the Hp ∝ τy. By comparing the plug height in rigid and deformable channels, we find that at
a given yield stress, the |∆p|deformable < |∆p|rigid at which the flow is completely choked with
2Hp/H = 1.

Beyond choked flow, the plug height starts to decrease with Hp = 1/|∆p| for both the rigid
and the deformable channels. We find that for any given applied pressure and yield stress, the
(Hp)deformable < (Hp)rigid. This behaviour suggest that deformable elastic walls decrease the plug
region as well as an early onset of flow with the pressure in comparison to the rigid channel. On
the other hand, as stated earlier, the wall-slip has no effect on the plug region and the onset of
flow.

5 Conclusion

In this paper, we derived analytical model for the velocity profiles and volumetric flow rate in
rigid and deformable channels for the shear thinning and shear thickening yield stress materials
by considering slips. We focus on investigating the impact of many factors such as the deforma-
bility of the channel wall, yield stress, shear thinning, and shear thickening index when slip was
present and compared it with flow dynamics with no-slips as reported by Garg and Prasad [12].
In these derivations, we used the small displacement structural mechanics and perturbation
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theory presented by Gervais et al. [13], and Christov et al. [14], respectively for the constitutive
relations of the elastic nature of the channel–walls. We assumed the lubrication assumption in
the shallow channels, where the flow velocity profile is assumed to be determined locally by the
fluid rheology and the size of the local cross–sectional area. The newly derived model facilitate
the flow dynamics of Newtonian fluids, power–law fluids, Bingham fluids, and shear thinning
and thickening yield stress fluids with and without slips as its limiting cases. For validation,
several sensible trends have been observed. These include the exact derived expression to their
corresponding rigid channel–wall formulas given in literature [13, 14, 15, 16] for the Bingham
fluids, power–law fluids and the Newtonian fluids. Thorough tests have revealed that the newly
derived model produce mathematically and physically sensible results in diverse situations of
fluid rheology, shallow channel geometry, and boundary conditions and able to predict in a great
extent the effect of slips to the flow dynamics of these.

We also examined the influence of the deformability of the wall on the yield stress fluid flows
behavior in the presence of slips within the channels. We found that the deformability increases
the effective channel height and the flow rate in the channel. Also, the slip increase both the
velocity and the flow rate. In case of deformable wall channel with slips, the flow rate scales
as Q ∼ (|∆p|)1/n for X ≲ O(10−1) (the X is shown as the under–brace term in equation (28)),
on the other hand the flow rate scales as Q ∼ (|∆p|)2/n for X ∼ O(100). Further, for the large
perturbations, the flow rate scales as Q ∼ (|∆p|)2+2/n (although the theory could predict large
errors in this asymptotic limit, and for n = 1, we find that the flow rate Q ∼ (|∆p|)4, which is
consistent as found in [14, 13, 15]). These flow rate scaling are similar to what is observed by
Garg and Prasad [12] in the absence of slips. We observe the back flow due to deformability
in the channel when the yield surface is between Ho/2 < Hp < (Ho + δ)/2, where δ is the
increase in channel’s height due to the elastic walls. We also observe that the deformability in
the channel decreases the relative yield surface height with respect to the channel in comparison
to the rigid-wall channel due to that the flow rate increases. Although wall-slip does not affect
the yield surface/ plug height. It is known that due to the presence of yield stress, a threshold
inlet pressure is required for the onset of flow in the channels unlike in the case of the Newtonian
or power–law fluids. Garg and Prasad [12] found that below this threshold, the flow is choked
in the channels with plug height the same as the channel height, that is, Hp = ±H/2, we find
the same observations in the presence of slips. We also find that increasing yield stress leads
to decreases in the velocity in the plug flow as well as in the non–plug flow regions. Increasing
yield stress also leads to increasing the yield surface height and the solid plug in the central
region due to decreasing the flow rate. This is also the same in the absence of the wall-slip as
observed by Garg and Prasad [12]. Further, the shear thinning index does not affect the plug
height, although as the index increases the flow rate starts to decrease due to corresponding
more shear thickening of the material, which is also the same in the absence of the wall-slip as
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observed by Garg and Prasad [12].
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