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Abstract 

Herein, the nanozymatic behavior of protein-protected gold and SiO2@gold nanoparticles 

were evaluated and their results compared with each other. The results showed that both 

protein-protected gold and SiO2@gold nanoparticles reveal intrinsic peroxidase-like 

activity. Hence, to precise comparison of nanozymatic behavior of these nanozymes, the 

kinetic studies were performed using the Michaelis–Menten steady-state kinetics model 

and the velocity and affinity factors were calculated for both nanozyme and then utilized 

as a reliable way for comparison of nanozymatic behavior of these nanozymes. The 

results showed that the Vmax of protein-protected gold nanoparticles was 12.0-fold higher 

than that of SiO2@gold nanoparticles, revealing that the catalytic efficiency of protein-

protected gold nanoparticles is 12.0-fold higher than SiO2@AuNPs nanocomposite. 

Besides, the Km value of SiO2@gold nanoparticles was 2-order higher than that of protein-

protected gold nanoparticles, indicating that the substrate affinity toward protein-

protected gold nanoparticles is 2.0-order higher than the SiO2@gold nanoparticles. Based 

on the results of this work it can be concluded that protein-protected gold nanoparticles 

are more efficient nanozymes than SiO2@gold nanoparticles. 
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Importance and practical application of nanotechnology in modern life lead to design 

and synthesis of different nanomaterials with optical [1-3], catalytic [4, 5], anti-cancer 

features [6], medical [7], or anti-bacterial [8, 9] characteristics such as carbon and metal-

based nanoparticles [10, 11], quantum dots [12, 13], metal oxide nanoparticle [14], 

magnetic nanoparticles [15], and metal-organic frameworks [16, 17], etc. Among various 

nanoparticles with different properties, recently, nanomaterials with enzyme-like 

properties, called nanozymes have been widely utilized for catalyzing industrial, clinical, 

and environmental enzyme-mediated reactions under harsh conditions [18-26]. The most 

significant advantage of these nanozymes compared to the native enzymes is their lower 

cost, higher efficiency, and especially, their high cycling stability and recyclability [19, 27-

30]. Up to now, different nanoparticles with intrinsic peroxidase-like activity were 

designed and synthesized, for instance, Mn3 O4 nanozymes [31], Cu-CuFe2O4 nanozymes 

[32], BSA-stabilized manganese dioxide nanoparticles [33],   BSA-stabilized manganese 

phosphate nanoflower [34], carbon nanozymes [35], silica-coated-magnetic nanoparticles 

[36], MnO2 nanoparticles [37], Fe3O4 nanozymes [38], self-cascade pyrite nanozymes [39], 

metal-organic frameworks [40], gold nanozymes [41-45], S/N codoped carbon nanozymes 

[46], and silver nanoparticles [47-52]. Among the different nanomaterials with excellent 

peroxidase-like activity, gold-based nanozymes have been widely for developing 

nanozyme-based sensors [53, 54], nanozyme-based cancer treatment [55], and nanozyme-

mediated dye degradation [56]. Moreover, since the first report of patients infected with 

the new infection disease, COVID-19 in 2019 [57, 58], nanozyme-based methods have 

been developed for fast clinical diagnosis of this pandemic infection [59-62]. Hence, 

evaluation of their biochemical features and enzyme-like properties is important for 

developing nanozyme-based systems with better figures of merit. In this regard, the 

biochemical behavior of enzyme-like nanosilver was also investigated by our research 

group [63]. Besides, recently, our research group reported a research article on the 

investigation of biochemical behaviors of BSA-stabilized gold nanoparticles [64, 65]. 
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Herein, the nanozymatic behavior of protein-protected gold and SiO2@gold nanoparticles 

were evaluated and their results compared with each other. The results showed that both 

protein-protected gold and SiO2@gold nanoparticles reveal intrinsic peroxidase-like 

activity. Hence, to precise comparison of nanozymatic behavior of these nanozymes, the 

kinetic studies were performed using the Michaelis–Menten steady-state kinetics model 

and the velocity and affinity factors were calculated for both nanozyme and then utilized 

as a reliable way for comparison of nanozymatic behavior of these nanozymes. Based on 

the results of this work it can be concluded that protein-protected gold nanoparticles are 

more efficient nanozymes than SiO2@gold nanoparticles. 

2. Experimental 

2.1. Synthesis  of nanomaterials 

For the synthesis of protein-protected gold nanoparticles, 10.0 mM HAuCl4.4H2O (5.0 

mL) was introduced to 50 mg mL-1 bovine serum albumin (BSA; 5.0 mL), followed by 

stirring at 37 °C and adding 1.0 M NaOH to adjust pH. The solution was incubated at 37 

°C for 12 hours to complete the synthesis process. For synthesis, the SiO2/gold 

nanoparticles, in a typical experiment, 1.0 mL of HAuCl4, 10.0 μL 

tetrakis(hydroxymethyl)phosphonium chloride, and 500.0 μL NaOH (2.0 M) were 

introduced in 50.0 mL deionized water. The resulting mixture was stirred for about 1.0 

hour to prepare the colloidal gold solution.  To synthesize the amino-functional SiO2 NPs, 

1.5 mL of TEOS was added into 40.0 mL of pure ethanol, followed by the addition of 3.0 

mL of NH4OH. The mixture was stirred for about 20.0 hours. Afterward, 20.0 mg of the 

resulting precipitate was treated with 600.0 μL of APTES for preparation of the final 

product. Afterward, 10.0 mg of the amino-functional SiO2 NPs were incubated with a 

solution of colloidal gold (prepared in section 2.3) for about 12.0 hours. Afterward, the 

product was separated from the reaction media upon centrifuge at 10000 rpm for 30.0 

min.  The resulting product was dispersed in 1 mg mL-1 of PVP (stabilizer) aqueous 
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solution, followed by the addition of 60.0 μL of HAuCl4 (10.0 mM) and 120.0 μL of 10.0 

mM ascorbic acid (reducing agent) into the reaction media.  The synthesis process was 

followed by stirring the above-mentioned mixture for about 5 min. Afterward, the 

resulting SiO2/gold nanoparticles were collected, washed, and then dried at room 

temperature.  

3. Results and discussion 

3.1. Quantification of maxium velocity velocity and affinity factor 

Kinetic studies were carried out to calculate the kinetic parameters of the as-prepared 

SiO2/gold nanoparticles toward 2-electron reversible oxidation of TMB. In fact, the kinetic 

parameters of an enzyme were previously well defined with numeric values including 

affinity constant (Km) and maximum enzymatic velocity (Vmax) utilizing the Michaelis–

Menten steady-state kinetics model.  The Vmax value reflects the intrinsic properties of an 

enzyme or nanozyme and is defined as the highest possible rate of the nanozyme-

catalyzed reaction when all enzyme molecules or all nanozyme particles are saturated 

with the substrate which points to the catalytic efficiency of an enzyme or nanozyme. 

Hence, the higher value of Vmax for an enzymatic/nanozymatic reaction can be assigned 

to the higher catalytic efficiency of the enzyme or nanozyme [66-71]. In contrast, the 

affinity of the substrate of an enzyme or nanozyme for interaction with its active site is 

represented by the Km, as reported [66]. In fact, the lower values of Km pointed to the 

higher affinity of the substrate for binding to the enzyme/nanozyme active site/nodes 

[17]. Therefore, to evaluate the kinetics parameters of the as-prepared nanocomposite, the 

Michaelis–Menten model was obtained. For accurate estimation of Km and Vmax of the 

SiO2/gold nanoparticles-mediated oxidation reaction, the Lineweaver–Burk plot was also 

constructed for the SiO2@gold nanocomposite-mediated reaction (Figure 1). The results 

revealed a Vmax of 0.022 µM min-1 and a Km as very low as 0.06 mM for the SiO2@gold 

nanocomposite. Considering the low Km value of the as-synthesized nanocomposite, it 
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can be concluded that the as-prepared nanocomposite shows high substrate affinity, as 

reported [17]. Besides, obtaining a Vmax of 0.022 µM min-1, revealed that the as-prepared 

nanocomposite has a very good catalytic efficiency.  

  

Figure 1. Lineweaver–Burk plot for the as-prepared SiO2@gold nanoparticles to estimate 

the kinetic factors of nanozymatic reaction catalyzed by SiO2@gold nanoparticles. 

 

Besides, the kinetics studies for exploring more precise on reporting of the 

peroxidase-like activity and enzymatic power of the as-prepared protein-protected gold 

nanoparticles were carried out by estimating their activity as a function of substrate 

concentration and then, the standard Lineweaver–Burk plot was provided by plotting the 

inverse of the velocity of the nanozymatic reaction (V-1) as a function of [substrate]-1 for 

estimating the nanozymatic kinetics parameters. To estimate the kinetic parameters of 

gold nanozymes toward TMB oxidation, the Lineweaver–Burk plot was constructed 
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(Figure 2). Considering the results obtained in Figure 2, the Vmax and Km of the as-

mentioned gold nanozymes were calculated at about 263 nM sec-1 and 0.03 mM, in order. 

    

Figure 2. Lineweaver–Burk plot for the as-prepared protein-protected gold nanoparticles 

to estimate the kinetic factors of nanozymatic reaction catalyzed by protein-protected 

gold nanoparticles 

2. Comparsion of nanozymatic behavior 

According to the experimental results of this work, the Vmax of gold nanoparticles was 

12.0-fold higher than that of SiO2/Au nanocomposite, revealing that the catalytic 

efficiency of BSA-stabilized gold nanoparticles is 12.0-fold higher than SiO2/Au 

nanocomposite. Besides, the Km value of SiO2/Au nanocomposite was 2-order higher than 

that of gold nanoparticles, indicating that the substrate affinity toward gold nanoparticles 

is 2.0-order higher than the SiO2/Au nanocomposite. Since, the active nodes of both 

nanozymes are the same (i.e., gold), the difference between their catalytic efficiency and 
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affinity can be assigned to their different sizes and the ability of the active nodes to bind 

the substrate.  Based on the results of this work, small-size gold nanoparticles are 

characteristically more efficient peroxidase mimic materials than the SiO2/Au 

nanocomposite.  

4. Conclusions 

Herein, the nanozymatic behavior of protein-protected gold and SiO2@gold nanoparticles 

were evaluated and their results compared with each other. The results showed that both 

protein-protected gold and SiO2@gold nanoparticles reveal intrinsic peroxidase-like 

activity. Hence, to precise comparison of nanozymatic behavior of these nanozymes, the 

kinetic studies were performed using the Michaelis–Menten steady-state kinetics model 

and the velocity and affinity factors were calculated for both nanozyme and then utilized 

as a reliable way for comparison of nanozymatic behavior of these nanozymes. The 

results showed that the Vmax of protein-protected gold nanoparticles was 12.0-fold higher 

than that of SiO2@gold nanoparticles, revealing that the catalytic efficiency of protein-

protected gold nanoparticles is 12.0-fold higher than SiO2@AuNPs nanocomposite. 

Besides, the Km value of SiO2@gold nanoparticles was 2-order higher than that of protein-

protected gold nanoparticles, indicating that the substrate affinity toward protein-

protected gold nanoparticles is 2.0-order higher than the SiO2@gold nanoparticles. Based 

on the results of this work it can be concluded that protein-protected gold nanoparticles 

are more efficient nanozymes than SiO2@gold nanoparticles. 
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