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ABSTRACT: New antibiotics are required to combat the emergence of drug-resistant bacteria. S. aureus is a Gram-positive pathogen 
that often displays multidrug resistance. Through conventional screening approaches, the discovery of new antibiotics against S. 
aureus has proven to be challenging. Molecular property prediction of novel antibiotics candidates by machine-learning (ML) 
methods has increased the rate at which such molecules are identified. The bottleneck of the existing approaches relies on the structure 
similarities for the existing antibiotics. Then the question about discovering and developing new unconventional antibiotic classes 
has challenged preconceptions about the scope and applicability of the existing methods. Herein, we developed an ML approach that 
predicts the minimum inhibitory concentration (MIC) of Re-complexes towards two S. aureus strains (ATCC 43300 - MRSA and 
ATCC 25923 - MSSA). In our framework, we tailored a Multi-layer Perceptron (MLP) by inherently accounting for the structure 
features of the Re- complexes to develop a prediction model for antimicrobial activity assessment. Although our approach is 
demonstrated with a specific example based on the rhenium carbonyl complexes, the predictive model can be readily adapted to other 
candidate metal complexes. The developed model emphasizes the application of machine learning in the de novo design of a novel 
generation of antibiotic molecules with targeted activity against a challenging pathogen. 

INTRODUCTION  

It has been recognized that the emergence of antibiotic-resistant 
microbes represents a "clear and present danger" with a global 
impact, and, therefore, an effective response should be facilitated 
by adopting a novel approach for the de-novo design of novel 
classes of microbicides. As much as one-third of Healthcare-
Associated Infection (HAI) cases can be attributed to 
environmental surfaces, particularly hospital “high touch” surfaces 
(e.g., bed rails, machine buttons, and equipment). The number of 
HAI cases reported in hospitals in the United States is estimated to 
be 1.7 million annually, resulting in 99,000 deaths and an estimated 
$20 billion in healthcare costs. Organometallic complexes, 
especially rhenium-based complexes 1–8, have recently emerged as 
potent antibacterial agents and hold promise thanks to the 
flexibility of their chemistry that allows one to change their 
structure and the nature of their ligands. Their mechanism of action 
is not fully understood, but current evidence points to the bacterial 
membranes as the target of compounds. 9–119–11 In addition to the 
lack of information about how these antimicrobial agents behave, 
the molecular features contributing to their bactericidal 
effectiveness are also unknown. The development of novel 
approaches to antibiotic discovery is required in order to increase 
the rate at which new antibiotics are discovered and reduce the 
associated costs of lead identification in early preclinical testing. 
As a result of recent advances in machine learning (ML) the field 
is now able to predict a plethora of molecular properties, and to 
apply the same to identify new antibiotic structural classes. 12–16 

Exploring vast chemical spaces outside the reach of current 
experimental approaches is possible by adopting methodologies 
that enable early drug discovery in silico. ML could offer an 
alternative approach to streamline the development process of de 
novo antibiotics by identifying the key motif in the molecular 
structure associated with antibiotic activity. The application of ML 
to drug discovery, specifically antibiotic discovery, has been 
greatly facilitated by the public availability of empirical datasets.17-

20 Antibacterial screening approaches still do not have efficient 
tools and strategies for rapidly increasing the number of new 
chemotypes. Implementing the ML methods for novel compounds 
acting against Gram-negative bacteria is scarcely used.  One 
example is the Open Antimicrobial Drug Discovery (CO-ADD) for 
metal-containing compounds with antimicrobial activity. 21-22  

ML-guided approach based on descriptor space search and 
selection has already been used to predict antimicrobial activity. 23–

26 The way of representing molecules is a crucial step. Numeric 
vectors consisting of molecular descriptor values (features) have 
already been utilized before the widespread applicability of ML in 
QSAR (quantitative structure−activity relationship) modeling.  
Molecular graph networks are another way of describing molecules 
where each atom is represented as a node, and each bond between 
the atoms is represented as an edge. There is a close relationship 
between ML models and molecular representations. Depending on 
how the chemical structures are presented, the chemical space can 
be defined as the union of all possible chemical compounds that 
can be used to find new antibiotic candidates that resemble existing 
ones.   
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Herein, we preset an application of the ML approach for the 
prediction of the antibacterial activity of new antibiotic candidates 
based on Re-metal complexes towards two S. aureus strains 
(namely ATCC  43300, MRSA and ATCC 25923, MSSA), using 
molecular descriptors and neural network architectures. Our 
framework provides a rapid method for developing a model able to 
predict minimum inhibitory concentrations (MIC) of the metal 
complexes. It consists of the following elements: (1) molecular 
representation based on the structure of the complexes, (2) feature 
reduction space, (3) ML algorithm, and (4) molecular descriptor 
specificity analysis (featuring importance scores). By leveraging 
the physicochemical properties captured by the molecular 
structures of 119 Re-complexes, measured data points (minimum 
inhibitory concentration) towards the activity of S. aureus ATCC  
43300 and S. aureus ATCC 25923 strains were used for the 
antimicrobial activity prediction of previously untested complexes.  

Results and Discussion  

Synthesis of metal complexes 

A dataset of 119 Re(CO)3 complexes was compiled for this work. 
Of these, 20 complexes, not previously evaluated for their 
antibiotic activity, were synthesized and used as the validation set 
for the model (Figure 1). Complexes shown in Figure 1 were 
prepared according to well-established procedures employed in the 
chemistry of this metal core. [Re(CO)3(NN)X] species (where NN 
= diimine ligand and X = halide; Br or Cl) were obtained by 
reacting commercially available Re(CO)5X with one equivalent of 
NN in refluxing toluene. Upon cooling, the desired compounds 
precipitate and are then filtered and washed with a cold solvent to 
yield the molecules with a purity ≥ 95%.  Pyridine (py) and 
clotrimazole (ctz) derivatives of the compounds were prepared by 
reaction of [Re(CO)3(NN)X] with AgOTf in the presence of py or 
ctz, followed by precipitation and HPLC purification. 
Characterization of the new compounds is given in SI. 

 
Figure 1. Structures of validation complexes tested for 
antimicrobial activity against S. aureus ATCC 25923 (MSSA) and 
S. aureus ATCC 43300 (MRSA) strains. 

 

Predictive model: integration for Re-complexes tested for 
antimicrobial activity. 

The pipeline for leveraging the prediction model based on 
antimicrobial data is presented in Figure 2. Using the MLP, we 
predicted the antimicrobial activity, quantified in the MIC values 
Re-complexes. We trained the MLP architecture on the whole set. 
The obtained scores were computed based on the validation set and 
showed model performs by comparing the model's predictions to 
the experimental validation values. The prediction performance 
was evaluated using the following parameters: accuracy, precision, 
and recall. Accuracy estimates how often the model predictions 
were correct. As such, it is the ratio of the true cases to all the cases, 
defined as (TP + TN) / (TP + FP + TN + FN) where TP is the 
number of true positives, FP is the number of false positives, TN is 
the number of true negatives, FN is the number of false negatives. 
The set of labels predicted for a sample must match the 
corresponding labels in the validation set. Precision indicates how 
often the model predicted the sample to be positive when true. It is 
defined as the ratio of the True Positive to the predicted positive 
cases. The precision is equal to TP / (TP + FP). It is intuitively the 
ability of the classifier not to label as positive a sample that is 
negative. Recall quantifies the number of positive predictions made 
from all positive cases in the dataset, equal to TP / (TP + FN). The 
classifier intuitively can find all the positive samples. The obtained 
scores are shown in Table 1 and Figure 3.  

 
Figure 2. Schematic representation of the workflow. We started 
from experimentally obtained data to compile the input matrix for 
training and testing the model. For validating the model was used 
the new synthesized Rе-complexes. The descriptors were extracted 
from the AlvaDesc software, and the MLP was used to predict the 
antimicrobial activity. The last box: scoring the molecular features 
by recursive feature elimination based on bootstrap-aggregated 
decision trees.   

Table 1. Model prediction performance evaluated by Accuracy, 
Precision, and Recall criteria.  

a MRSA refers to S. aureus ATCC 43300 strain. b MIC # 
indicates the target minimum inhibitory concentration in µM. c 
MSSA refers to S. aureus ATCC 25923 strain. 

Target Accuracy Precision Recall 
MRSAa – MIC b 4 0.9 0.85 0.92 

MRSA - MIC 8 0.83 0.78 0.93 
MRSA - MIC 16 0.87 0.81 1 
MRSA - MIC 32 0.9 0.94 0.89 
MSSAc - MIC 4 0.8 0.64 0.9 
MSSA - MIC 8 0.83 0.75 0.92 
MSSA - MIC 16 0.87 0.84 0.94 
MSSA - MIC 32 0.73 0.74 0.82 

https://doi.org/10.26434/chemrxiv-2023-6hngt ORCID: https://orcid.org/0000-0002-9077-7184 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-6hngt
https://orcid.org/0000-0002-9077-7184
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure 3.  Model prediction performance evaluated by Accuracy, 
Precision, and Recall criteria. For all these scores, the best value is 
1, and the worst value is 0. 

In practical terms, the model can predict, with overall good 
accuracy, whether a metal complex may be active against the 
MRSA S. aureus strain. Indeed, a good agreement between 
predicted and experimental MIC values is found when considering 
the methicillin-resistant S. aureus ATCC 43300. The complete 
statistical metrics are presented in Table S1 for the validation set. 
In this case, in 14 out of 20 instances (Table 2), the model correctly 
predicted whether a metal complex showed no activity (MIC > 32 
ug/mL, 7 out of 10 experimentally inactive compounds) or if a 
complex had potential antibacterial activity (MIC < 32 ug/mL, 7 
out of 10 experimentally active compounds). In this latter case, in 
6 out of 7 instances, the MIC value was correctly predicted within 
2x of the experimentally determined MIC value. When considering 
the wild-type S. aureus ATCC 25923 (MSSA) strain, the model 
revealed more limitations. However, in the case of experimentally 
active molecules, not only the model always correctly identified 
these complexes (8 out of 8 instances within 2x the experimentally 
determined MIC value), but in 3 cases, it was able to indicate the 
correct MIC value of the compounds (1c, 4a and 4c, Table 2).  

Table 2. Experimental and predicted MIC values (ug/mL) of the 
tested complexes against MRSA and MSSA S. aureus strains. The 
agreement between predicted and experimental MIC values (within 
x2 MIC) is indicated with a “yes/no” in the last two columns. 

† Although not strictly within x2 MIC, we consider the prediction 
close enough to warrant agreement between predicted and 
experimental MIC values. * Indicates two diastereomeric forms of 
the same complex. 
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Feature importance analysis    

The effect of features and network architectures on the quality of 
the predictions was tested, and the distribution of the final scores 
for the features is presented in Figure 4. After evaluating the model 
performance, we examined the feature importance in the prediction 
model. The Neural Network is not a straightforward method to 
assess the intrinsic feature importance. For example, it is hard to 
interpret how these weights contribute to the resulting decisions 
just by analyzing the weights between the neurons in the model. 
The feature importance of the set of used descriptors was calculated 
based on their relative contributions to predictions made by the 
model. Below we try to assess the significance of feature j as 
follows: 

𝑓𝑓𝑗𝑗 = 𝑠𝑠 −
1
𝑛𝑛

 �𝑠𝑠𝑖𝑖𝑗𝑗

𝑛𝑛

𝑖𝑖=1

 

where s – is the baseline score computed for the non-permuted 
input data set; basically, it is equal to 1; sij – is the score obtained 
by permuting the corresponding feature column of the data set. By 
permuting, we mean that the values of the feature are randomly 
permuted between various data rows  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(molecules). In this way, the importance of a feature is the 
difference between the baseline score s and the average score 
obtained by permuting the corresponding column of the test set. If 
the difference is small, then the model is insensitive to permutations 
of the feature, so its importance is low. Conversely, the feature’s 
importance is high if the difference is significant. The parameter n 
controls the number of permutations per feature — more 
permutations yield better estimates (we used n=100). 

 

 

 

 

 

 

 

 

 

 

Species Predicted 
MRSA 

Predicted 
MSSA 

Experiment 
MRSA 

Experiment 
MSSA 

Agreement 
MRSA 

Agreement 
MSSA 

1a >32 19.4 >50 >50 yes no 
1b >32 18.0 >50 >50 yes no 
1c 3.0 3.0 4.9 4.9 yes yes 
2a 10.1 5.1 >50 >50 no no 
2b 4.7 4.7 >50 >50 no no 
2c† 3.1 3.1 10.1 10.1 yes yes 
3a >32 3.0 >50 >50 yes no 
3b >32 2.9 >50 >50 yes no 

3c >32 3.6 32 >50 yes no 
4a 17.5 17.5 13.6 13.6 yes yes 

4b 16.0 16.0 >50 >50 no no 
4c 11.1 5.6 12.5 6.3 yes yes 

5d 4.4 4.4 >8 8 no yes 

6d 4.4 4.4 8 8 yes yes 
7a >32 >32 >32 >32 yes yes 

7b >32 >32 >32 >32 yes yes 

8a 2.4 2.4 >50 >50 no no 
8d 4.1 4.1 8 8 yes yes 

8d* 4.1 4.1 8 8 yes yes 

9a 2.4 2.4 >50 >50 no no 
9d 4.1 4.1 8 8 yes yes 

9d* 4.1 4.1 8 8 yes yes 
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Figure 4. Molecular descriptor scoring.  

This assessment with the low scores does not necessarily mean that 
the feature is not important at all but rather that most of its values 
are close to each other and possibly that when training. The top 
descriptor with the highest average effect in the prediction model 
is listed in Table 3. The Kier benzene-likeliness index (BLI) 
descriptors, which are calculated by dividing the first-order valence 
connectivity index by the number of non-H bonds (nBO) of the 
molecule and then normalizing on the benzene molecule proposed 
to measure the molecule aromaticity, were defined as a top-ranked 
feature of importance. This is true for all cases except the last case 
(S. aureus ATCC25923 (target) MIC 32).   

 

 

Table 3. Top-scored descriptors for each of the target cases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A second method for the feature assessment was applied to 
investigate the effect and robustness of the obtained BLI descriptor 
as the top-ranked. The ranking was performed using Random 
Forest (RF, Bootstrap-aggregated (bagged) decision trees)30, 
trained on a random forest of 200 classification trees, and stored the 
out-of-bag information for predictor importance estimation. The 
critical values are sorted and reported in the Excel file in the SI. 
Identical results were obtained with the RF. BLI aromaticity index 
was the top-ranked. The relationship between the antimicrobial 
activity and the impact of the BLI, indicates that the BLI is a crucial 
descriptor in the prediction models. The effect of the BLI descriptor 
could be connected to the lipophilicity of the molecules. Indeed, the 
solubility descriptor X3sol was detected, and it is also present in 
the list (SI) as one of the top-ranked descriptors. Other features of 
high relevance are edge adjacency indices (e.g., eigenvalue or 
spectral mean absolute deviation indices such as Eig05_EA (ri), 
Eig05_AEA (ed) or SpMAD_EA (dm) and SM13_AEA (ri)) 
derived from Graph.   

The correlation between the hydrophobicity and antimicrobial 
activity was shown for the antimicrobial polymers. In this study 31, 
the logarithm of the partition coefficient of compounds between n-
octanol (C logP) and water was used to represent hydrophobicity. 
The authors showed that the elevated responses from the 
antimicrobial activity required hydrophobicity that was neither too 
high nor too low. The obtained values suggest that C logP values 
between 0 and 2 have the best balance of high antimicrobial 
activity.  

Target 
Categories of 
descriptors Description 

S. aureus 
MRSA MIC 4 

BLI - Topological 
indices 28 

Kier benzene-
likeliness index is an 

aromaticity index 
calculated from 

molecular topology. 
 

S. aureus 
MRSA MIC 8 

BLI - Topological 
indices 28  

S. aureus 
MRSA MIC 16 

BLI - Topological 
indices 28  

S. aureus 
MRSA MIC 32 

BLI - Topological 
indices 28  

S. aureus 
MSSA MIC 4 

BLI - Topological 
indices 28  

S. aureus 
MSSA MIC 8 

BLI - Topological 
indices 28  

S. aureus 
MSSA MIC 16 

BLI - Topological 
indices 28  

S. aureus 
MSSA MIC 32 

Edge adjacency 
indices 29 

Spectral moment of 
order 13 from 

augmented edge 
adjacency mat. 

weighted by 
resonance integral 

(structural properties 
of the graph) 
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Then the obtained relations between the identified descriptors in 
the MLP model were explainable. The nature of the target should 
be tested as a limiting factor for the sparser application of the 
obtained results about the activity towards different bacterial cells. 
Still, it might display highly synergistic effects based on the 
selectivity of the descriptor. The defined descriptors (BLI and 
x3sol) could be used for designing the new antibacterial agents 
addressing different targets.  

Conclusion 

This study presents a model based on supervised learning methods 
to predict the antibacterial properties of Re-metals complexes. This 
machine-learning-guided descriptor model was developed on Re-
metals complexes and was proven able to predict the antimicrobial 
activity of the metal complexes against the methicillin-resistant S. 
aureus ATCC 43300 strain with good accuracy and precision. It 
may thus serve as an advisory tool to guide the synthesis of new 
complexes. The MLP model makes use of (1) molecular 
representation based on the structure of the complexes, (2) feature 
reduction space, (3) ML algorithm, and (4) molecular descriptor 
specificity analysis (features importance scores). When applied to 
the prediction of 20 previously untested molecules, in 70% of 
cases, it was able to predict whether (a) the metal complex may be 
active or (b) inactive. Moreover, in >80% of correctly predicted 
active molecules, their minimum inhibitory concentration was 
predicted within 2x the experimentally determined values. The 
proposed ML-based antibiotic development approach revealed the 
main descriptors that are responsible for the antimicrobial activity. 
Therefore, the model may predict the activity of new 
unconventional antibacterial candidates based on Re-complexes 
with the selected molecular descriptors. 

Materials and Methods  

The Multi-layer Perceptron (MLP)32 was used for the neural 
network model.  

MLP is a supervised learning algorithm, the simplest kind of feed-
forward network, as shown in Figure 5. In the architecture of the 
feed-forward neural networks, the units (or nodes) are arranged into 
a graph without any sequential loops. This contrasts with recurrent 
neural networks 33, where the graph can have loops, so the network 
feeds into itself from the loops. The MLP learns a function by 
training on a dataset and, consequently, the number of dimensions 
for input and the number of dimensions for output. It is different 
from logistic regression in that, between the input and the output 
layer, there can be one or more non-linear layers, called hidden 
layers. For the training of the model, MLP regressor trains using 
backpropagation with no activation function in the output layer, 
which can also be seen as using the identity function as an 
activation function. The model was trained on the provided data set 
having 119 data rows (input objects) s, 92 feature columns, and 2 
output classes. This set was subdivided into 75% for the training 
set (89 data rows) and 25% for the validation set (30 data rows). 
The code used for the model, along with the training and test set 
provided in this repository: https://github.com/mici345/MIC-
prediction-model 

 

 

Figure 5.  Multilayer perceptron with two hidden layers. Left 
picture: input layer, input features values are used for the input 
units. The output layer has one unit per each value of the network 
outputs. Hidden layers: the layers between in and out units. Right 
picture:  layers presented as boxes.  

Structure of the dataset, descriptors generation space, and 
descriptors importance  

We initially used more than 5666 descriptors for building the 
model, which are representations of Re-compounds. The 
AlvaDesc software was used to generate descriptors space from the 
3D structures of each Re-complex. The set of used descriptors 
includes 0D (with no relation to shape, e.g., molecular weight), 1D 
(e.g., presence of certain active substructures within the molecule), 
2D (e.g., molecular graph representations involving bonds between 
atoms but not bond lengths), and 3D (e.g., distances between 
specific atomic pairs in the molecule) ones (details in the 
Supporting Information). The descriptors are likely to contain 
information which could be correlated to the antimicrobial action 
of a given Re-complex.  The structure of the input matrix for the 
ML models often leads to decreasing predictive accuracy of the 
model. The reduction techniques are often performed to decrease 
the noise in data structure but at the same time the loss of 
information should be presumed. The data sets were reduced with 
Principal Component Analysis (PCA) for reducing the descriptor 
space. PCA is an orthogonal linear transformation that transforms 
the data into a new coordinate system where the first direction of 
the most significant variance becomes the new coordinate axis36 . 
The optimal parameter selection within the descriptors space 
resulted in highly converged accuracies for the trained model. 
Construction of the initial matrix from the explored chemical 
database is a key feature for the development and validation of the 
model. The final reduced set was based on 119 data points (Re-
complex), 91 feature , and 2 output classes for the bacterial strains. 

Reagents and chemicals 

All reagents were obtained from standard sources and utilized 
without any further purifications. The compounds Re(CO)5Cl was 
purchased from Sigma-Aldrich. For the validation set, complexes 
1a 37,38, 1b39, 1c 40, 2a 37,41, 2b 42–44, 2c 45, 3b 46, 4b 47,48, 7a 37,49,50 
and 7b 43,44,51 were synthesized according to published procedures. 
Complexes 5d, 6d, 8d, and 9d were prepared according to Cortat 
et al.1 Complexes 3a, 3c, 4a, 4c, 8a, and 9a were prepared with 
similar procedures. All complexes were synthesized under an inert 
(Ar) gas environment.  

Instruments and Analysis 

IR spectra were recorded on a Bruker TENSOR II with the 
following parameters: 16 scans for the background and 32 scans for 
the sample with a resolution of 4 cm-1 in the 4000 to 600 cm-1 
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region. UV-Vis spectra of the complexes were measured on a Jasco 
V730 spectrophotometer. A Bruker Advance III 400 MHz was used 
to measure the complexes' NMR spectra. The corresponding 1H 
chemical shifts were reported relative to. residual solvent protons. 
A Bruker FTMS 4.7-T Apex II in positive mode was used to 
perform the mass analyses.  

Synthetic procedures 

Ligands for complexes 2a-c and 7a-b were synthesized according 
to published procedures 52–56. The Re(CO)5Br synthesis is detailed 
elsewhere 37,57,58. For the preparation of the complexes in the 
validation set, Re(CO)5Br and Re(CO)5Cl were used. Rhenium 
precursors and ligands were generally reacted in equimolar ratios 
and refluxed overnight. After the reactions, products were filtered 
and washed with the reaction solvent and diethyl ether. The purity 
of the complexes (Br or Cl species 3a, 4a, 8a, and 9a) was 
confirmed as >95%. Compounds 3c and 4c were prepared by 
suspending 3a or 4a in MeOH (HPLC grade) with 1-mole equiv. of 
pyridine and AgOTf (1.2 mole equiv.) and refluxing in the dark 
overnight. After the mixture had cooled to room temperature, it was 
filtered to discard AgBr and dried in a vacuum oven. The 
compounds were then purified by HPLC. Spectrochemical 
characterization of the complexes are in the Supporting 
Information. 

Antimicrobial study 

The antimicrobial activity of Re(CO)3 complexes was assessed 
against S. aureus ATCC 25923 (wild type, MSSA) and S. aureus 
ATCC 43300 (methicillin-resistant, MRSA) strains following 
published protocols 59,60. Briefly, each complex was prepared as a 
6.4 mM stock solution in DMSO and diluted to 256 µM with PBS. 
They were sterilized for 20 min under UV light before use. Then, 
stock samples were diluted with PBS to 128 µM, and 50 µL of each 
dilution was transferred to 96-well plates. In parallel, S. aureus in 
Mueller–Hinton Broth (non-cation-adjusted, MHB), cultured one-
day before injection, was used to prepare bacterial suspensions at 1 
x 106 CFU/mL in MHB 2X. Then, 50 µL of S. aureus suspensions 
were mixed in the 50 µL of serially diluted sample wells, leading 
to a final bacterial concentration of 5 x 105 and the complexes 
concentrations ranging from 64 µM to 0.5 µM. The plates were 
incubated at 37 °C for 24 h. The minimum inhibitory concentration 
(MIC) values were determined by measuring the optical density at 
600 nm (OD600). The assay was conducted in triplicate. Tecan-
Spark 10M with SparkControl program was used to determine the 
antimicrobial activities.  

 

Supporting Information 

The Supporting Information is available free of charge on the ACS 
Publications website. 

Statistical metrics - Table S1 (file type, i.e., .xlsx) 

Descriptors library - (file type, i.e., .xlsx)  

Spectrochemical characterization of the complexes -  (file type, i.e., 
.docx)   
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