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Abstract 

 Structural diversification of lead molecules is a key component of drug discovery to explore 

chemical space. Late stage functionalizations (LSFs) are versatile methodologies capable of installing 

functional handles on richly decorated intermediates to deliver numerous diverse products in a single 

reaction. Predicting the regioselectivity of LSF is still an open challenge in the field. Numerous efforts 

from chemoinformatics and machine learning (ML) groups have made significant strides in this area. 

However, it is arduous to isolate and characterize the multitude of LSF products generated, limiting 

available data and hindering pure ML approaches. We report the development of an approach that 

combines a message passing neural network and 13C NMR-based transfer learning to predict the atom-

wise probabilities of functionalization for Minisci and P450-based functionalizations. We validated our 

model both retrospectively and with a series of prospective experiments, showing that it accurately 

predicts the outcomes of Minisci-type and P450 transformations and outperforms the well-established 

Fukui-based reactivity indices and other machine learning reactivity-based algorithms. 
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Introduction 

 Late-stage functionalization (LSF) is a powerful technique in medicinal chemistry. The "magic 

methyl effect" describes the ability of a single methyl group, even one distal to the binding motif, to 

dramatically improve (or reduce) potency, solubility, and metabolic stability.[1] However, methyl groups 

are not the only motif that can radically change pharmacological properties. Fluoro,[2] chloro,[3] 

trifluoromethyl,[4] and hydroxyl groups[5] are known beneficial motifs and/or temporary functional 

handles towards other beneficial motifs. Over the past several decades, numerous methods have been 

developed to diversify lead compounds and selectively install these biologically privileged groups 

directly.[6] One methodology commonly utilized in LSF is the Minisci-type functionalization, whereby a 

radical species adds to an electron deficient (hetero)arene (Figure 1A).[7] However, the promiscuity of 

this single electron method in conjunction with the inherent structural complexity of LSF molecules make 
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Figure 1: A) Mechanistic differences between the one-electron based transformations of the two major types of reactions in 
the dataset: Minisci and P450. B) Graphical overview of the basic MPNN model. C) Distribution of reaction sites per molecule 
and molecule size in the dataset. 
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regioselectivity prediction challenging. Regiochemical predictions for Minisci-type reactions were first 

summarized by O'Hara et al. who developed a set of guidelines to determine sites of reactivity based upon 

the nucleophilicity of the alkyl radical species, pH of the reaction, solvent effects, and electronics of the 

heteroarene.[8] These observations were later formalized when they were noted to correlate well with the 

indices from Fukui functions, i.e. functions that describe the change in electron density upon the addition 

or removal on an electron. In the literature, Fukui-based reactivity indices predict the most reactive sites 

of Minisci functionalization with an average accuracy of 93% (average F-score of 0.77), albeit usually on 

smaller, minimally functionalized molecules.[9] We hypothesized that an ML model, with its high 

parameterization, would offer an improvement in accuracy when predicting the regiochemical outcomes 

of more complex molecules (Figure 1B). The resulting consistent and broadly applicable LSF predictive 

framework would facilitate more rapid and facile access to a diverse array of drug-like compounds, 

specifically with respect to structure-activity relationship (SAR)-probing synthesis and expanding the 

known chemical space available for exploration.  

 There are two main approaches in the literature for regiochemical predictions: quantum chemical 

and data-driven. Quantum chemistry-based approaches predict reactivity and regioselectivity by 

computing energy barriers using techniques such as DFT or machine learning (ML) approximations of 

DFT-energies.[10] Data-driven approaches to work directly with experimental data, fitting statistical 

models to correlate known chemical features to real-world observed outcomes in regioselectivity.[11] 

Whilst computational data is more plentiful and significantly less noisy than real-world data, notable 

performance can be achieved with carefully curated literature datasets. Some experimentally-based 

reactivity models can reach human expert performance in their predictions and can, on occasion, surpass 

them.[11a] However, ML-based regiochemical prediction is still difficult. Due to the challenges of 

rigorously characterizing the regiochemical outcomes of thousands of reactions, experimental data-based 

models must often operate in lower data environments, and if gathered from the literature, often with data 

that contains few negative datapoints, i.e. molecules that don't react. In contrast, datasets which include 
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easily extractable yield information often contain ten-fold more data.[12] This makes it more difficult for 

ML to find relationships between the molecular structure and LSF outcomes. Herein, we report a solution 

to this problem: the utilization of open-source 13C NMR data in conjunction with LSF data. Our model is 

a graph-based model which does not require pre-computed molecular properties nor any 3D molecular 

information for accurate regioselectivity prediction. As a proof of concept, we highlight our framework's 

predictive ability on both Baran and Molander-type Minisci and P450 LSFs, transformations whose 

substrate scope is well defined. We show that our model outperforms the Fukui function-based index 

predictions, and two highly accurate, previously reported, reactivity-based machine learning models: one 

1-electron based enzymatic reactivity model and one 2-electron based small-molecule model. 

 

Results and Discussion 

The Dataset  

 Data was sourced from Pfizer's internal medicinal chemistry dataset which consisted of ~2,600 

reactions, 647 unique molecules, and 823 unique LSF conditions. The majority of these reaction 

conditions were Minisci-type functionalizations (1928 reactions), including Minisci reactions utilizing 

the Baran Diversinates™ (463 reactions).[13] Classic Minisci conditions were included in the training set, 

however, the majority of the training data consisted of Baran and Molander Minsci reactions (Table S1).  

Additionally, other single electron based late stage functionalizations were included in the training data 

such as P450 catalyzed oxidations (642 reactions), electrochemical methylations (12 reactions), and 

photoredox alkylations (93 reactions) (See Table S2 for a further breakdown of the dataset). Reactions 

that yielded oxidative cleavage or hydrolyzed side products were kept. A key facet to our dataset was the 

inclusion of data which contained unsuccessful conditions that led to no significant product formation 

(zero reactive sites). Despite the significant mechanistic differences between these reaction classes, we 

hypothesized that additional chemical information relating to the inherent reactivity of both the reagent 

and the molecule would be advantageous to regiochemical outcome prediction (Figure S1). A mixture of 
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reaction classes has seen use in other reactivity-based predictions with excellent results.[11a, 11g] To 

implicitly distinguish between the reaction types, each unique reagent, oxidant, solvent, additive, and acid 

was one-hot encoded to form a specific "reaction vector", unique for each unique reaction condition. 

Similar to an organic chemist, the selectivity neural network (Figure 1B) would need to interpret the 

mechanism type from the collection of reagents. 

 

 When deciding the correct 

method to split the data into 

training and testing sets, we opted 

for scaffold-based instead of a 

random split. It has been 

hypothesized that a random split 

encourages the model to simply 

memorize the inherent reactivity of 

a molecule, instead of applying its 

learned chemical knowledge to 

new scaffolds.[14] A scaffold split, 

where every molecule in the test set 

is an unseen molecule, provides a more challenging target. The retrospective test set consisted of 25 

reactions which was comprised of 5 unique molecules and 17 unique reaction conditions. Of the reaction 

conditions, 22 were Minisci-type functionalizations with 4 utilizing the Baran Diversinates™, one was a 

P450 oxidation, and one was a metalloenzyme oxidation (Figure 2). 
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Figure 2: The retrospective test set used for optimization of the models. 
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 One AI architecture that has seen impressive performance has been message passing neural 

networks (MPNNs), a subset of graph convolutional neural networks (GCNNs), first utilized by 

Duvenaud et al., Li et al., and Gilmer et al. in the mid-2010s.[15] MPNNs are a robust and versatile way 

to predict macro properties (i.e. solubility, compound assay activity, IR spectra, energy)[15c, 16] and micro 

properties (i.e. 13C and 1H NMR shifts, regioselectivity)[11b, 17] of molecules by representing molecules as 

graphs. Graphs, in mathematics, are structures made up by "nodes" and "edges"; nodes are concrete 

entities (events, people, atoms, etc.) and edges indicate that two things have a connection (these events 

happened due to the same cause, these people all know each other, these atoms share a bond). Briefly, 

MPNNs work by transmitting information from one node to another via the edge "highway". Each 

message pass transmits the atom's information one bond further away, radially, with the intention that 

after a sufficient number of message passes, each atom will have a comprehensive understanding of its 

local environment (Figure 1B).[15c] 

 We developed an MPNN that sits at ~100 lines of code making it is fast, easy to work with, and 

highly flexible. The implementation of the MPNN and the trained models can be found at: 

https://github.com/emmaking-smith/SET_LSF_CODE.[18] To our knowledge, this is the first study that 

discloses predictive LSF models trained on a large scale dataset across drug-like chemical space 

comprising both positive and negative results. The MPNN was designed to take in basic atomic 

information (atomic number, atomic symbol, if the atom was a hydrogen acceptor or donor, its 

hybridization, if the atom was aromatic or not, and the number of explicit hydrogens) and basic structural 

information (the connectivity of each atom to its neighbors and the type(s) of bonds used in those 

connections). If the chemist would not know molecular property X by looking at the structure, that 

information would not be given to the model either. Rather the model must infer relevant chemical and 

spatial information from the structure. From this information, the MPNN would synthesize an embedded 

molecule vector which would then be concatenated with the reagent specific one-hot encoding and run 
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through a feed forward neural network to classify each atom within a molecule as "reactive" or not 

"reactive" (unreactive). 

 

Finding the Reaction Centers 

 

 The first challenge to overcome was 

to establish automated extraction of reactive 

sites, the labels for the ML task at hand. 

Reaction center identification is a 

notoriously challenging area of research[19] 

and for our regioselectivity prediction, we 

required the atom index(es) of the carbon 

atoms that changed in oxidation state. 

Visually, this is a trivial task, but due to the arbitrary nature atom indices across chemoinformatics 

programs, it becomes much more challenging to perform this automatically. One possible solution is to 

use atom mapped SMILES strings, where every atom in the product has been traced back to its 

corresponding atom in the starting material.[19c] However, we believed a more user-friendly approach was 

possible. For our style of LSFs, the core structure of the molecule remained unchanged, with only the 

"extremities" exchanging a hydrogen atom for a more complex motif. Therefore, the starting materials 

were mathematically linked: the starting material was a subgraph of the product. In mathematical terms, 

a subgraph is a graph formed by nodes and edges that are only within its parent graph. From the molecular 

point of view, a subgraph could be a moiety within a molecule or the core of a molecule. The recent 

development of a fast, accurate, open-source Glasgow Subgraph Solver was the key to automatically find 

the starting material subgraph within the product structure, facilitating the extraction of reactive sites.[20] 

Code for the molecule SMILES to reactive site pipeline can be found at: https://github.com/emmaking-
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smith/SET_LSF_CODE.[18] In addition to automating the task of finding the LSF reaction centers without 

the need for atom mapping, the workflow is specifically set up to deal with symmetry in molecules. The 

Glasgow Subgraph Solver was directed to find all possible subgraph solutions for a given starting material 

and product, elucidating all possible starting material to product atom mappings. Upon identification of 

the carbon atom indices whose oxidation state had changed, all corresponding starting material atom 

indices, including the symmetric indices, were identified labeled as reactive (Figure 3). For degradation 

byproducts, the fragmentation from the resulting oxidation was oftentimes too dramatic for the starting 

material to remain a subgraph of the product, resulting in 6% of the reactions needing manual elucidation 

of reaction center. 

 

The Loss Function 

 With a model architecture and accurately labeled data in place, we turned our attention to the 

choice of loss function, the system that penalizes the model and directs the learning. Loss functions can 

be broadly divided into two categories, regression or classification, where regression loss functions are 

used with regression tasks and vice versa.[21] Our task was to classify each atom in a molecule as a member 

of the "reactive" class or not a member of the "reactive" class (unreactive) thus classification loss 

functions were appropriate. The Binary Cross Entropy (BCE) loss, which penalizes the model based on 

the log-likelihood of correct class prediction, was chosen (Eq. S2). A challenge with reactivity and 

regioselectivity prediction is that most atoms in a given molecule are unreactive. Our most reactive 

molecule had only 30% of its structural atoms reacting, leaving 70% of its atoms unreactive and most 

molecules in our training data had 1 or fewer reactive structural atoms (Figure 1C). Therefore, a model 

can be technically accurate by simply predicting that all sites are unreactive, though such model would 

be practically useless. What was required was a loss function that could more heavily penalize incorrect 

predictions and give less weight to correct unreactive predictions. To this end, a variety of BCE loss 

weightings, were investigated, whose central theme was that the weight given to correct class predictions 
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was inversely correlated to the frequency that that class was predicted (Eq. S2 - Eq. S4); the value of each 

correct reactive site prediction was tempered by how often the model predicted any given atom was 

reactive, and vice versa for unreactive site prediction.  

Model Results 

Retrospective Test Set 
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 The baseline model was a random forest, which are known to be excellent predictors of molecular 

features (e.g. compounds increasing the lifespan of C. elegans, IC50 measurement prediction of drug-like 

molecules, excitation energies and associated oscillator strengths of fluorophores) especially in low-data 

environments.[22] Molecules were encoded as their atom-wise Morgan fingerprints. Each row 

corresponded to the Morgan fingerprint of a specific atom within the molecule. The corresponding one-

hot encoded reaction vector was concatenated to the atom-wise Morgan fingerprint and a random forest 

classifier was then used to predict whether or not each atom in the molecule was reactive or not reactive. 

We used the well-established classification accuracy metric of the F-score, which balances precision and 

accuracy to judge model performance. Two other metrics, accuracy (total correct reactive sites predicted 

/ all possible reactive sites) and area under the receiver operating curve (AUROC) are also given for 

additional interpretability of performance.[23]  Initial results on our test set revealed a modest F-score of 

0.42 (Accuracy = 94%, AUROC = 0.67), with Fukui-index based predictions yielding a lower F-score of 

0.19 (Accuracy = 90%, AUROC = 0.57) (Figure 4A). Fukui indices are predicted only for the molecule, 

not for the reagent, however, distinctions between different regents are entirely possible. Nucleophilic 

Fukui indices, Fi(+), correspond to regiochemical outcomes utilizing electrophilic radicals (•CF3) and 

radical Fukui indices, Fi(0), correspond to regiochemical outcomes utilizing nucleophilic radicals (•CF2H, 

•cBu) (See SI pg. S5 for a mathematical description of each index).[9a] For any radical whose 

electrophilicity / nucleophilicity reactivity was uncertain, the Fukui indices that best fit the experimental 

reactivity were used for the calculation of the F-score. 

 Evaluation of these initial predictions suggested that the model was challenged with extended 

conjugated systems, such as those present in loratadine (2) and imatinib (5). We hypothesized that this 

was due to the difficulty of atoms in one hemisphere of the molecule "seeing" atoms on the other 

hemisphere in the MPNN. Whilst increasing the number of bonds that every atom's information travels 

between (the "range" of the atom's message) did not improve performance, the incorporation of a 

universal node did. This universal node, as described by Gilmer et al. (used the term "master node"), is 
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an all-seeing node - information from every atom is given to the universal node, which in turn gives 

information to every atom about distant atoms.[15c] Implementation of a universal node MPNN led to a 

model with a modest increase in F-score to 0.46 (Accuracy = 94%, AUROC = 0.72) (Figure 4A).  

 At this point, we suspected we were running up against the limit of the data. Ideally, this would 

be solved by the performing additional LSF reactions, however this data is laborious and expensive to 

generate. Every regioisomer must be isolated and characterized for every new substrate which can be cost 

and/or time prohibitive. Another obvious solution would be to increase the amount information in each 

atom's featurization for a deeper understanding of chemical environments. However, given the poor 

performance of QM-derived atomic descriptors for MPNN regioselectivity prediction in LSF, alternative 

solutions were sought out first (see the Quantum Chemistry Augmentation Section for a detailed 

discussion).[11b] Thus, transfer learning was employed. This is a technique whereby a model is trained on 

off-task data before being trained on the desired-task data to boost performance.[24] It was crucial to 

choose a transfer learning task that had significantly more data than our current training set which would 

allow for more complex correlations between structure and reactivity to be inferred. However, it was also 

imperative that this off-task bore some relationship to atomic reactivity. We hypothesized that 13C NMR 

shift prediction would be uniquely suited for our goal, which can be abstracted as quantification of local 

chemical environments. In addition, the inherent symmetry of a molecule is represented in NMR spectra 

as atoms with identical chemical environments have identical NMR shifts.[25] This would transfer to atoms 

with identical chemical environments have identical reactivity. Thus, ~27,000 open-source 13C NMR 

shifts were obtained from Jonas et al.'s previous work (originally sourced from NMRShiftDB) and 

transfer learning from 13C NMR shift to LSF regioselectivity prediction commenced.[17] This step enabled 

a major improvement in model performance with the top performing model, MPNNLSF, yielding an F-

score of 0.62 (Accuracy = 96%, AUROC = 0.79) (for every 1 true positive, 1.25 incorrect sites are 

obtained) and an average model performance over 5 initializations of 0.57 (Accuracy = 96%, AUROC = 

0.75) (Figure 4A). Interestingly, we observe that negative data is important for model performance. 
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Removing the entries with zero reactive sites (unproductive reaction conditions) led to a substantial 

decrease in model performance (Figure S4). We hypothesize that this is because the negative data allows 

the model to infer similarities between different one-hot encoded reaction conditions. 

 

Comparison to Other Machine Learning Models: 

 To highlight the difficult nature of predicting Minisci-type transformations without this 13C NMR 

pretraining protocol, we investigated how another graph-based architecture would perform on our 

retrospective test set. A recently developed neural network by Jensen et al. utilized a joint network 

approach for 2-electron based regioselectivity prediction. Their first neural network predicted on-the-fly 

QM properties, which were then given to their second neural network that classified which product was 

the major product from a user-generated list of possible structures. This approach, dubbed ml-QM-GNN, 

saw excellent top-1 accuracy performance even in low training data regimes and was validated on a broad 

range of 2-electron based transformation classes, with a top-1 accuracy of over 85%.[11g] To investigate 

Minisci-based transformations, we transformed our dataset into the correct format, first elucidating all 

possible mono-addition C-H functionalizations given our reagent, followed by complete atom mapping 

of each reaction.[26] Using default parameters, ml-QM-GNN was trained on our training dataset and tested 

against our retrospective test set. Accuracy was determined using ml-QM-GNN's criteria of top-1 

accuracy, where the overall retrospective test set accuracy was the ratio of correctly predicted major 

products to total number of reactions. As many reactions contained multiple correct possible products, 

the ml-QM-GNN's classification was deemed correct if its top-1 prediction was any of the valid possible 

products. Over 5 initializations, the average top-1 accuracy of ml-QM-GNN was 11%, compared to an 

average top-1 accuracy of 71% for our 13C NMR transfer learning model (Figure 4C). 

 Finally, we compared our results to a graph-based model specifically developed to predict the 

outcomes of single-electron-based transformations: Meta-UGT.[27] Meta-UGT was developed to predict 

the site of metabolism of UDP-glucuronosyltransferases (UGTs). The natural promiscuity of these phase 
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II metabolic enzymes renders reactivity prediction challenging. The model works in two phases, first 

predicting if a small molecule is a substrate for the enzyme, followed by the site-specific predictions. 

When tested upon drug-like molecules, Meta-UGT achieved top-1 site of reactivity prediction accuracy 

of 89%, making it a suitable candidate to test our model against. Thus, Meta-UGT was trained with default 

parameters on our training data and tested on the retrospective test set, yielding an average top-1 accuracy 

of 42% (Figure 4C). 

P450-Only Test Set 

 To investigate this training technique's performance, we devised a different regioselectivity task: 

P450 oxidation. P450 oxidation plays a central role in drug metabolism, determining the efficacy and 

duration of a pharmaceutical. Additionally, the interactions of some drugs with human P450s are known 

to inhibit and/or induce P450 activity leading to drug-drug interactions.[28] Due to its inherent 

promiscuity,[29] P450 oxidations are a promising LSF and an excellent test for our framework. 

Mechanistically distinct from Minisci functionalizations, the Fe(IV)-oxo complex acts upon the substrate 

via radical rebound or through a concerted mechanism, to release the newly oxidized compound (Figure 

1B).[29c, 30] Site of metabolism (SoM) prediction, which deduces the most likely positions for human P450 

oxidation on a given compound, has seen great strides in the past two decades.[31] We offer this framework 

as a jumping off point to develop a broadly applicable, isoform-agnostic SoM methodology. Fukui-based 

indices have also been shown to be effective at determining the regiochemical outcomes P450 oxidations 

and thus will be used as a baseline measure.[32] Thus, a P450-only test set of 31 reactions and 19 unique 

molecules (Figure S6), reacting with 18 unique P450s was curated. Employing the aforementioned 

transfer learning technique to the P450-only test set resulted in an average F-score of 0.48 (Accuracy = 

94%, AUROC = 0.70) over 5 initializations. The top performing of these initializations, MPNNP450, 

achieved an F-score of 0.52 (Accuracy = 94%, AUROC = 0.73) (Figure 4B). Despite only 25% of the 

training data containing P450 oxidations, MPNNP450 outperformed the Fukui-index based reactivity 

predictions, showcasing the utility of 13C NMR transfer learning. 
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Quantum Chemistry Augmentation 

 A lingering question was whether incorporating 3D information and/or quantum mechanical 

features as input to the graph would help model performance. Conformer generation and quantum 

chemistry calculations add computational overhead, which would limit this model's applicability in 

practice. However, many MPNNs that utilize QM-derived information find a significant performance 

improvement. To this end, a variety of augmentations to the initial atomic features were attempted. 

However, neither 3D atomic coordinates generated from molecular dynamics (MD) simulations nor 

electronic information derived from atomic density functions improved overall performance (Figure S5, 

SI pg. S4-S5). Interestingly, the addition of each atom's electrophilic, nucleophilic, and radical Fukui 

indices (See SI pg. S5 for a mathematical description of each index) did not see appreciable F-score 

performance increase in either the prospective or retrospective test sets (Figure 4A & Figure 5E). It is 

possible that the Fukui indices may not provide any additional information for the MPNN. There have 

been numerous prior reports which indicate that MPNNs can accurately predict quantum chemical 

properties from basic atomic information, implying that an MPNN could extract the necessary quantum 

chemical information from barebones atom featurization, obviating the need for explicit pre-computation 

of quantum chemical properties.[15c, 16b, 33] This observation is congruent with Nippa et al. who 

independently and concurrently published a MPNN for LSF C-H borylation regiochemical and yield 

prediction.[11b] They noted that similar augmentation of their atomic information with quantum 

mechanical features did not lead to noticeable improvement of regioselectivity prediction, and 

incorporation of 3D atomic coordinates only yielded a modest improvement over 2D molecular 

representations (scaffold splits). It is possible that the lack of improvement with 3D atomic featurization 

stems from the difficulty in characterizing properties of the LSF reaction transition state with descriptors 

that refer to an unperturbed substrate molecule.  

Prospective Validation 
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 With the success of our architecture in a variety of LSF regiochemical predictions, we turned our 

attention to assessing its ability in a completely unbiased setting through prospective prediction. Three 

maximally structurally different molecules were selected from the Enamine's High Throughput 

Experimentation catalogue via Butina Clustering.[18] The three compounds were confirmed to not be 

present within the training or testing data and none had a Tanimoto similarity score over 0.35 with any 

molecule in the training/testing datasets, indicating low structural similarity between the three prospective 

compounds and the training/testing data. Each molecule was subjected to CF2H-, CF3-, and cBu- 

functionalization (Figure 5A) and these experimental results were compared to the Fukui-derived indices 

and MPNNLSF predictions (Figure 5B & 5C). Gratifyingly, MPNNLSF once again outperformed Fukui 

predictions (Figure 5D), and the random forest baseline, even with respectable performance of Fukui on 

this prospective test set. All of MPNNLSF's predictions made chemical sense, with predicted 

functionalizations occurring at known inherently reactive sites or probable sites of oxidation. Fukui 

predictions often yielded functionalizations at fully oxidized carbons, something that is rarely seen in 

these LSFs. This is perhaps due to the mechanistically agnostic behavior of Fukui-based predictions, 

which highlight the site(s) of highest probability for nucleophilic / radical attack, regardless of whether 

or not those sites lead to productive pathways. 

 A deeper look at our prospective results sheds light into MPNNLSF's current utility, specifically its 

highly precise nature. For compound 6, we see a generally good understanding of inherent pyridine 

electronics, which is naturally activated the C2, C4, and C6 and positions. However, the effect of the urea 

motif must be taken into account for a complete picture of regioselectivity. Per the governing heuristics, 

the π-donating nature of the urea would indicate increased reactivity at the C4 and C6 positions for 

electrophilic radicals (•CF3) and reduced reactivity for nucleophilic radicals (•CHF2, •cBu).[8] 

Experimentally, it is revealed that the urea motif makes little impact upon the electronics of the pyridine, 

however, MPNNLSF does not capture this. It instead hedges its bets, correctly finding C2 to be reactive 

for all three radicals but failing to predict the full chemical reactivity at C4 and C6. This may be in part 
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due to the rarity of the urea motif within our dataset. Out of the ~2,600 training and testing molecules, 

only 12 contained a urea motif (~0.5% of the data), and of those 12 molecules, functionalization occurred 

on heterocycles distal to the urea motif. Despite this, MPNNLSF found 5/9 reactive sites and none of the 

sites it predicted to be reactive were incorrect. 

 

Figure 5: Results on the prospective test set. Color coded by reagent-specific reactivity. Split circles imply more than one 
reagent functionalized that position. A) Experimental results. B) MPNNLSF predictions on prospective test set. C) Fukui 
predictions on prospective test set. D) F-Score, Accuracy, and AUROC reported for MPNNLSF, the network that incorporates 
the Fukui indices as atom features and the baseline Fukui predictions. E) Comparison of MPNNLSF, the best Fukui 
augmented transfer learned model, MPNNP450, and Fukui (no neural network) F-scores on each of the 3 test sets. 
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 For compound 7, we once again see correct ortho reactivity for •CF2H however miss the para 

reactivity for all radicals, perhaps owing to the more sterically congested landscape at that site. However, 

the clear failure of MPNNLSF was its inability to understand the promiscuous nature of •CF3 

functionalization on 7. In the majority of Minisci functionalizations, the role of nucleophile is played by 

the radical, even for electrophilic radicals like •CF3, and the of role electrophile is played by the 

heteroarene.[8] Functionalization generally occurs at a (reasonably) electron deficient site. However, 

compound 7 does not completely follow this trend: all but one of the •CF3's functionalizations occur on 

non-heterocyclic, more electron rich arenes, instead of the canonical pyridinyl motif. This atypical 

substitution pattern plays a large role in the lower performance of MPNNLSF and is even unlikely to be 

predicted by an expert chemist, highlighting the current limitations of our model: surprising experimental 

outcomes also surprise MPNNLSF.[34] 

 In compound 8 we finally see a small decrease in MPNNLSF's precision. Instead of identifying the 

inherently most reactive site on the imidazole, a benzylic oxidation is predicted. The predicted reactivity 

to difluoromethylation conditions on 8 is likely predicting the major product to be an oxidation byproduct, 

where the benzylic hydrogen is extracted from the generated alkyl radical and subsequently quenched via 

TBHP.[35] A prediction of this nature is most likely due to the decision to include byproduct reactions in 

the training data and lends credence to the hypothesis that the model understands general chemical 

reactivity trends. 

 From this analysis, we see that a general trend is the high precision of MPNNLSF. This has 

ramifications in SAR studies, which seek to identify the best decoration of molecular scaffolds for optimal 

pharmacokinetic properties.[36] In a typical SAR synthesis, one motif is varied and the rest of the 

molecular structure is held constant. Syntheses of SAR derivates are generally convergent, with the 

varying motif brought into the synthesis modularly. Despite this workflow's streamlined approach, it still 

requires each SAR derivative to have its own unique route. A more efficient synthesis would use one 

reaction to generate multiple desired products. Take compound 6 as an example, with a known route from 
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commercial nicotinoyl chloride (9) in an efficient 2-

step procedure (Scheme 1).[37] Aryl isocyanate 10 is 

formed via a Curtius rearrangement, followed by 

quenching with amine 11 to produce 6. Current trends 

in therapeutic molecules have seen the incorporation 

fluorinated functional groups as substituents on 

aromatic systems, such as CF3 and CF2H, to yield 

molecules with improved pharmacokinetic properties 

including lipophilicity, metabolic stability, and cell 

membrane permeability.[38] Indeed, approximately 20% of all approved pharmaceuticals contain some 

fluorine-based group.[39] An SAR campaign to investigate the effect of a trifluoromethyl at C2 and C6, 

would require purchasing the corresponding trifluoromethylated nicotinic acid 12 / nicotinoyl chloride 

13. However, in addition to the added cost of these starting materials (84- and 33-fold more expensive 

per gram, respectively), the chemist is faced with the challenging task of optimizing and characterizing 

the outcomes of two small-scale, multi-component, multi-step routes.[40] With MPNNLSF's high precision, 

a chemist could be confident that a single route could provide multiple desired derivates in one fell swoop, 

saving cost of starting material and most importantly, time, both in reaction optimization and in compound 

characterization. The lower recall isn't as problematic, as any additional "bonus" products can be isolated 

from the crude reaction mixture concurrently with the correctly predicted functionalizations. The benefit 

of MPNNLSF becomes more apparent when more exotic functional groups are investigated in SAR. 

Exploration of difluoromethylation at C2 and C6 by purchasing the necessary difluoromethyl starting 

pyridines 14 and 15 would be exceptionally expensive: 296- and 56-times more expensive per gram, 

respectively, of which 15 requires a carbonylation further increasing the time to derivatization.[41] Thus, 

even without perfect accuracy, MPNNLSF can guide SAR syntheses to produce a multitude of 

functionalized compounds with minimal time burden. 
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Scheme 1: Literature synthesis of compound 6 and the cost 
of purchasing fluorinated starting materials for a potential 
SAR campaign. 
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Conclusion 

 The regiochemical outcomes of LSF radical-based transformations are governed by many factors: 

the nucleophilicity of the radical, the BDE of the molecule's atoms, and the steric and electronic landscape 

to name a few. Interestingly, it has been observed that additional QM-derived or MD-derived data does 

not yield appreciable improvements in regiochemical outcome prediction. We showcase a transfer 

learning methodology based upon 13C NMR shift prediction which boosts the performance of zinc 

sulfinate and BF3K salt Minisci reaction regiochemical outcome prediction above that of the accurate 

Fukui-index reactivity scores, and of two reactivity prediction machine learning models, on a narrow yet 

well-defined slice of chemical space. Promising predictive accuracy was also achieved on P450 enzymatic 

oxidations, a chemistry with a broader scope than the aforementioned Minisci conditions. Model 

performance was also highly contingent on the inclusion of negative data in the training set. This paradigm 

lays the groundwork for future applications in other LSF regiochemical predictions with the current best 

model showing potential in diversity-oriented SAR synthesis. Our 13C NMR data is open-source and we 

anticipate that the incorporation of larger proprietary 13C NMR datasets as the first step in this transfer 

learning methodology will expand this methodology to include in other LSF chemistry. 

 

Data Availability Statement 

All code is available under the MIT License at https://github.com/emmaking-smith/SET_LSF_CODE. 

The repository includes a literature-only dataset of non-proprietary compounds and reactions which is a 

minimally reproducible example of our workflow.[23, 42] The full dataset is registered with Pfizer as 

"pfizer_LSF_NatureCommunications_PublicationDate" which can be accessed upon entering a 

collaboration or legal agreement with Pfizer. 
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