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Abstract: High-throughput experimentation (HTE) has the potential to improve our understanding 
of organic chemistry by systematically interrogating reactivity across diverse chemical spaces. 
Notable bottlenecks include few publicly available large-scale datasets and the need for facile 
interpretation of these data's hidden chemical insights. Herein we report the development of a High 
Throughput Experimentation Analyzer (HiTEA), a robust and statistically rigorous framework 
which is applicable to any HTE dataset regardless of size, scope, or target reaction outcome. We 
improve the HTE data landscape with the disclosure of 39,000+ previously proprietary HTE 
reactions. HiTEA is validated on this dataset, showcasing the elucidation of hidden relationships 
between reaction components and outcomes as well as highlighting reaction space that necessitates 
further investigation.  
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Main Text: Data-driven chemistry has seen immense strides in recent years, especially in yield 
and enantioselectivity prediction 1-4. One major contributing factor to this is the adoption of high 
throughput experimentation (HTE) data in chemical synthesis 5-8. Collections of “real-world” HTE 
data have several beneficial features. They likely have sampled the reaction space that is of direct 
interest to the field and cover a broad range of substrates and reaction types, ensuring that data-
driven findings are relevant 9. Valuable negative data is also present10. Additionally, the data will 
likely have been gathered in a manner that enables future HTE-guided synthesis, aiding the 
translatability of the findings. This approach is, however, not without its challenges. Yield 
calculations are often derived from the uncalibrated ratio of UV absorbances, which assumes that 
the species have similar UV extinction coefficients and makes this measurement more qualitative 
than quantitative NMR or isolated yield determinations. The presence or absence of byproducts 
may also be somewhat obscured (See the SI for a full discussion on yield determination HTE 
datasets). Moreover, datasets may be subject to biases in reactant and reaction condition selection 
and have regions of significant data sparsity. 

 
Despite these known challenges with HTE data, little work has been done to investigate the 
inherent structure and biases of these datasets 11. A statistically robust methodology that can be 

Fig. 1: Overview of the HTE dataset and framework. (A) Overview of HiTEA and its analysis. (B) Abstracted representations of 
the four reaction classes analyzed by HiTEA in this publication. (C) Breakdown of the HTE Dataset by reaction class.  
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applied to any HTE dataset to draw out hidden chemical insights is fundamental to driving forward 
data-driven chemistry. It is important to note that that this statistical framework was not envisioned 
to predict or generalize any specific reaction property (yield, selectivity, optimal conditions, etc.), 
but to provide a far more fundamental analysis: what are the chemical insights within a dataset?  
From these conclusions, we can begin to understand (a) what are statistically important factors that 
drive good or bad outcomes and (b) what this data will teach an AI model. Finally, comparison of 
the chemical insights embedded within the HTE data, what we dub the "HTE reactome", to the 
chemical insights drawn from the literature, the "literature's reactome", may (a) provide further 
evidence to support the mechanistic hypotheses (agreement of the reactomes), (b) reveal bias 
within the dataset which limits its usefulness or (c) reveal subtle correlations that may lead to 
refinement of our chemical understanding (disagreement of the reactomes) (Fig. 1A). For the 
purposes of this paper, "literature" is defined as information from open-source chemistry databases 
and published literature in peer-reviewed journals. 
 
To create such a methodology, a High Throughput Experimentation Analyzer (HiTEA) was 
developed which can deduce the reactome of any HTE dataset. Whilst common chemistry datasets 
such as the CAS,12 Reaxys,13 USPTO, Pistachio, or the Open Reaction Database have impressive 
coverage, it was a concern that the high level of overlap between their reactions and literature data 
would shape these datasets' reactomes to be indistinguishable to literature reactomes 14,15. This 
would make it difficult to explore the discrepancies between the data and the literature reactomes, 
something that is likely to be possible utilizing HTE datasets and a fundamental feature of HiTEA 
that we wished to investigate. Thus, a HiTEA analysis was performed on a ground-breaking release 
of 10 years of historical medicinal chemistry HTE data. It is an unprecedently large dataset, 
acquired over 10+ years and spans a wide range of reaction classes (Fig. 1C). Within it are over 
39,000 reactions conditions spanning over 350 target products. The reactions are split across 
numerous classes, ranging from thousands of reactions to tens of reactions, whose reactants and 
reagents may be over-represented or under-represented. These challenges highlight the necessity 
of statistical analyses, which can understand the data even in these skewed environments. HiTEA's 
analysis of several classic reaction types reveal some notable biases as well as some unexpected 
findings which warrant further investigation. 
 
HiTEA: Statistical Analysis Framework for High Throughput Chemistry  
 
The HiTEA methodology is centered around three orthogonal statistical analysis frameworks, 
random forests, Z-score-ANOVA-Tukey (ANalysis Of VAriance), and PCA (Principal 
Component Analysis). Each framework answers one of the following questions: Which variable(s) 
are important? (random forest) 16, what are the statistically significant best-in-class/worst-in-class 
reagents (Z-score-ANOVA-Tukey) 17-20, and how do those best-in-class/worst-in-class reagents 
populate the chemical space (PCA) 21,22. Notably, this combination of statical analysis makes no 
assumption about the underlying data structure. For example, relationships can be non-linear or 
even discontinuous, the data does not need to be the full combinatorial cross of all reagents with 
all reactants, an important feature when considering the sparse nature of chemistry datasets, and 
smaller datasets are just as feasible as larger datasets. The synergy between these three branches 
of HiTEA paint a comprehensible understanding of a dataset's reactome, allowing for facile 
identification of hidden chemical insights. To highlight the flexibility and versatility of HiTEA, 
we analyze datasets that span upwards of 3,000 reactions across a broad range of substrates to 
datasets that are just over 1,000 reactions with a narrower substrate scope. 
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Which Variables are Most Important? 
 
Intuitively, some reactions are more sensitive to certain variables than others. Cross-couplings are 
highly sensitive to the metal and its ligand, but generally less sensitive to the identity of the solvent 
23,24. The relative variable importance is critical to understanding the chemistry insights that are 
present in the reactome. Note that importance can be positively correlated or negatively correlated 
with reaction outcome. 
 
When investigating variable importance, two techniques come to mind as versatile and broadly 
applicable: random forests and multi-linear regressions. Both have yielded impressive results in 
chemistry and other fields, however, for HiTEA we chose to utilize random forests 4,16,25,26. Unlike 
multi-linear regression, random forests do not stipulate that one's data must be linear, and thus 
obviate the need for linearization (and ideally normalization). Given the non-linearity of the data, 
we hypothesized that random forests would yield more accurate variable importances. In general, 
moderate to good out of bag accuracy of reaction outcome from a random forest with standard 
hyperparameters was observed (Table S1), with some noted exceptions (see Taking Dataset to 
HiTEA sections), correlating with poorer mechanistic insights of the reaction class overall. To 
assess the confidence of the variable importance, ANOVA was performed on each dataset subclass 
with statistical significance of the variables set at p = 0.05. 
 
What are the Best- and Worst-In-Class Reagents? 
 
It is known that there are privileged reagents that perform well across the board for a multitude of 
reactions, and there are those who’s utility is narrow. Identifying the best- and worst-in-class 
reagents is therefore key to understanding a reactome. However, detangling the impact of a reagent 
from the inherent reactivity of the reactant(s) is challenging. We chose to compare relative yields 
which had been normalized through Z-scores, a technique that has shown promise in analysis of 
HTE data 17,27. Notably, this framework allows for other target reaction outcomes to be used such 
as diastereoselectivity / enatioselectivity. ANOVA on the normalized target reaction outcome 
reveals the broad variables (solvent, base, catalyst system, temperature, etc.) that are statistically 
relevant for that reaction outcome 17-19. Tukey's HSD test is then used to identify the outliers in 
each statistically significant variable, which are then ranked by average z-score to provide the best- 
and worst-in-class reagents 20. 
 
How do the Best- and Worst-In-Class Reagents Populate the Chemical Space? 
 
A visualization of the best- and worst-in-class reagents is useful to contextualize the scope of the 
dataset and therefore the extent of the reactome.  The selection bias of reagents and clustering of 
high and low performing reagents can be easily interpreted. Whilst numerous techniques for 
dimensionality reduction and visualization of high-dimensional space are known, we chose to use 
PCA as its utility has been widely documented and numerous reliable, user-friendly 
implementations exist 28,29. Additionally, PCA is more interpretable than UMAP (Uniform 
Manifold Approximation and Projection) or tSNE (t-distributed Stochastic Neighbor Embedding) 
whose non-linearity necessitate warping the high-dimensional shape of the data during projection; 
the xy-axes of projection lose the easy interpretability of highest variance (x-axis) / second highest 
variance (y-axis) that is fundamental to PCA 30,31. 
 
Taking the Dataset to HiTEA 
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To test HiTEA, four distinct reactomes were chosen to be explored. These reactomes were widely 
used reaction classes: Buchwald-Hartwig couplings, Ullmann couplings, heterogeneous 
hydrogenations, and homogeneous hydrogenations (Fig. 1B). From the generated reactomes 
carefully analysis of HiTEA's variable importances, statistically relevant best / worst-in-class bases 
and catalysts, and ligand distribution was performed, concluding with tailored recommendations 
for further exploration. This analysis was also performed on temporally segregated data and data 
with their 0% yielding reactions removed, to mimic a dataset that would be more likely found in 
literature sources. Generally, temporal analysis appeared to be better correlated with the series of 
individual substrates screened over time than the evolving screen designs themselves. The removal 
of 0% yielding reactions lead to a far poorer understanding of the reaction class overall (Fig. S1 - 
Fig. S4, Fig. S5 - Fig. S8). The disappearance of the worst-in-class reagents and catalysts was 
expected, however, best-in-class conditions also disappeared. This result highlighted the value of 
0% and lower yielding data in the disclosure of all datasets. 
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Buchwald-Hartwig Couplings: 
 
Buchwald-Hartwig couplings are a fundamental reaction in medicinal and process chemistry 32. 
The dependence of yield upon ligand electronic and sterics is well reflected in this dataset; it is 
diverse in catalysts and ligands, but less diverse in coupling partners. This was the largest reactome 
we analyzed consisting of ~3,000 reactions. 
 
Diversity wise, the dataset contained 31 unique halides and 32 unique nucleophiles, encompassing 
amine, amide, aromatic nitrogen, and alcohol nucleophiles, and 29 unique reacting halide-
nucleophile pairs. Interestingly, the nucleophiles were less diverse than the aryl halides, owing to 
the nature of the ongoing campaigns at the time (Fig. S9). It was also found that aryl bromides 
made up the majority the reactions, both in number of unique reacting pairs and total number of 
reactions (Fig. 2A). It was expected that HiTEA on the Buchwald-Hartwig dataset without 
accommodating for this overrepresentation would reveal an HTE reactome significantly centered 
around aryl bromide couplings. Indeed, HiTEA credits significant variable importance to 

Fig. 2: Unique reacting pairs/molecules for each reaction class. (A) Buchwald-Hartwig dataset. (B) Ullmann dataset. (C) 
Heterogeneous hydrogenation dataset. (D) Homogeneous hydrogenation dataset. 
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BrettPhos Pd G1 (Fig. S10). This is clearly not in agreement with the literature's reactome in which 
many ligands show equal or better general performance to BrettPhos 11,23,24,33. Thus it was 
hypothesized that a more nuanced analysis would arise if HiTEA was be applied to subdatasets 
(i.e. ArBr + 1˚ amine, ArCl + 1˚ amine, etc.), to determine their subreactomes. Subdatasets with 

more than 80 reactions and two or more unique reacting pairs were analyzed, as these subreactomes 
were more likely to be differentiated from their literature chemical reactomes. 
  
With ArBr + 1˚ amines (3 unique reacting pairs), the literature precedent suggests a high 
dependence on bulky biaryl phosphine ligands 23, which can inhibit the unproductive β-hydride 
elimination pathway and prioritize the reductive elimination, will be observed. BrettPhos ligands 
were expected to be dominant in the reactome's variable importances 34, and indeed, we see that 
BrettPhos Pd G1 is by far the most important variable for this subdataset. Surprisingly, the even 
bulkier t-BuBrettPhos was not in contention for the top important variable 23,24. The ArBr + 2˚ 
amines (3 unique reacting pairs) show a negative dependence on the presence of P4-t-Bu, a 

Fig. 3: HiTEA analysis of the Buchwald-Hartwig dataset. HiTEA/Literature-specific variable importances agreement between 
the literature and HiTEA variable importances highlighted. Acronym structures can be found in in Fig. S11. (A) Variable 

importances. Unless otherwise specified, the metal source for the ligand is Pd(OAc)2. Where appropriate, reactant importances 
are shown. (B) Statistically significant best/worst-in-class catalysts and reagents. Unless otherwise specified, CuI is the copper 

source for the Ullmann couplings. 
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phosphazene base, which despite known utility in cross-couplings 35, is universally bad for this 
subdataset. The other phosphazene base, P2-Et, is also ranked poorly by HiTEA (Fig. 3B). A recent 
systematic investigation of optimal standard Buchwald-Hartwig conditions noted that P2-Et 
underperformed other bases 9. With ArBr and ArI + 1˚ alcohols (both with 2 unique reacting pairs), 
and ArBr + amides (2 unique reacting pairs), ligands with rigid backbones and steric bulk which 
promote easier reductive elimination and prevent the deleterious K2-amidate complexes 24,36 were 
expected to dominate, although a lower diversity of catalysts present in the variable importance 
analysis could be due to the lower random forest out of bag accuracy for these two reaction classes 
(Fig. SX). For these three subdatasets, the subreactomes are in agreement with the literature's 
reactome with OMs RockPhos Pd G3 and OMs BrettPhos Pd G3 highlighted in HiTEA's analysis. 
Finally, we turn to ArCl + 1˚ amine couplings (6 unique reacting pairs). Here, the literature reports 
electron rich ligands that allow for more facile oxidative addition of the Ar-Cl bond and bulky 
scaffolds that limit the known β-hydrogen elimination pathway are preferred 37,38. However, the 
HTE subreactome had only Pd(OAc)2/BippyPhos as a variable of minor significance (Fig. 3A). 
Upon closer inspection, a high dependence upon substrate identity was observed, implying that for 
this subreactome, the most important factor is the reacting halide-nucleophile pair. 

 
Fig. 4: (A) PCA ligand analysis of the Buchwald, Ullmann, and CO reduction ligands. (B) HiTEA variable importance analysis of 
Ullmann dataset. Unless otherwise specified, CuI is the copper source. HiTEA/Literature-specific variable importances agreement 
between the literature and HiTEA variable importances highlighted. Acronym structures can be found in Fig. S11. 

Overall, the best / worst-in-class catalysts fall neatly into chemical intuition for the reasons 
highlighted above (Fig. 3B), and gratifyingly also cluster neatly in the ligand PCA visualization 
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(Fig. 4A). A sharp divide between best-in-class and worst-in-class ligand clustering is clear and 
Xantphos, the single ligand that could be either depending upon the precatalyst employed, resides 
away from the other ligands. Many of the subreactomes also agree with the literature's reactome, 
but several areas of interest stick out. First, the ArCl + 1˚ amines reactome differs from the 
literature's. While ArCl + 1˚ amine yield are somewhat dependent upon their reactants' structures, 
the lack of any significant ligand importance and the dominance of reactant identity suggests to us 
that this dataset may have some substrate selection bias. A clearer picture of ArCl + 1˚ amines' 
reactome could be achieved with expansion of the diversity in nucleophiles screened. The second 
is the little importance placed upon t-BuBrettPhos in ArBr + 1˚ amine's reactome. This may be 
due to the infrequent usage of t-BuBrettPhos when compared to the other catalysts in the 
subdataset. In the instances that t-BuBrettPhos was utilized, it was with challenging substrates 
(hence why it was noted as a best-in-class ligand with z-score-ANOVA-Tukey). In future screens, 
it could be advantageous to use t-BuBrettPhos more frequently to investigate this further. 
 
Ullmann Couplings: 
 
In recent years, palladium free cross couplings such as the Ullmann reaction have gained in 
popularity due to their cost-effectiveness 39.  Ullmann couplings, in particular are a viable option 
for aryl bromide / iodide and nucleophile cross couplings. The Ullmann dataset is more modest in 
scope and scale than its Buchwald-Hartwig counterpart, at about half the size, however even in 
this smaller space HiTEA is applicable. 
 
Contrary to the Buchwald-Hartwig dataset, which encompassed a "wide but shallow" sampling of 
the substrate space, the Ullmann reactions are "narrow but deep" with few subdatasets but 
significant total number of reactions for each (Fig. 2B). The dataset contained 9 unique halide-
nucleophile pairs, with good diversity in both the aryl halides and the nucleophiles, albeit a limited 
number of each (Fig. S12). 
 
HiTEA revealed HTE subreactomes that readily distinguish between subtle differences in solvent. 
Across the board, a high importance of solvent is observed, with dependencies based on differing 
reactomes. For example, In the ArI + aromatic nitrogen (3 unique reacting pairs) and ArI + 2˚ 
alcohol couplings (2 unique reacting pairs), dioxane and DMAc are favored, respectively. For 
ArBr + 1˚ alcohol's reactome (2 unique reacting pairs), these two solvents are revealed to have less 
importance. In fact, the solvent of importance, allyl alcohol, is also the nucleophile in these 
couplings. In this subreactome, ligand identity plays a significant role in yield determination. 
Finally, for the ArI + 1˚ alcohol's reactome, reaction temperature is a leading factor, a point which 
is of no surprise 40. It was expected to also see some importance placed on temperature for the 
other 3 subreactomes, but due to HTE design, temperature remained nearly constant throughout 
the entire subreactome, eliminating it as a variable. 
  
For the Ullmann dataset, we believe the HTE and literature reactomes are in broad agreement. 
Gratifyingly, phenanthroline-based and picolinamide-based ligands are present in the best-in-class 
ligands, which are well known as privileged scaffolds in Ullmann couplings 41,42. HiTEA observed 
that the Ma ligands (DMPAO and PMPBO) were individually less successful than other ligands 
in the standardized format of this HTE dataset. These ligands are characterized by high yields in 
the literature which acknowledges that their yields are sensitive to the electronics of the specific 
ligand-reactant pairing 43. Thus, it is possible that the true potential of these ligand was masked. 
Visualization of the ligand space reveals a very narrow scope for ligand choice, perhaps 
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unsurprisingly given the similarity of privileged scaffolds in Ullmann couplings (Fig. 4A and Fig. 
S14). A unique observation for the Ullmann's ligand PCA is that the clustering is confined to the 
best-in-class ligands, supporting the random forest, z-score-ANOVA-Tukey findings that, for the 
most part, a few select ligands are useful for good yield outcomes. This outcome highlights the 
sensitivity of HiTEA's best- and worst-in-class catalyst analysis: despite the similarity in structure 
of the ligands, key differences in performance were identified, leading to a remarkably subtle 
overall ranking. The selection of specific solvents within the subreactomes was also intriguing. 
Although all the solvents identified are known to be good solvents within the literature, it is striking 
how each solvent's importance varies across subreactomes. Solvent effects are known to play a 
role in the mechanism of Ullmann couplings, but an exact understanding of which solvents are 
best for SET vs IAT or for C-N vs C-O coupling is not fully characterized, despite observed 
preferences 40,44,45. A deeper dive into solvent characteristics is recommended for a more 
comprehensive understanding of this reactome overall.   
 
Hydrogenations: 

 
Hydrogenations are a well utilized reaction with a broad range of applications 46,47. The 
mechanistic differences between heterogeneous and homogeneous hydrogenations warrant that 
these datasets be analyzed separately. Similar to the Buchwald-Hartwig dataset, the heterogeneous 
hydrogenations sample the reaction space in a "wide but shallow" manner whereas the 
homogenous hydrogenations follow the Ullmann's "narrow but deep" scope. The overall diversity 
of the molecules for both hetero and homogeneous hydrogenations are broad (Fig. S13). We will  

Fig. 5: HiTEA variable importance analysis on heterogeneous and homogeneous hydrogenation datasets. Where appropriate, 
reactant importances are shown. HiTEA-specific variable importances highlighted, as well as agreement between the literature 

and HiTEA variable importances. Acronym structures can be found in Fig. S11. 
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not be delving deeply into the heterogeneous reduction of "Other FGs" (those which contain a 
mixture of nitro, diazo, and nitrile reductions) nor the heterogeneous alkyne reductions due to this 
reaction type containing only a single unique molecule undergoing hydrogenation (Fig. 2C & 2D). 
 

HiTEA reveals that the heterogeneous alkene subreactome (3 unique reactants) places high 
negative importance on zinc dust and for the HTE deprotection subreactome (9 unique reactants) 
a high positive importance on temperature (Figure 5 & 6). Whilst temperature-correlated 
deprotections do agree with the literature's reactome 48,49, the negative correlation with zinc dust 
is a HiTEA-specific insight. This exemplifies the value of the negative results in the dataset which 
enables HiTEA to confirm negative correlations. The literature’s reactome is often unable to 
confirm such correlations as it lacks publications with the negative data required. Interestingly, the 
other three subreactomes have no standout variable. In the case of the homogeneous 
hydrogenations (11 unique reactants), this can be explained by a strong dependence upon the 
reactants, but dearomatizations (5 unique reactants) show little overall dependence upon any 
variable, including molecule identity, perhaps due to the diverse and subtle changes that govern 
the energetically demanding process of dearomatization (Fig. 5) 50. For these three subdatasets, the 
HiTEA's best/worst-in-reaction-type reveal more information (Fig. 6). 
  

5% Rh / C
10% Pd / C (wet)
20% Pd(OH)2 / C

10% Pt / C
10% Pd / C (dry0

5% Pd / C
RaNi
PtO2

Zinc dust

Outlier Catalysts
Outlier 

Reagents

Alkenes

= Above average catalyst / reagent = Below average catalyst / reagent

In
cr

ea
si

ng
 a

ve
ra

ge
 z

-s
co

re

Reagents were 
determined to not be 
statistically significant 

via ANOVA.

10% Pd / C E101
20% Pd(OH)2 / C
10% Pd / C (wet)
10% Pd / C (dry)

5% Pd / C
Pd(OH)2 / C + NH4Cl

5% Rh / C
5% Pt / C
5% Ru / C

RaNi
PtO2

Zinc dust
10% Pt / C

Outlier Catalysts
Outlier 

Reagents

NH4OH
DIPEA
None

AcOH
HCl

CmphSO3H
TFA

MeSO3H

Deprotections

Pt2O
RaNi

10% Pt / C
20% Pd(OH)2 / C

5% Rh / C
10% Pd / C (dry)

5% Pd / C
Zinc dust

Outlier Catalysts
Outlier 

Reagents

None
HCl

DIPEA

Dearomatizations

DIPEA
HCl

None

Outlier Catalysts
Outlier 

Reagents

Alkenes

Catalysts were determined to not 
be statistically significant via 

ANOVA.

A

B

[Rh(cod)2] R-Josiphos SL-J009-1
Naud’s Catalyst Ru

C1-310
C1-350
C1-361
C1-300
C1-308
C1-314

C1-318
C1-304

RuCl2(PPh3)3
C1-358

[Ru(p-cymene)Cl2]2
(dppb)RuCl2 AMPY

Outlier Catalysts
Outlier 

Reagents

CO Reductions

No acid / base was 
statistically better than 

any other.

In
cr

ea
si

ng
 a

ve
ra

ge
 z

-s
co

re

= Not relevant to yield

Fig. 6: HiTEA best/worst-in-class analysis of hydrogenation dataset. Acronym structures can be found in Fig. S11. (A) 
Heterogeneous hydrogenation dataset. (B) Homogeneous hydrogenation dataset. 
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Overall, higher loadings of Pd/C are better than lower loadings, and Pearlman's catalyst is an all-
around good catalyst for heterogeneous hydrogenations, two observations which are mirrored in 
the literature's reactome 51. The pH of hydrogenolysis deprotections have been reported to have a 
marked effect in selectivity of the reaction, although acidic conditions are usually preferential 52. 
Dearomatizations, primarily performed on nitrogen-containing heterocycles in this dataset, are 
partial to acidic conditions 53. For the yield of asymmetric carbonyl reductions (6 unique reactants), 
ligand structure was a key factor, with very little importance placed on the base. In the literature, 
preferential treatment is given to rigid-backboned ligands, as it is hypothesized that flexible 
backbones deform the chiral pocket, leading to lower stereoselectivities 54,55. Indeed, even yield in 
this subreactome is completely dominated by ligand structure, with the top performing ligand 
featuring a rigid 6-member ruthenium metallocycle of a Josiphos ligand. The middling ligands 
contain either 7- or 8-member metallocycles. The poorest performer is (dppb)RuCl2AMPY boasts 
a significantly more flexible backbone from the rotational bonds between the P-P bridge (Fig. 6) 
56. Once again, ligand visualization reveals pockets of best- and worst-in-class ligand scaffolds, 
with clear distinctions between the best of the best-in-class ((R)-Josiphos SL J009-1 and Naud's 
catalyst Ru - see SI for all structures of acronyms) and the worst of the worst-in-class (p-cymene 
& dppb/AMPY), further supporting our chemical understanding of ligand design in metal-
mediated asymmetric carbonyl reductions. Gratifyingly, even amongst the very structurally similar 
C1-3## family of catalysts from Johnson Matthey, a noticeable delineation between the good and 
poor performers is visible (Fig. 4A). Finally, homogeneous alkene hydrogenations' best / worst-
in-class analysis confirms its variable importances conclusions: across the subreactome as a whole, 
the choice of catalyst is not statistically relevant in the determination of yield. This is no doubt a 
case of dataset bias as all of HiTEA's techniques failed to produce reasonable results: the random 
forest had low out of bag accuracy, the resulting random forest importances not including any 
catalysts, and the ANOVA deeming the catalysts as not statistically significant. A broader selection 
of alkene substrates and catalysts, or a subset of this dataset with less noise, would likely improve 
the utility of this subdataset. 
 
Applications of HiTEA: 

The hidden chemical insights brought to light 
by HiTEA have a multitude of potential 
applications. We posit three scenarios for 
HiTEA application, valuable for synthetic 
chemists and data scientists (Fig. 7).  
 
Mechanistic Interrogation: 
Keen understanding of the underlying reaction 
mechanism is advantageous for reaction 
optimization, and oftentimes, a deep 
understanding of a mechanism can lead to the 
development of new reactions and catalysts. 
However, many reaction mechanisms have 
seen only partial elucidation, especially those 
which feature organometallic transition 
states.57 We imagine that HiTEA could identify 

hidden correlations between reaction inputs and measured reaction outcome, providing statistically 
robust evidence for or against mechanistic hypotheses. In the course of our manuscript, we 
discovered that solvent identity plays a significant role in the yield of Ullmann couplings, however, 
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Fig. 7: Possible applications of HiTEA insights to batch scale, 
high throughput experimentation, and machine learning. 
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unlike their Buchwald counterparts, the effect of solvent polarity on the multitude of potential 
XAT / SET catalyst intermediates has not been elucidated. As HiTEA has been designed to be 
applicable in even low data environments, it has conceivable utility in the investigations of other 
reaction mechanisms with limited screening. 
 
Bias Identification for Machine Learning: 
Bias is detrimental to machine learning because it allows the model to "cheat", relying on spurious 
correlations to get the right answer and leading to a lack of generalizability.58 Take for example an 
image classification network recognizing a lion based on the savannah background rather than the 
animal’s own features.59 Image classifiers now employ a variety of techniques to try to combat 
bias of this type in addition to using huge image datasets that will have images of their subjects in 
a variety of backgrounds, poses, and distances. 
 
For chemistry, HTE data has been noted as a valuable source of data for machine learning 
algorithms, as it is one of the best ways to generate moderate-to-large scale amounts of data in a 
parallel fashion. However, this data will also some bias: the reagents chosen by the chemist running 
the screen, the reaction is known to fail with specific motifs thus those motifs are left out of the 
dataset, or the simple fact that HTE is limited to the set of synthesizable molecules, which can be 
thought of as a bias, albeit one that we may want the network to learn or to operate in. As observed 
in the previous sections, HiTEA is adept at finding areas of bias in datasets, which usually take the 
form of substrate bias. When using these biased datasets for machine learning, one can either a) 
augment the dataset with further rounds of HTE or additional datasets or b) take a subset of the 
dataset that is less noisy and less biased; a removal of outliers. Both tasks can be aided by HiTEA 
through iterative augmentations or reductions followed by HiTEA. Stable and chemically sound 
HiTEA results (the removal of the surprising insights) indicate a dataset that is relatively robust, 
and superior for consistent modeling. 
 
HiTEA for Future HTE Screens: 
The most straightforward application of HiTEA is for future reaction optimization reactions, either 
in high throughput or in batch. Whilst HTE can explore swaths of chemical space, the 
combinatorial cross of all feasible reagents x catalysts x ligands x additives with even a limited set 
of reactants is unfeasible. HiTEA can give a visualization of the breadth of the scope and rapidly 
assess the statistically significant best and worst reagents, guiding the chemist to optimal reaction 
outcome. One could imagine HiTEA being used in conjunction with Shields et al.'s Bayesian 
optimizer for even faster optimization.60 Additionally, temporal analysis is straightforward to run 
to visualize trends in poor and excellent conditions over time, adding further versatility to HiTEA's 
utility in reaction screening.  
 
Conclusions: 
 
Dataset exploration is an overlooked, but critical area of research in data-driven chemistry. The 
experimentalist is often blind to the chemical insights that have been locked into these datasets, 
missing key directions towards areas of exploration. With the development of HiTEA, a 
meaningful step in addressing this challenge has been made. We uncovered several interesting 
areas of exploration within Ullmann reactomes and identified several reactomes which would most 
benefit from additional HTE. We hope that this publication serves as a call to arms to the chemical 
community to collect, publish and analyze additional chemistry HTE data, providing further 
opportunities to explore the uncharted territories of the chemical reactome. 
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