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Abstract 

Due to its cost-effectiveness, convenience, and high patient adherence, oral drug administration 

often remains the preferred approach. Yet, the effective delivery of hydrophobic drugs via the oral 

route is often hindered by their limited water solubility and first-pass metabolism. To mitigate 

these challenges, advanced delivery systems such as solid lipid nanoparticles (SLNs) and 

nanostructured lipid carriers (NLCs) have been developed to encapsulate hydrophobic drugs and 

enhance their bioavailability. However, traditional design methodologies for these complex 

formulations often present intricate challenges because they are restricted to a relatively narrow 

design space. Here, we present a data-driven approach for the accelerated design of SLNs/NLCs 

encapsulating a model hydrophobic drug, cannabidiol, that combines experimental automation and 

machine learning. A small subset of formulations, comprising 10% of all formulations in the 

design space, was prepared in-house, leveraging miniaturized experimental automation to improve 

throughput and decrease the quantity of drug and materials required. Machine learning models 

were then trained on the data generated from these formulations and used to predict properties of 

all SLNs/NLCs within this design space (i.e., estimated to be more than 1200 formulations). 

Notably, formulations predicted to be high-performers via this approach were confirmed to 

significantly enhance the solubility of the drug by up to 3000-fold and prevent drug degradation.  

Moreover, our high-performance formulations significantly enhanced the oral bioavailability of 

the drug compared to both its free form and an over-the-counter version. Furthermore, this 

bioavailability matched that of a formulation equivalent in composition to the FDA-approved 

product, Epidiolex®. 
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1. Introduction 

Oral delivery remains the preferred route of drug administration, accounting for over half of all 

drug products on the US market [1]. The preference for oral dosage forms is attributed to several 

advantages including ease of administration, patient compliance, and reduced cost [2]. However, 

it is estimated that the majority of small-molecule drugs currently in research and development are 

hydrophobic in nature [3]. These molecules which fall into Biopharmaceutics Classification 

System (BCS) Classes II and IV are known to have limited bioavailability following administration 

in conventional oral formulations. As a result, they necessitate the use of advanced oral 

formulation strategies to fully exploit their therapeutical potential. Such advanced formulations 

include solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), which are 

gaining increasing attention for the oral delivery of hydrophobic drugs [4–6]. First introduced in 

the 1990s, SLNs and NLCs [7–9] have been proposed as a means to enhance the oral 

bioavailability of their cargo. This enhancement in oral bioavailability is attributed in part to a 

marked improvement in the apparent solubility of the drug.  In addition, the small size of the SLN 

and NLC particles promotes a higher dissolution rate of the drug as well as lymphatic transport 

which provides a means to avoid first-pass metabolism [10,11]. 

While SLNs/NLCs offer these advantages, their design process remains complex, partially due to 

the reliance on an iterative trial-and-error approach. For a given drug, there is a multitude of 

formulation variables to consider, including the types of excipients, drug-excipient ratios, 

surfactant concentrations, and various manufacturing parameters. As a result, predicting the 

formulation outcomes a priori becomes a challenge and numerous rounds of drug formulation 

studies are required before settling on a satisfactory formulation. Thus, a more efficient 

development strategy is needed to expedite formulation design. 

In the past decade, researchers have begun to address this issue by utilizing data-driven 

methodologies to design SLN/NLCs formulations, with the design of experiment (DoE) approach 

being the central focus [12–16]. For example, Diwan et al. employed the principles of DoE to 

design cilnidipine (CND, a BCS Class II drug) loaded SLNs [12]. In comparison to a free aqueous 

suspension of CND (with 0.5% Tween 80), the SLNs designed via DoE resulted in a twofold 

increase in oral bioavailability (as measured by AUC0-∞) and a significant improvement in 

therapeutic efficacy in a rat model of hypertension [12]. 
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Although DoE has been the mainstream data-driven approach for SLN/NLC development, there 

is a rising interest in the adoption of in silico experimentation [17–19]. The rise of self-driving 

laboratories [20–28]has shown that machine learning (ML) approaches such as Bayesian models 

are routinely more competitive that traditional DoE to address a variety of chemistry and materials 

science problems [29–33]. ML approaches can be used to perform experiments virtually, providing 

a low-cost and effective method for designing a formulation with desirable properties. In our study, 

we employed ML in conjunction with high-throughput, miniaturized automation to accelerate the 

formulation development of SLNs and NLCs for a hydrophobic drug, cannabidiol (CBD). CBD, a 

clinically-approved drug and nutraceutical, was chosen as our BSC class II model compound. 

Specifically, a subset of CBD-loaded SLN/NLC formulations from the design space were prepared 

and measured using customized high-throughput automation protocols. ML models were then 

trained on this subset of SLNs/NLCs to predict the properties of all the formulations within the 

design space. Subsequent in vitro and in vivo characterization of the promising formulations 

identified through this data-driven workflow revealed improvements in the apparent solubility and 

chemical stability of the drug. As well, the oral bioavailability was improved following 

administration in healthy rats, in comparison to its free form and an over-the-counter version. 
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2. Materials and methods 

2.1. Materials 

Stearic acid (SA, 95%), CarbitolTM (DGME, 2-(2-Ethoxyethoxy)ethanol, 99%), ammonium 

formate, tetrahydrofuran (THF, HPLC grade), formic acid (FA, 98 - 100%), PluronicTM F-127 

(P407), methanol (LC-MS grade, ≥99.9%), acetonitrile (ACN, LC-MS grade, ≥99.9%), delta-9-

tetrahydrocannabinol (THC, 1.0 mg/mL in methanol) were purchased from Sigma Aldrich (ON, 

CA). Glycerol monostearate (GM), ACN (HPLC grade), and water (LC-MS grade) were purchased 

from ThermoFisher Scientific (MA, USA). Cannabidiol (CBD, 97.5 - 99%) was purchased from 

the Ontario Cannabis Store (ON, CA). Compritol® 888 ATO (C888) was a gift from Gattefossé 

Canada Inc (ON, CA). Tween 80® (Polysorbate 80, reagent grade) was purchased from BioShop 

(ON, CA). Methanol (HPLC grade) was purchased from Caledon Laboratory Chemicals (ON, CA). 

Sprague Dawley rat plasma was purchased from Innovative Research (ON, CA). 

2.2. ML modeling 

2.2.1. ML model development 

A dataset consisting of 128 SLN/NLC formulations was generated using the automation screening 

workflow (Supplementary Information). This dataset was modeled using eight ML regression 

algorithms, including linear regression (LR), LR with least absolute shrinkage and selection 

operator regularization (Lasso), decision tree (DT), random forest (RF), light gradient boosting 

machine (LightGBM), extreme gradient boosting (XGB), support vector regressor (SVR), and a 

neural network (NN), to infer the statistical relationship between the properties of the excipients 

and the formulation characteristics including particle size, drug loading capacity (DLC, %), and 

EE (encapsulation efficiency, %). ML models were developed in Python using the Scikit-learn 

package [34] (for LR, Lasso, DT, RF, SVR, and NN), the XGBoost package [35] (for XGBoost), 

and the LightGBM package (for LightGBM) [36]. Five input features, including initial drug-to-

lipid ratio (mass of drug per total lipid, wt%), solid lipid type (SA=-1; GM=0; C888=1), solid lipid 

content (mass of solid lipid per total lipid, wt%), liquid lipid content (mass of liquid lipid per total 

lipid, wt%), and surfactant concentration (aqueous phase surfactant concentration, w/v%), were 

used to train ML models to predict particle size, DLC, and EE. To enable muti-objective 

predictions, we employed the MultiOutputRegressor function from Scikit-learn library to extend 

the single-output regression models to handle multiple target variables. Input features were 
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standardized by removing the mean and scaling to unit variance using the StandardScaler function 

in the Scikit-learn package [34]. All models were initialized with their default hyperparameter 

settings and trained based on k-fold cross-validation (k=5, random state=0). 

2.2.2. ML model deployment 

The best-performing model was utilized to predict the properties (particle size, SLC, and EE) of 

SLNs/NLCs within the design space, creating a synthetic dataset. The Pareto front of this dataset 

was determined using the Olympus package [37,38]. This entailed employing the five input 

features used to train the models with goals set to minimize particle size while maximizing drug 

loading levels.  

Additionally, we construct an overall performance (OP) metric that defines the cumulative merit 

of formulations by using the arithmetic mean of the normalized target property values. Each target 

property is transformed to the interval [0, 10], with 0 being the worst property value and 10 being 

the best. 

𝑂𝑃  = (𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑠𝑖𝑧𝑒 + 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐷𝐿𝐶 + 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐸𝐸)/3 

2.3. Bench-scale SLN/NLC preparation and characterization 

2.3.1. SLN/NLC formulation 

Drug-loaded SLNs and NLCs were prepared using a modified nanoprecipitation method [39]. In 

brief, drug and lipids were dissolved in THF to generate an organic phase. A total of 3 mL of the 

THF organic phase was then rapidly injected into 15 mL of an aqueous phase (+/- surfactant, 

prepared in a 20 mL scintillation vial) using a pipette. The final mixture (18 mL) was agitated by 

magnetic stirring for 10 minutes at 400 rpm. The 20 mL scintillation vials containing the final 

nanosuspensions were then covered by aluminum foil with a few needle holes and continuously 

stirred at 50 rpm overnight to allow the solvent to evaporate and particles to harden. Prior to 

analysis, the particles were filtered using a syringe filter membrane (0.45µm, Millex-HV PVDF 

Syringe Filters, Sigma, CA) to remove drug or excipient precipitate. Tangential flow (50 nm pore 

size, MicroKros, Repligen Corporation, US) filtration was then performed to further purify and 

concentrate the NPs. Specifically, one batch (18 mL) or five batches (90 mL, for lead formulations) 

of particles were concentrated to a final volume of between 2 and 3 mL. Next, the particles were 

diluted with 10 mL of MilliQ water and then again concentrated to between 2 and 3 mL. This 
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process was repeated twice. The final purified, concentrated SLNs/NLCs were then characterized 

in terms of drug loading level and size.  

2.3.2. Size measurements 

Filtered particles were diluted using MilliQ water prior to particle size and size polydispersity 

index (PDI) measurements using a dynamic light scattering instrument (DLS, Zetasizer, Malvern 

Panalytical, UK). Particles were analyzed in disposable cuvettes (Acrylic cuvette, Sarstedt, 

Germany) at 25 °C. Each measurement consisted of 10 runs (10 seconds/run). Particle size (z-

average particle diameter) and PDI of each sample were recorded as the average of three repeat 

measurements. 

2.3.3. Drug loading analysis 

For drug loading analysis, filtered SLNs/NLCs were diluted in methanol for drug extraction. The 

resulting solutions were then filtered via syringe membrane filters (0.45µm, Millex-HV PVDF 

Syringe Filters, Sigma, CA). Drug analysis was performed using an Agilent Technologies 1260 

Infinity II (Agilent Technologies, Santa Clara, CA, USA) high-performance liquid 

chromatography (HPLC) system with a diode-array detector (DAD). The HPLC assay was 

modified from a study previously published by our group [40]. In brief, a Restek EXP Direct 

Connect Holder guard column and a Restek Raptor ARC-18 column (150 x 4.6 mm, 2.7 µm) were 

used. The mobile phase, containing 30% (v/v) of 5 mM ammonium formate (prepared using MilliQ 

water with 0.1 wt% formic acid) and 70% (v/v) acetonitrile, was delivered at a flow rate of 1 

mL/min, and CBD was detected at a wavelength of 228 nm. 

The DLC and EE were calculated as follows: 

𝐷𝐿𝐶  =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑢𝑔	𝑙𝑜𝑎𝑑𝑒𝑑

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑙𝑖𝑝𝑖𝑑	𝑎𝑑𝑑𝑒𝑑	 + 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑢𝑔	𝑙𝑜𝑎𝑑𝑒𝑑 × 100% 

𝐸𝐸	  =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑢𝑔	𝑙𝑜𝑎𝑑𝑒𝑑 
𝑀𝑎𝑠𝑠 𝑜𝑓	𝑑𝑟𝑢𝑔	𝑎𝑑𝑑𝑒𝑑 × 100% 
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2.3.4. Formulation morphology 

The morphology of the SLNs/NLCs prepared at bench scale was examined using a cryo-

transmission electron microscope (cryo-EM, Talos L120C) at the Microscopy Imaging Laboratory 

(MIL, Temerty Faculty of Medicine, University of Toronto). 

2.3.5. In vitro formulation stability 

To evaluate the physical stability of the SLNs/NLCs suspensions and the chemical stability of drug 

encapsulated in NPs, batches of SLNs/NLCs were stored in the dark at room temperature for one 

month. CBD concentrations (along with particle size and PDI) were measured as previously 

described at predetermined time points (i.e., Days 0, 7, 14, 21, and 28). For comparison, the 

stability of unencapsulated and molecularly dissolved CBD (i.e., CBD dissolved in aqueous media 

with 0.5% Tween 80, v/v) was also investigated under identical conditions. 

2.4. Animal studies 

2.4.1. In vivo pharmacokinetics studies 

Animal studies were approved by the Animal Care Committee at the University of Toronto. 

Female Sprague-Dawley rats (initial body weight ranging from 200 to 225 grams) were purchased 

from Charles River and housed in the Division of Comparative Medicine. All animals were 

allowed to acclimatize for a week prior to the study. On the day of the study, groups of rats received 

either a CBD-loaded SLN/NLC formulation or CBD in an aqueous suspension (in 0.1% Tween 

80) via oral gavage at a CBD dose of 20 mg/kg. Serial blood samples were collected from the 

saphenous vein at 0.25, 0.5, 1, 2, 4, and 6 h post-administration, using Microvette® CB 300 LH. 

The animals were sacrificed through cardiac puncture at 8 h, and blood was collected using a BD 

Vacutainer ® Tube (4 mL). Plasma was separated by centrifugation at 3000 rpm at 4 °C (10 min 

for Microvette® tubes and 15 min for Vacutainer® tubes) and stored at -80 °C until further 

processing. 

2.4.2. CBD extraction from plasma 

CBD was extracted from plasma using a method adapted from our previous work [40]. In brief, 1 

µL of THC (0.2 mg/mL in methanol, internal standard) was added to a clean vial and then dried 

via evaporation under nitrogen at 37°C using a Glas-Col ZipVap evaporator (Terre-Haute, IN, 

USA). A 50 µL aliquot of plasma was added to the vial (containing THC internal standard) and 
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then mixed with 450 µL of ACN/ethyl acetate (50:50; v/v). The samples were then vortexed for 

10 min and centrifuged at 12,000 rpm for 10 min at 4°C. The supernatant (400 µL) of each sample 

was transferred to a clean vial. These samples were concentrated via evaporation under nitrogen 

at 37°C using a Glas-Col ZipVap evaporator (Terre-Haute, IN, USA) followed by reconstitution 

in 150 µL of methanol. The reconstituted samples were then centrifuged at 12,000 rpm for 10 min 

at 4 °C, following transfer of 100 µL of supernatant into HPLC vials for analysis using LC-mass 

spectrometry (LC-MS). 

2.4.3. LC-MS method 

LC-MS analysis was performed using an Agilent 1260 Infinity HPLC system (Agilent 

Technologies, Santa Clara, CA, USA) consisting of an InfinityLab Poroshell 120 EC-C18 column 

(150 × 2.1 mm, 1.9 µm, Agilent Technologies, Santa Clara, CA, USA) and a TSQ Endura™ Triple 

Quadrupole MS (Thermo Fisher Scientific, Mississauga, ON). The column oven was kept at 40 °C. 

The mobile phase consisted of water (A) and ACN (B), with both A and B phases containing 0.1% 

(v/v) formic acid. Gradient elution was programmed as indicated in Table S2. The flow rate was 

set at 0.25 mL/min, and the injection volume was 5 μL. Other detailed LC-MS parameters are 

included in Tables S3 and S4. 

2.4.4. Determination of pharmacokinetic parameters 

Noncompartmental pharmacokinetic analysis was performed on individual animal data. The 

terminal elimination rate constant (kel) was estimated using the regression slope of the log-linear 

terminal elimination phase, and the elimination half-life (t1/2) was calculated using the following 

equation. 

𝑡!/# =
ln(2)
𝐾$%

 

Maximum plasma concentration (Cmax) and the time at which it was achieved (Tmax) were 

determined for each individual animal. The area under the plasma concentration curves (AUC0-t) 

was calculated using the linear trapezoidal method (the equation below). AUC0-∞ was calculated 

by adding Clast/kel to AUC0-t(last). 

𝐴𝑈𝐶&'( =	K
(𝐶)*! + 𝐶))

2 (𝑡)*! − 𝑡))		
+'!

),!
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2.4.5. Statistical analysis 

Statistical significance was assessed using the Analysis ToolPak in Microsoft Excel (Version 

16.65). To evaluate the differences in AUC0-4H across formulations, t-tests (two-sample, assuming 

equal variances) were performed with the confidence level set at alpha = 0.05. 

  

https://doi.org/10.26434/chemrxiv-2023-ch9t9 ORCID: https://orcid.org/0000-0002-4916-3965 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-ch9t9
https://orcid.org/0000-0002-4916-3965
https://creativecommons.org/licenses/by-nc/4.0/


   
 

   
 

12 

3. Results 

3.1. Formulation design space 

In this study, the formulation design space was defined using excipients that are “generally 

recognized as safe” (GRAS). This includes three solid lipids (i.e., SA [41–43], GM [44–46], C888 

[47–49]), one liquid lipid (DGME [50,51]), and one surfactant (P407 [52,53]). By altering the 

relative ratios of these excipients and drug, SLNs/NLCs were formulated with varied formulation 

parameters including solid lipid type, liquid lipid content, initial drug-to-liquid lipid ratio, and 

surfactant concentration. Given that most formulation parameters, such as the liquid lipid content, 

are continuous numerical values, they inherently result in an infinite design space. We bounded 

these numerical parameters, setting a range from 0 to their uppermost values commonly 

investigated in the literature. Additionally, we discretized the continuous parameter ranges into 

intervals that were expected to produce discernible effects. For example, the liquid lipid content 

was explored from 0 to 40% at 5% intervals (wt%). The other numerical parameter ranges were 

discretized similarly, resulting in nine initial drug-to-lipid ratios (ranging from 0 to 40% at 5% 

intervals, wt%), and five surfactant concentrations (ranging from 0 to 1% at 0.25% intervals, w/v). 

Ultimately, this approach culminated in 405 possible parameter combinations, or formulations, for 

each solid lipid type. Considering all three solid lipids, the total number of formulations within 

this design space totaled 1215. 

3.2. Dataset collection   

Initially, around 10% of the possible formulations were prepared in-house using a liquid handling 

robot as described in the Supplementary Information. This dataset encompassed 128 unique 

SLN/NLC formulations, with each evaluated in triplicate. This relatively small sample of 

formulations was then used to train the ML models to predict formulation properties for the entire 

design space. The 128 formulations were strategically spread across the design space to ensure 

comprehensive coverage, mitigating the risk of out-of-distribution predictions, a prevalent 

shortcoming of supervised ML models. As shown in Figure 1, the SLNs/NLCs in the dataset 

displayed a range of physico-chemical characteristics, highlighted by differences in particle size, 

DLC, and EE. 
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Figure 1. Distributions of a) particle size, g) drug loading capacity (DLC), and m) drug 
encapsulation efficiency (EE) values for the 128 solid lipid nanoparticle and nanostructured lipid 
carrier formulations prepared using the automated workflow. The influence of formulation 
composition parameters such as solid lipid type (b, h, n), solid lipid content (c, i, o), liquid lipid 
content (d, j, p), initial drug-to-lipid ratio (e, k, q), and surfactant concentration (f, l, r) on particle 
properties are also summarized. 
  

g) h) i) j) k) l)

m) n) o) p) q) r)

a) b) c) d) e) f)
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3.3. ML model development 

Using the collected dataset, ML models were trained to predict the formulation properties based 

on the five formulation composition parameters, including solid lipid type, solid lipid content, 

liquid lipid content, initial drug-to-lipid ratio, and surfactant concentration. Eight ML models, 

namely LR, Lasso, DT, RF, LightGBM, XGB, SVR, and NN, were investigated. Each model was 

wrapped using Scikit-learn multioutput to enable multi-output prediction (i.e., Size, DLC, and 

EE), a measure aimed at facilitating training and subsequent utilization. Model performance was 

evaluated using a five-fold cross-validation technique. During this process, the dataset was 

randomly split into training (80%) and test (20%) subsets. Models were trained using the training 

subset and subsequently evaluated with the test subset. This procedure was iterated five times to 

ensure each sample was used in the evaluation phase once. The performance of the models in 

predicting each of the outputs using the absolute error metric is summarized in Figure 2. 

In Figure 2, models are organized by decreasing performance from left to right, according to the 

median absolute error. The DT, XGB, and RF models were found to deliver high and comparable 

prediction accuracy for all three investigated formulation properties. This finding is further 

illustrated by Figure 3a, which summarizes median absolute error alongside two additional 

metrics: the Pearson correlation coefficient (PCC) and coefficient of determination (R2). DT was 

chosen as the model for the following studies. The predictive performance of the DT is further 

illustrated in Figure 3b, which displays the correlation between the predicted and experimental 

values. For particle size, a PCC of 0.77 and an R2 of 0.47 indicate a moderate correlation. For drug 

loading predictions, the DT model demonstrates high accuracy in predicting both DLC (median 

absolute error = 0.25%, R2 = 0.98, PCC = 0.99) and EE (median absolute error = 1.88%, R2 = 0.95, 

PCC = 0.97). 
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Figure 2. Figures a), b), and c) show the accuracy (absolute errors between the predictions and 
experimental values) of the eight three-output machine learning regressors in predicting particle 
size, drug loading capacity (DLC), and encapsulation efficiency (EE), respectively. In each figure, 
black circles and dashed lines represent the mean and median absolute errors, respectively. Grey 
dots behind the boxplots show the distribution of all individual absolute errors. The models are 
arranged in ascending order of median absolute error.  
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Figure 3. a) summarizes the accuracy (median absolute error, R2, and Pearson’s correlation 
coefficient) of the eight, three-output machine learning regressors for predicting particle size, drug 
loading capacity (DLC), and encapsulation efficiency (EE). Three models, including decision tree 
(DT), random forest (RF), and extreme gradient boosting (XGB), exhibit high and comparable 
predictive accuracy. For simplicity and efficiency, the decision tree model was selected due to its 
straightforward structure and high training speed. The accuracy of the decision tree model is 
visualized in the scatter plots for b) Size, c) DLC, and d) EE predictions. 
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3.4. ML model deployment 

3.4.1. ML model prediction 

Having been identified as the best multi-output model, the DT model was employed to predict the 

properties of the 1215 formulations within the design space, thereby generating a larger synthetic 

dataset (Figure 4a). To enable comparison, the particle size (from highest to lowest values in the 

dataset) and drug loading (DLC and EE, from lowest to highest values in the dataset) were scaled 

from 0 (worst) to 10 (best). These are the three properties that we consider to be indicative of 

formulation performance, and the OP of a formulation was determined by averaging the scaled 

values for size, DLC, and EE, serving as a quantitative measure of formulation performance.  

3.4.2. ML model validation 

The OP values for the total design space (containing 1215 formulations) are summarized in Figure 

S4, with a breakdown of OP for SLNs/NLCs formulated using distinct types of solid lipids. The 

median OP for C888-based SLNs/NLCs was found to be higher than that for SA-based and GM-

based formulations. Thus, seven C888-based SLN/NLC formulations that were predicted to be 

high (H1, H2, and H3, OP>=9), medium (M1 and M2, 7<=OP<8), or low (L1 and L2, 5<=OP<6) 

performers based on their properties were selected for experimental validation of the models 

(Figure 4b). For a visual representation of these formulations within the larger design space, they 

are plotted on a three-dimensional plot of formulation properties alongside all other formulations, 

with the Pareto set highlighted in purple. The Pareto front is a well-established concept utilized in 

multi-objective optimization tasks and defines the constraints of optimization whereby the 

enhancement of one target unavoidably results in the compromise of another. As shown in Figure 

4c, formulations predicted to be high performers (H1, H2, H3), based on their properties, are 

located in close proximity to the Pareto front, contrasting with the medium and low performers 

situated notably further away. This suggests that these high-performing formulations are likely to 

be representative of an ensemble of optimal formulations within the dataset. To validate the DT 

model’s predictions, the formulations predicted to be high, medium, and low performers were 

formulated at bench scale and characterized. The properties of these formulations are shown in 

Figures 4d, e and f. In general, formulations predicted to be high performers exhibited consistent 

results, surpassing those predicted to have low or medium performance. In particular, high-

performing formulations were characterized by DLC values at 15%, which is two-fold greater than 

https://doi.org/10.26434/chemrxiv-2023-ch9t9 ORCID: https://orcid.org/0000-0002-4916-3965 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-ch9t9
https://orcid.org/0000-0002-4916-3965
https://creativecommons.org/licenses/by-nc/4.0/


   
 

   
 

18 

the medium-performance formulations (8%) and over five-fold greater than the low-performance 

formulations (<3%). 
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Figure 4. a) Shows the use of machine learning models trained on a subset of the design space to 
predict the properties of formulations in the unexplored design space. b) Shows the seven 
formulations, that were predicted to be high (H1/2/3), medium (M1/2), or low (L1/2) performers, 
and selected for experimental validation of the model. c) Presents a 3D surface plot depicting the 
predicted properties of the 1215 formulations within the design space: size on the x-axis, drug 
loading capacity (DLC) on the y-axis, and encapsulation efficiency (EE) on the z-axis. 
Formulations on the Pareto front are shown in purple. Formulations are color-coded with high, 
medium, and low performers in red, orange, and yellow, respectively. d-f) Summarize the d) 
particle size, e) DLC, and f) EE of the seven selected formulations prepared via stirring-based 
bench-scale nanoprecipitation. 
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3.5. SLN/NLC characterization 

3.5.1. In vitro characterization 

Following validation of the models, one SLN (i.e., H1) and one NLC (i.e., H3) were selected for 

further in vitro and in vivo characterization. For this additional characterization, the formulations 

were prepared at “bench-scale” followed by concentration and purification via tangential flow. 

The concentration of the drug (encapsulated in SLNs/NLCs) following tangential flow of the SLN 

and NLC formulations was found to be 2.3 ± 0.1 mg/mL and 2.4 ± 0.4 mg/mL, respectively. These 

concentrations are 3000 times higher than the solubility of CBD in water (i.e., 0.7 µg/mL [54]). 

Another key advantage of formulating drugs in SLNs/NLCs is to prevent degradation [55,56]. 

Indeed, CBD encapsulated in the SLN and NLC was more chemically stable than CBD 

molecularly dissolved in 0.5% (v/v) Tween80. Specifically, only 68±6.1% of the initial CBD 

added to the CBD control was found to be present after seven days of storage (room temperature 

in darkness), while the content of CBD encapsulated in the SLN and NLC remained unchanged 

under the same conditions for up to one month (Figure S5). 

As measured by DLS, the SLN and NLC particles were found to be nanosized (140±4.2 nm for 

SLN and 124±3.7 nm for NLC) with a low PDI (<0.2 for both formulations), and their size and 

PDI were found to remain unchanged during storage over a one-month period (Figure S6). As 

evidenced by cryo-EM analysis, the particles were spherical with a diameter of less than 200 nm 

(Figure 5), which agreed with DLS measurements. Additional in vitro characterization of the 

SLN/NLC formulations (i.e., differential scanning calorimetry and Fourier transform infrared 

spectroscopy analysis) is included in the Supplementary Information (Figures S7-S9). 
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Figure 5. Figures a) and c) include two representative cryo-EM images that display the 
morphologies of the selected solid lipid nanoparticle and nanostructured lipid carrier formulations, 
respectively. Figures b) and d) exhibit the same images under increased magnification, providing 
a more intricate visualization of the solid lipid nanoparticle and nanostructured lipid carrier 
structures, respectively. 
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3.5.2. In vivo characterization 

The selected SLN and NLC were evaluated in vivo following oral administration to normal, female 

Sprague Dawley rats at a dose level of 20 mg CBD/kg body weight. As shown in Figure 6a, 

administration of CBD in the SLN or NLC formulations results in similar pharmacokinetics with 

peak plasma concentration of drug reached at one hour. In comparison, CBD administered in 0.1% 

Tween 80 resulted in plasma concentrations that remained below the detection limit of the LC-MS 

assay (i.e., 3 ng/mL). 

The area under the CBD plasma concentration-time curve during the first four hours of 

administration (i.e., AUC0-4H) was calculated and is shown in Figure 6b. For comparison purposes, 

the AUC0-4H of two oil-based CBD formulations previously published by our group, medium-chain 

triglyceride-based formulation (MCT-CBD) and sesame oil-based formulation (SO-CBD), were 

also included (Figure 6b) [40]. These formulations were used for comparison as MCT oil is the 

most commonly used oil carrier for CBD, and the SO-CBD formulation is equivalent in 

composition to the FDA-approved product, Epidiolex®. Figure 6b shows that the SLN and NLC, 

formulations resulted in AUC0-4H values of 1410±218 and 1226±859 ng·h/mL, respectively. These 

results suggest a 15-fold improvement in CBD exposure (in the first 4 hours) relative to that 

achieved with MCT-CBD (AUC0-4H=80±45 ng·h/mL, p<0.05). Furthermore, these formulations 

demonstrated comparable CBD exposure to SO-CBD (AUC0-4H=1497±332 ng·h/mL, p>0.05), 

suggesting their potential as viable alternatives to the FDA-approved drug product, which contains 

ethanol and the recognized allergen sesame oil. 
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Figure 6. The pharmacokinetic profiles of CBD following oral administration of the selected solid 
lipid nanoparticle (SLN) and nanostructured lipid carrier formulations (NLC) in Sprague Dawley 
rats at a dose of 20 mg CBD/kg body weight. Blood samples were taken at predetermined 
timepoints to analyze the plasma concentrations of CBD as summarized in a), n=4 or 5. Both SLN 
and NLC formulations result in similar pharmacokinetics for CBD with plasma concentrations 
peaking at one hour. Exposure to CBD (0 to 4 hours) following administration in the SLNs/NLCs 
were plotted in b) in comparison to two previously published formulations (MCT-CBD and SO-
CBD [40]). 
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4. Discussion 

4.1. Combination of automated experimentation and ML to expedite SLN/NLC design 

It is well understood that the physico-chemical properties such as size, DLC, and EE of 

SLNs/NLCs are influenced by various formulation and processing parameters. Nevertheless, at 

this time experimental studies are required to confirm and optimize the properties of these 

formulations. This reduces the overall efficiency of drug product optimization and increases the 

costs associated with drug development [57,58]. Thus, there is an urgent need to update 

conventional strategies for formulation development. 

For several decades, the DoE approach has been employed to accelerate drug formulation design 

[59–61]. This data-driven approach maps input-output relationships to save both time and 

resources during optimization [59,62]. For instance, a recent study by Ramzan al. utilized Taguchi 

DoE methodology to facilitate the design of drug-loaded SLNs [63]. In that study, the design space 

of interest consisted of seven variables, and each variable had two levels, resulting in 128 

formulations. Employing Taguchi DOE, the number of experiments required to map this design 

space were reduced from 128 to just eight, significantly decreasing the workload [63]. This DoE 

method was further paired with linear regression, facilitating the quantification of the influence of 

variables on the targets.  

Compared to DoE, our proposed workflow is particularly advantageous when dealing with a 

formulation workflow that is compatible with miniaturized automation (e.g., nanoprecipitation). 

The automation of experiments facilitates performing multiple experiments with reduced batch 

sizes (e.g., 96 well plate). Therefore, compared to DoE that typically explores selected points 

within the design space, our approach is able to cover a broader spectrum of the design space 

resulting in a larger dataset, using equal or even less time and resources [64–66]. This relatively 

larger dataset enables the use of advanced and more parametrized ML models, as opposed to linear 

regression, to gain formulation insights. As illustrated in Figures 2 and 3, linear regression is not 

the best model to fit this dataset. In contrast, the more advanced ML models (e.g., tree-based 

models) that are capable of handling complex input-output relationships deliver higher prediction 

accuracy. This highlights the limitation of using only linear regression given that the correlation 

between formulation composition parameters and formulation properties or performance is 

typically complex and non-linear [57,58]. 
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4.2. Optimal formulations identified through the proposed data-driven workflow 

Pareto optimality is a concept in multi-objective optimization strategy that has been widely used 

in engineering design and many other areas [67,68]. It defines a set of solutions or samples wherein 

improving one target property invariably necessitates a compromise on others [69]. Optimal 

performance in terms of a single property does not necessarily suggest the ideal overall 

performance. In the context of pharmaceutical sciences, formulations that balance all target 

properties are typically preferred. To overcome this limitation, we combined analysis of Pareto 

optimal formulations with a customized weighted sum metric, i.e., OP. To compute the OP, the 

size, DLC, and EE in the dataset were normalized on a scale of 0 (worst) to 10 (best). The OP was 

then calculated as the mean of the normalized size, DLC, and EE. Formulations with an OP score 

greater than 9 were categorized as high-performance formulations. As shown in Figure 4c, high-

performance formulations were indeed closer in proximity to the Pareto front than their medium 

and low-performance counterparts. To validate the predictions, several formulations were scaled 

up to bench scale. Overall, the formulations predicted to be high performers were found to have 

properties that were comparable or superior to the predicted medium and low performers. Within 

the dataset, around 100 formulations (~8%) could be considered high-performers (OP>=9). It is 

possible that experienced formulation scientists could achieve or surpass this success rate given 

their expertise; however, less experienced scientists may not be able to identify this number of 

promising formulations with the same ease.  

4.3. Use of SLNs/NLCs to facilitate the oral delivery of small molecule drugs  

Oral delivery of hydrophobic drugs, such as those categorized as BCS Class II, face significant 

limitations due to their low solubility, which can result in poor bioavailability [70,71]. A typical 

example is the hydrophobic drug CBD used in this study; a BCS Class II drug with a reported 

aqueous solubility of only 0.7 µg/mL [54] and reported oral bioavailability of 6% [72].  SLNs and 

NLCs have been shown to enhance the bioavailability of hydrophobic drugs [73–75]. Similarly, 

our research revealed a marked enhancement in the absorption and pharmacokinetics of orally 

administered CBD. Our in vivo study confirmed that both SLN and NLC formulations that were 

predicted to be high performers significantly increased the bioavailability of CBD when compared 

to its unformulated counterpart. This improved bioavailability was comparable (p>0.05) to that 

achieved with a formulation equivalent in composition to the only FDA-approved CBD drug 

product, Epidiolex®. 
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SLN and NLC drug formulations hold significant therapeutic promise. While no product based on 

these technologies has received approval yet, it is important to consider that SLN/NLC 

technologies have been in existence for roughly 30 years. This timeline is on par with liposomes, 

which also took about 30 years to reach the market after their introduction. Although the 

production of SLNs and NLCs may have higher costs compared to traditional oral dosage forms 

such as tablets and capsules, their potential benefits could offer substantial advancements in drug 

delivery. For SLN/NLC-based products to become popular oral formulation alternatives, they need 

to exhibit significantly enhanced performance compared to these conventional oral drug products. 

This study aimed to showcase SLNs/NLCs as an example, highlighting how our proposed 

workflow can effectively streamline complex formulation development processes. 

4.4. Limitations 

While this study makes a critical step towards data-driven drug formulation development, it is 

important to recognize its limitations. Standard nanoprecipitation methods typically necessitate 

stirring and/or sonication as a source of dispersion energy [76]. This enhances the diffusion rate of 

organic phase to the aqueous phase, typically facilitating the formation of smaller particles. 

However, the execution of stirring or sonication within each of the 96 wells remains a technical 

challenge for our current setup. This limitation results in a difference in particle size between the 

particles generated by automation and those produced through scale-up methods involving stirring 

and/or sonication. As evidenced in Figure S3, the same SLN/NLC formulations exhibit different 

sizes when prepared using automation (~300 nm) versus the standard bench-top method (~100 

nm). Despite the size difference between particles prepared using the automated miniaturized setup 

and the bench scale process, the predicted particle size trend (small vs. large) from the models 

remained consistent.	

5. Conclusion 

We discovered high-performing small molecule-loaded SLNs/NLCs by means of a holistic data-

driven approach that involves the combination of experimental automation and ML. A total of 128 

formulations, accounting for around 10% of the investigated design space, were prepared in-house 

using a liquid handling robot. This generated dataset was then modelled using ML approaches to 

determine the composition-property relationships for this series of formulations. Employing the 

developed ML models, the properties of all formulations in this design space were predicted, 
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resulting in a synthetic dataset that is ten-fold larger than the initial dataset. The formulations 

predicted to be top-performers were nanosized, and able to markedly improve CBD solubility in 

aqueous media. Regarding their in vivo performance, these formulations significantly enhanced 

the oral bioavailability of the drug compared to CBD administered in conventional surfactant 

solution and MCT oil. The formulations also demonstrated CBD exposure comparable to SO-CBD, 

which is equivalent in composition to an FDA-approved CBD product. This study highlights the 

efficacy of our data-driven approach in rapidly advancing the development of lipid-based NP 

formulations of a hydrophobic small molecule. 
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Data availability 

To allow reproducibility, the dataset and codes for the current study are available from the 

corresponding author on reasonable request. 

Abbreviations 

SLN: Solid lipid nanoparticle; NLC: Nanostructured lipid carrier; BCS: Biopharmaceutics 

Classification System; DoE: Design of experiment; CND: Cilnidipine; ML: Machine learning; 

CBD: Cannabidiol; SA: Stearic acid; DGME: 2-(2-Ethoxyethoxy)ethanol; THF: Tetrahydrofuran; 

P407: PluronicTM F-127; ACN: Acetonitrile; THC: Delta-9-tetrahydrocannabinol; C888: 

Compritol® 888 ATO; LR: Linear regression; Lasso: LR with least absolute shrinkage and 

selection operator regularization; DT: Decision tree; RF: Random forest; LightGBM: Light 

gradient boosting machine; XGB: Extreme gradient boosting; SVR: Support vector regressor; NN: 

Neural network; DLC: Drug loading capacity; EE: Encapsulation efficiency; OP: Overall 

performance; PDI: Polydispersity index; DLS: Dynamic light scattering instrument; HPLC: High-

performance liquid chromatography; DAD: Diode-array detector; Cryo-EM: Cryo-transmission 

electron microscope; Kel: Terminal elimination rate constant; T1/2: Elimination half-life; Cmax: 

Maximum plasma concentration; Tmax: The time at which Cmax was achieved; GRAS: Generally 

recognized as safe; PCC: Pearson correlation coefficient; R2: Coefficient of determination.  
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