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Abstract  

The application of deep generative models for molecular discovery has witnessed a significant 
surge in recent years. Currently, the field of molecular generation and molecular optimization 
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is predominantly governed by autoregressive models regardless of how molecular data is 
represented. However, an emerging paradigm in the generation domain is diffusion models, 
which treat data non-autoregressively and has achieved significant breakthroughs in areas 
such as image generation. The potential and capability of diffusion models in molecular 
generation and optimization tasks remain largely unexplored. In order to investigate the 
potential applicability of diffusion models in the domain of molecular exploration, we 
proposed DiffSeqMol, a molecular sequence generation model, underpinned by diffusion 
process. DiffSeqMol distinguishes itself from traditional autoregressive methods by its 
capacity to draw samples from random noise and direct generating the entire molecule. 
Through experiment evaluations, we demonstrated that DiffSeqMol can achieve, even surpass, 
the performance of established state-of-the-art models on unconditional generation tasks 
and molecular optimization tasks.  
Keywords: Diffusion model, Molecule Generation, Molecule Optimization 

Introduction 

 
 Exploration of chemical space is a critical undertaking in contemporary scientific research, 
encompassing various applications in drug discovery [1] and materials science [2]. However, 
traditional methods for exploring chemical space have limitations in terms of their efficiency 
and ability to generate novel and valuable compounds. Artificial Intelligence (AI) has the 
potential for revolutionizing the field of chemical discovery by facilitating more efficient and 
effective exploration of the vast and mysterious chemical universe [3, 4]. In this regard, deep 
learning models have emerged as a highly promising solution for addressing complicated 
biomedical-related challenges [5-8]. 
 Autoregressive language models such as Recurrent Neural Networks (RNNs) [9] and 
Transformers [10] have played a significant role in the advancement of the language 
generation field. Researchers have found that these models not only excel in natural language 
but also demonstrate notable performance in the field of molecular generation. A majority of 
molecular sequence generation methods employ Simplified Molecular Input Line Entry 
System (SMILES) [11] strings as their molecular representation, and generate molecular 
sequences token by token. These models have found extensive use across a myriad of 
generation tasks, inclusive of enrich existing pharmacological libraries [12], generating 
molecules guided by some physical or chemical properties [13], among others. Furthermore, 
they have been employed for ligand-based de novo design [14, 15], a pursuit highly related 
to real-world drug development.  
 Variational Auto Encoders (VAEs) [16] are also widely adopted by researchers as a 
molecular generation model. The encoding-decoding structure of VAEs makes it well-suited 
for generation methods based on graph representation. They firstly encode the molecular 
graph into the latent space, and then autoregressively decode molecular features [17], either 
atom by atom or fragment by fragment. These methods allow researchers to pre-set some 
chemical constraints such as valence check, thereby generating valid molecules. Due to the 
strong interpretability of graph representation, they have been widely adopted in the sphere 
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of molecular optimization. Nevertheless, they are not without its limitations. One of the main 
challenges faced by methods relied on graph representation is the difficulty in efficiently 
modeling the chemical space [18]. However, autoregressive language models have proven 
to be highly effective in capturing sequential dependencies and surpass graph-based 
methods in terms of their ability to fit distributions. Furthermore, generating valid and 
chemically meaningful molecular graphs requires enforcing certain pre-defined constraints.  

In summary, current molecular generation methods are primarily based on 
autoregressive models regardless of how molecular data is represented. These models are 
trained on specific subsets of chemical space, enabling them to generate molecules that bear 
resemblance to their training sets [14, 15], or optimize existing compounds to enhance 
molecular properties.  

In recent years, the advent of diffusion models [19, 20] has revolutionized generation 
tasks, making notable progress especially in the domains of image, video [21] and audio [22] 
generation tasks. These models [23] are designed to non-autoregressively generate high-
quality samples through denoising random noises and modeling the underlying probability 
distribution of the source data. Their outstanding performance in the vision and audio tasks 
demonstrates their potential for high-quality data synthesis. However, the development of 
diffusion models for text generation [24-26] is still at a preliminary stage, falling behind the 
progress observed in other modalities. Exploration of biomedical data is even scarcer. 
Currently, only a small number of studies [27, 28] have applied diffusion models to sequential 
protein data and their results are far from satisfactory.  
 To bridge the gap and establish a connection between diffusion generative models and 
the realm of molecular generation, we propose a diffusion-based generation model, dubbed 
DiffSeqMol, for molecular sequence generation. DiffSeqMol is different from existing 
canonical molecular generation methodologies in two ways: (1) In contrast to conventional 
molecular generation models, DiffSeqMol starts with a sequence of gaussian noise signals 
and progressively denoising these signals into vectors that align with molecular tokens; (2) 
Different from conventional generation approaches which generation molecular 
substructure/tokens in an autoregressive left-to-right manner, DiffSeqMol generates all 
molecular tokens in parallel. Since the molecular elements are highly interdependent in a 
molecule, the placement of a single atom affects the location and type of every other atom 
in the molecule. So, the simultaneous generation of all parts of a molecule increases the 
complexity of the learning, which is a more complex task compared to learning conditional 
probabilities in an autoregressive way. In this study, we evaluated the capacity of the 
diffusion-based molecular sequence generation model by apply DiffSeqMol on two 
unconditional molecular generation benchmarks and four molecular optimization 
benchmarks. The experiment findings show promising results, demonstrating that DiffSeqMol 
can rival conventional molecular generation models in terms of performance on molecule-
related generation tasks. 
 

https://doi.org/10.26434/chemrxiv-2023-ltr9v-v2 ORCID: https://orcid.org/0000-0002-3521-475X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-ltr9v-v2
https://orcid.org/0000-0002-3521-475X
https://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 

Problem Statement and Background  

 In sequence-based molecular generation, the necessary preliminary step entails 
preprocessing of the molecular data. Initially, the molecular data is represented in its SMILES 
format. Subsequently, these molecular strings are divided and tokenized by character-based 
segmentation methods.  

The objective of the molecular generation task is to design models that can sampling 
𝒘 = [𝒘!, 𝒘", ⋯ ,𝒘#] from a trained molecular generation model 𝑝$%&(𝒘), where 𝒘 is the 
sequence of discrete molecular tokens and 𝑤' represents the 𝑖() token. Correspondingly, 
the molecular optimization task aims to design models, represented as 𝑝%*$%&(𝒘𝒚|𝒘𝒙), that 
can improve some predesigned optimization targets while preserve the original molecular 
structure as much as possible, where 𝒘- denotes target molecule and 𝒘.  represents the 
optimized molecule. Optimization targets encompass a broad range of properties including, 
but not limited to, physicochemical properties of the molecule and affinity towards the protein 
receptor.  

The conventional approaches employed for molecular generation or optimization tasks 
typically operate in an autoregressive left-to-right manner. They gradually complete 
molecules based on the partial molecular sequence generated so far. A typical unconditional 
autoregressive generation model can be expressed as follows: 

𝑝$%&(𝒘) = 𝑝$%&(𝒘!).𝑝$%&(𝒘'|𝒘/')
#

'0"

. (1) 

As for optimization task, the target molecule is also considered as the input of the generation 
model. A typical autoregressive molecular optimization model can be expressed as: 

𝑝%*$%&(𝒘𝒚|𝒘𝒙) = 𝑝%*$%&1𝒘!
𝒚2.𝑝%*$%&1𝒘'

𝒚3𝒘/'
𝒚 , 𝒘𝒙2

#

'0"

. (2) 

 

DiffSeqMol: a Diffusion-Based Molecular Sequence 

Generation Model  

 Diffusion models [20] are a class of generative model which are specifically designed to 
remove noise and generate high-quality samples by modeling the underlying probability 
distribution of the target data. These models leverage the principles of diffusion to gradually 
transform an initial noisy distribution into the target distribution of data. Ho et al. [19] have 
further refined the approach, successfully achieving the comparable image quality with 
state-of-the-art image generation models, such as Generative Adversarial Networks (GANs) 
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[29] and VAEs [16]. The subsequent works has made substantial advancements in enhancing 
the capability of diffusion models and diffusion-based models have achieved great 
performance across many areas. Inspired by diffusion model designed for textual data [24, 
26], we extended the application of these models to sequential molecular data generation 
and molecular optimization tasks, dubbed DiffSeqMol. 

Specifically, the diffusion process can be regarded as a discrete-time Markov process. It 
contains two processes, the forward diffusion process and the backward diffusion step. The 
forward diffusion process starts with an initial state 𝒔1, where 𝒔1 is the initial data distribution 
of the original data. Then, the diffusion model gradually adds Gaussian noises to 𝒔1 in the 
forward diffusion process according to the predetermined variance schedule 𝛽!, ⋯ , 𝛽2 , and 
𝛽( controls the noise level at time step 𝑡.  The latent variable 𝒔( is totally determined by its 
previous time step 𝑠(3! at the time step 𝑡, and its formular is expressed as follows:  

𝑞(𝒔(| 𝒔(3!) = 𝒩1 𝒔(;  <1 − 𝛽(𝒔(3!, 𝛽(𝑰2. (3) 
So, the data sample 𝒔1 gradually loses its distinguishable features as the time steps become 
large. Finally, the distribution of 𝒔2 is equivalent to an isotropic Gaussian distribution as 𝑇  →

∞. Correspondingly, for any time step 𝑡, 𝒔( can be sampled directly from 𝒔1 in a closed 

form: 

𝑞(𝒔(| 𝒔1) = 𝒩 B𝒔(; C1 − �̅�(𝒔1, �̅�(𝑰E , (4) 

where 𝛽(G = 1 −∏ (1 − 𝛽')(
'01 . Usually, 𝛽( gradually become larger while time steps increase, 

so 𝛽! < 𝛽" < ⋯ < 𝛽2 .  
 The objective of diffusion models is to reverse the aforementioned forward process. By 
achieve a reversal of the forward process, we can recreate molecular data from an isotropic 
Gaussian noise input 𝒔2 ∼ 𝒩(0, 𝐼). So, in the backward process, the model gradually denoise 
the data and try to recover the data 𝒔1 by denoising from 𝒔2 with each step expressed by 
follows:  

𝑝4(𝒔(3!|𝒔() = 𝒩1𝒔(3!; 𝜇4(𝒔( , 𝑡), 𝛴4(𝒔( , 𝑡)2, (5) 
where 𝜇4(⋅)  and 𝛴4(⋅)  are the predicted mean and covariance of the forward step 
𝑞(𝒔(| 𝒔(3!), and 𝜃 represents the parameters of the neural network used in the diffusion 
model. Empirically, Ho et al. [19] found that learning 𝛴4(⋅) often leads to unstable training 
process and poorer sample results. Therefore, we follow their setting and choose to fix 
𝛴4(𝒔( , 𝑡) = 𝛽(𝑰 during training.  
 The objective loss function of the diffusion model is the variational lower-bound (LVB) 
of 𝑙𝑜𝑔 𝑝4 (𝒔1): 

ℒ&56(𝒔1) = 𝐸78𝒔!:2∣∣𝒔1 ; W𝑙𝑜𝑔	
𝑞( 𝒔2 ∣∣ 𝒔1 )
𝑝4(𝑺2)

+\𝑙𝑜𝑔
2

(0"

𝑞( 𝒔(3! ∣∣ 𝒔1, 𝒔( )
𝑝4( 𝒔(3! ∣∣ 𝒔( )

− 𝑙𝑜𝑔 𝑝4 ( 𝒔1 ∣∣ 𝒔! )] . (6) 

Ho et al. [19] simplified and reweighted the ℒ&56(𝒔1) function and it can be expressed by a 
simple version:   

ℒ<'$*&=(𝒔1) =  𝐸𝒔!,( _
1
2σ("

‖𝜇(b (𝒔𝒕, 𝒔1) − 𝜇4(𝒔𝒕, 𝑡)‖"c , (7) 

where 𝜇(b (𝒔𝒕, 𝒔1)  represents the mean of the posterior 𝑞(𝒔𝒕3!|𝒔1, 𝒔𝒕) . However, this 
formulation is insufficient for sequential generation tasks and cannot generate sequence data 
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effectively. So, we followed Li et al. [24] and reparametrized the 𝜇4(𝒔𝒕, 𝑡) term as: 

𝜇4(𝒔( , 𝑡) = 𝜇e((𝒔( , 𝒔f1), (8) 
where 𝒔f1  is the prediction results of our diffusion model 𝑓A(⋅) , i.e., 𝒔f1 = 𝑓4(𝒔( , 𝑡) . In 
particular, 𝑓A(⋅) is a six-layer twelve-head attention network [10] in this work, as shown in 
Figure 1(c). The final objective function for diffusion model can be expressed as: 

ℒB'CC(𝒔1) =  𝐸𝒔!,( _
1
2𝜎("

‖𝒔1 − 𝒔f1‖"c . (9) 

DiffSeqMol for Unconditional Molecule Generation 

To enable the application of continuous diffusion models in molecule generation task, 
we firstly tokenized the sequence of molecular data in SMILES formulation by BPE (Byte Pair 
Encoding [30]). We used an opensource BPE provided on Hugging Face1. Then, an embedding 
layer 𝐸𝑀𝐵(𝒘') is needed to map the discrete molecular tokens into a continuous space 
since the function ℒB'CC is designed for continuous situations, as shown in previous nature 
language generation tasks [24]. Therefore, each molecule is encoded into continuous features, 
𝐸𝑀𝐵(𝒘) = [𝐸𝑀𝐵(𝒘!), 𝐸𝑀𝐵(𝒘"),⋯ , 𝐸𝑀𝐵(𝒘#)] ∈ 𝑅#×B  in the forward diffusion process. 
After that, the embeddings of molecular word tokens are further perturbed by an additional 
Gaussian noise as follows: 

𝑞(𝒔1|𝒘) = 𝒩(𝒔1; 𝐸𝑀𝐵(𝒘), 𝛽1𝑰). (10) 
In the diffusion backward process, a trainable rounding layer [26] is designed to learn 
molecular token embeddings as follows: 

𝑝A(𝒘|𝒔1) =.𝑝41𝒘'3𝒔1,'2,
#

'0!

(11) 

where 𝑝41𝒘'3𝒔1,'2  is a Softmax distribution and its parameter is equal to 𝐸𝑀𝐵(⋅) . The 
diagram of the overall unconditional generation process is shown in the Figure 1(a). The final 
objective function of DiffSeqMol for unconditional molecule generation should be able to 
simultaneous learn the parameters of diffusion model and embeddings of molecular tokens,  
which can be formulated as follows: 

ℒE#F%#B_B<$(𝒘)  = 𝐸𝒘oℒB'CC	(𝒔1) + ||𝐸𝑀𝐵(𝒘) − 𝑓4(𝒔!, 1)||" − 𝑙𝑜𝑔 𝑝4 (𝒘 ∣∣ 𝒔1 )p, (12) 
where the first term is the loss function of continuous diffusion model, the second and the 
third term are designed to build the mutual mapping between discrete tokens and continuous 
features. Given the application of the attention layer within the diffusion model, all 
tokens’features are simultaneous denoised and DiffSeqMol can model the entire molecular 
sequence simultaneously. In the inference stage, DiffSeqMol is capable of generating novel 
molecules by gradually denoising randomly sampled Gaussian noises (Equation 5).  

DiffSeqMol for Molecule Optimization 

 Conditional molecular optimization tasks bear resemblance to Nature Language 

 
1 huggingface.co/seyonec/PubChem10M_SMILES_BPE_450k 
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Translation tasks in Natural Language Processing. Sequential models for molecular 
optimization tasks need to deal with data in a sequence-to-sequence manner. So, to equip 
DiffSeqMol with molecule optimization ability, subtle modifications were introduced to the 
input of the diffusion model. Particularly, we treated target molecules as reference conditions. 
Moreover, during training, both the target molecule and the optimized molecule are inputted 
into the diffusion model. We followed the partial noising strategy proposed by [26]. In specific, 
give a pair of molecular sequence denoted as [	𝒘- , 𝒘.], where 𝒘- is the target molecule 
and 𝒘.  represents the optimized molecule, we concatenation them together, which can be 
formulated as follows: 
 

𝐸𝑀𝐵(𝒘- , 𝒘.) = o𝐸𝑀𝐵(𝒘!
-),⋯ , 𝐸𝑀𝐵(𝒘#

-), 𝐸𝑀𝐵1𝒘<=*2, 𝐸𝑀𝐵1𝒘!
.2,⋯ , 𝐸𝑀𝐵1𝒘$

. 2		p, (13) 
where 𝒘<=* represents the separation token which help model in differentiating between the 
conditional molecule and the optimized molecule, and 𝐸𝑀𝐵(𝒘- , 𝒘.) 	∈ 𝑅(#K$K!)×B . This 
step can adapt pair-wise molecular data into the unconditional model without changing its 
fundamental architecture. However, the model is designed to avoid corrupting features from 
target molecules during the diffusion forward process, since 𝒘-  forms the target of the 
molecular optimization task. Therefore, for each step in the optimization version of forward 
process, noise is only introduced to tokens related to 𝒘. (i.e., all tokens after the separation 
token 𝒘<=* ). Since the nature of attention layer used in 𝑓A(⋅), the semantic relationship 
between the conditional information (𝒘-) and the corrupted molecule features (𝒘.) can be 
learnt simultaneously. This noising strategy permits the sampling of optimized molecules 
based on the targe molecule 𝒘-. The diagram of the overall molecular optimization process 
is shown in the Figure 1(b). Finally, the loss function of the optimization-version of DiffSeqMol 
can be expressed as: 

ℒF%#B_B<$(𝒘- , 𝒘.)  = 𝐸𝒘",𝒘#oℒB'CC(𝒔1) + ||𝐸𝑀𝐵(𝒘- , 𝒘.) − 𝑓4(𝒔!, 1)||" − 𝑙𝑜𝑔 𝑝4 (𝒘- , 𝒘. ∣∣ 𝒔1 )p. (14) 
Although the nosing injection step only affect features related to 𝒘., DiffSeqMol learns the 
mapping step between the discrete tokens and continuous features for all the input tokens. 
In this way, the reconstruction layer of 𝒘- and 𝒘. incorporate information from each sides 
simultaneously. In the inference stage, DiffSeqMol can optimize the target molecules by 
gradually denoising randomly sampled Gaussian noises (Equation 5). Different from the 
conventional autoregressive optimization model, DiffSeqMol generates the optimized 
molecules in one shot, which poses a more substantially challenge. Therefore, we implement 
an iterative process of molecular optimization 5 times to achieve peak effectiveness. 
 

Experiments and results 

Tasks and Datasets 

DiffSeqMol is primarily designed for unconditional molecular generation tasks and 
molecular optimization tasks. Therefore, we conducted two typical unconditional molecular 
generation tasks and four molecular optimization tasks.  
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High Penalized LogP Molecule Generation Task (unconditional generation task 1): This 
task is designed for a widely used benchmark assessments for drug discovery in real-world 
situation. The objective is to generate molecules that exhibit high penalized LogP, a parameter 
that measures the solubility and synthetic accessibility of a compound. All molecules in this 
dataset have a good pLogP score above 4.0 and collected by Flam-Shepherd et al. [18]. This 
dataset was screened from ZINC15 [31] database and has	34.7	atoms on average.  
Multi-distribution Molecule Generation Task (unconditional generation task 2): This task 
is designed to assess whether the generative model can cope with data from complicated 
molecular property distribution. This dataset was collected from several dataset (GDB [32], 
ZINC [31], CEP [33] and POLYMERS [34]) by Flam-Shepherd et al. [18]. It has 31.1 atoms on 
average. 
Penalized LogP Optimization Task (molecule optimization task 1&2): This task is designed 
for optimizing the Penalized LogP (plogP) score of the target molecules under the constriction 
of molecule similarity. The model’s objective is to optimize a target molecule, denoted as 𝑥, 
and output an optimized compound 𝑦, such that 𝑝𝑙𝑜𝑔𝑃(𝑚𝑜𝑙-) < 𝑝𝑙𝑜𝑔𝑃(𝑚𝑜𝑙.), under two 
different similarity constraints, 0.4 (optimization task 1) and 0.6 (optimization task 2). These 
datasets were collected by Jin et al. [17]. 
QED Optimization Task (molecule optimization task 3): This task is designed for optimizing 
the drug likeness (QED) score of the target molecules under the constriction of molecule 
similarity. In this optimization task, models need to optimize an input molecule 𝑥, whose qed 
score is within [0.7, 0.8], into a higher score range [0.9, 1.0]. The similarity constraint requires 
that the similarity between 𝑚𝑜𝑙- and 𝑚𝑜𝑙. must exceed or equal to 0.4. This dataset was 
constructed by Jin et al. [17]. 
DRD2 Optimization Task (molecule optimization task 4): This task is designed for 
optimizing the biological activity against a biological target named the dopamine type 2 
receptor (DRD2) under the constriction of molecule similarity. The score of the biological 
activity is evaluated from a pretrained model by Olivercrona et al. [35]. In this optimization 
task, models need to optimize an input molecule x, whose DRD2 score is below 0.05, into a 
higher score range above 0.5  (Molecules whose DRD2 score are above 0.5  are often 
considered as active compounds against DRD2). The similarity constraint requires that the 
similarity between 𝑚𝑜𝑙-  and 𝑚𝑜𝑙.  must exceed or equal to 0.4 . This dataset was 
constructed by Jin et al. [17]. 
 

Unconditional Molecular Generation tasks 

 Each unconditional generation task’s performance was evaluated by contrasting the 
property distribution of training molecules datasets and the distribution learned by different 
models. A histogram was employed to indicate the property of molecules from datasets, while 
a Gaussian Kernel Density Estimator (KDE) was used to mimic the property distribution. For 
each property, we plotted KDE of different models under the same bandwidth parameter. For 
the two tasks of unconditional generation, we generated 10𝑘 (thousand) molecules for each 
model and used the generated molecules to calculate their physiochemical properties and 
metrics. We removed duplicates from the generated molecule sets. Then the Wasserstein 
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distance between the generated molecules and training set was calculated to provide a 
quantitative assessment of model’s ability to learn the molecular property distribution of the 
training set. For the evaluation of distribution fitting ability of different models, we considered 
the following molecular properties: (1) octanol–water partition coefficient (LogP), (2) synthetic 
accessibility score (SA), (3) drug-likeness (QED) and (4) natural product likeness (NP). Besides 
the distribution fitting ability, we also discussed Validity, Uniqueness and Novelty of different 
methods, please refer to the supplementary material. 

In this section, we compared DiffSeqMol with the following baselines: autoregressive 
sequence generation model, CG-VAE, JT-VAE and Hier-VAE. (1) Traditional autoregressive 
sequence generation model: Nowadays, huge amount of drug-related works adopt 
conventional RNN models [9] or Transformer models [10]. They generate molecules token 
by token. Since we found the performance of these two different models on generation tasks 
is almost same [36], we only showed the results of a vanilla RNN models [37] and used 
“Sequence” to represent it on the figure. (2) CG-VAE [38]: This is a VAE-based graph 
generation model that generates molecules in an autoregressive, atom-by-atom manner. (3) 
JT-VAE [17]: this is a constrained graph variational autoencoder model that autoregressively 
generates molecules based on simple substructures. (4) Hier-VAE [39]: this is a hierarchical 
graph variational autoencoder model that autoregressively generates molecules based on 
structural motifs.  
 The results of the unconditional generation tasks are depicted in Figure 2. As for the High 
Penalized LogP Molecule Generation Task, Figure 2(a) illustrates the property distribution of 
all generated molecules and Figure 2(b) shows the Wasserstein distance in relation to the 
different molecular properties derived from the real data. It is evident that the CG-VAE model 
barely captures the distribution of the original data, particularly in the SA and NP regions, and 
is largely disconnected from the main characteristics of the training data. Although other 
graph-based methods show improvement compared to CG-VAE, they still fall short of 
representing the true distribution accurately. In contrast, the conventional sequence model 
outperforms all other models, exhibiting the lowest distance. This phenomenon that the 
distribution learning ability of autoregressive language model is far better than graph-based 
methods have already been discussed in the previous works [18]. Our proposed method, 
DiffSeqMol, closely aligns with the primary distribution of LogP as depicted in Figure 2(a), 
albeit with a slightly higher value than the autoregressive sequence model in Figure 2(b). This 
indicates that DiffSeqMol performs well in fitting the main part of the property distribution 
but is slightly inferior to the autoregressive sequence model in fitting the details. This 
phenomenon is more obvious on other molecular properties. Compared to autoregressive 
methods, DiffSeqMol involves directly modeling the entire molecule, which significantly 
increases the level of difficulty. This leads to DiffSeqMol falling short in its ability to fit 
distributions compared to autoregressive sequence methods. 

As for the Multi-distribution Molecule Generation Task, the distribution of molecules in 
this dataset shows multiple peaks, suggesting the presence of distinct subgroups, shown in 
Figure 2(c, d). Similar to the former task, the graph-based generative model continues to face 
challenges in fitting the multi-peak distribution. Despite the lower distance values observed 
in JT-VAE, it struggles to accurately capture the distribution of SA. In addition, it is worth 
noting that although other methods (excluding CGVAE), achieved lower Wasserstein 
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distances, none of them were capable of accurately fitting all the property distributions to 
perfection. Once again, the autoregressive sequence model demonstrates a clear advantage 
over graph-based models in this specific scenario. Our proposed method, DiffSeqMol, 
achieved comparable results to the JT-VAE and Hier-VAE on this dataset.  

It is worth to note that only a limited amount of work has explored generating the whole 
molecule at once [40-43] and they are early explorations in the molecular generation field. 
These models are only effective on datasets with extremely small numbers of atoms (such as 
molecules with atom smaller than 9), and their results lagged far behind those of 
autoregressive-based methods. DiffSeqMol successfully fills this gap and achieves 
comparable or even better performance to mainstream autoregressive graph methods. 
Compared to pure autoregressive sequence models, there is still some distance. Some 
randomly generated molecules by DiffSeqMol can be found in Supplement Fig 1, which shows 
the capability of DiffSeqMol to generate diverse styles of molecules. Overall, our proposed 
diffusion-based model has the potential to be considered as a candidate for unconditional 
molecular generation models.  

 

Molecular Optimization Tasks 

For each molecule optimization task, model performance was evaluated in accordance 
with the specific task objectives. For task 1 and task 2, model performance was measured 
based on the degree of property improvement. Specifically, for each molecule 𝑚𝑜𝑙- in the 
test set, the target model was deployed for 20 random samples. The optimized molecule 
𝑚𝑜𝑙. which achieves the highest plogP improvement and preserves the original molecule 
structure 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑚𝑜𝑙- , 𝑚𝑜𝑙.) > 	𝛿  was selected. After that, the average plogP 
improvement over the whole test set was reported on table 1. For task 3 and task 4, model 
evaluation was based on the optimization success rate. For each molecule 𝑚𝑜𝑙- in the test 
set, it was randomly sampled 20 times by the target model. If any molecule 𝑚𝑜𝑙. in the 20 
molecular optimization candidates reached the target property line, it was considered as a 
success. After that, the average success rate over the whole test set was reported on table 2. 

In this section, DiffSeqMol was compared with the following baselines: (1) models 
described in the unconditional experiment; (2) GCPN [44], an autoregressive graph generation 
model based on reinforcement learning; (3) MMPA [45], a chemical rule-based generation 
model which presumed additivity of chemical properties and (4) JTNN [46], an autoregressive 
graph-to-graph structure which generates molecules structure by structure.  

The results of all the models are presented in Table 1 and Table 2. Our model DiffSeqMol 
demonstrates the highest performance in both cases. As for two Penalized LogP optimization 
tasks, DiffSeqMol achieves the highest improvement in performance. Relative to the previous 
best-performing model Hier-VAE, our model exhibits an obviously improvement （nearly 
10%） on the plogP optimization (0.6 similarity constraint) and a modest improvement on the 
0.4 similarity constraint dataset. These results demonstrated that DiffSeqMol is effective in 
identifying the parts of a molecule that require optimization and making corresponding 
improvements. To give readers a more intuitive understanding, we randomly selected some 
optimization results to display in Figure 3. The parts that have been optimized compared to 
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the target molecule were highlighted with dashed circles. Similar results are also observed in 
QED optimization task and DRD2 optimization task. DiffSeqMol achieves a 4% enhancement 
of successful rate in the QED task and a 7% improvement in the DRD2 optimization task 
compared with the previous best-performing model Hier-VAE.  
  

Visualization of the backward process 

 Unlike conventional autoregressive generation models, DiffSeqMol directly generates the 
entire molecular expression. To offer readers insight into the process by which DiffSeqMol 
generates molecules, we visualized the intermediate molecular results during the backward 
process, as exhibited in Figure 4. In Figure 4, part (a) represents the specific length of the 
molecular tokens during the backward process, while part (b) represents the intermediate 
generated results. Due to the excessively long length of the early intermediate results, we 
truncated them and show the head part and the tail part. As the denoising process progresses, 
the length of the molecule gradually decreases. Especially during the first half of the backward 
process, the intermediate results experience a sharp decrease in length from around 170 to 
around 30. Meanwhile, DiffSeqMol incrementally converts a portion of the tokens in the latter 
half of the intermediate results into “<pad>” tokens. In the latter half of the backward process, 
the length of the molecule stabilizes. DiffSeqMol's focus transitions from length determination 
to the selection of suitable molecular tokens pertinent to the target task. The process of 
selecting molecular tokens roughly takes up 40% of the total backward process, ranging from 
50%T to 10%T of the backward process. Afterwards, the molecular results stabilize and 
DiffSeqMol outputs the final molecules.  
 

Conclusion  

 The advent of diffusion models has brought a considerable advancement to generation 
tasks.  In this work, we explored the possibility of applying diffusion models to sequential 
molecular generation. DiffSeqMol achieves comparable level of performance to existing 
graph-based methods in unconditional molecular generation tasks. Additionally, it 
demonstrates notable results in optimization tasks. The implementation of a non-
autoregressively sequential diffusion model can subsequently open new pathways to traverse 
the expansive chemical space and to discover novel molecules. 

 
 
 
Code Availability: The code is available in: https://github.com/viko-3/DiffSeqMol.  
Data Availability: All the data used in this paper are from publicly available datasets. For the 
dataset used in unconditional generation tasks, you can refer to Flam-Shepherd et al. 
(https://www.nature.com/articles/s41467-022-30839-x). For the dataset used in molecular 
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optimization tasks, you can refer to Jin et al. (https://arxiv.org/abs/2002.03230).  
 
 
 

 

Figure 1. (a) The diagram of the overall unconditional generation process of 

DiffSeqMol. (b) The diagram of the overall molecular optimization process of 

DiffSeqMol.  (c) The diagram of the attention network used in DiffSeqMol for 

molecular optimization. This network is designed for molecular token prediction 

(Equation 9). As for unconditional generation tasks, we eliminated the tokens of 

the optimized molecules. 
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Figure 2. (a) Molecular property distribution calculated from samples generated by models 
trained on High Penalized LogP Molecule Generation Task (unconditional generation task 
1).(b) The Wasserstein distance between the generated molecules and the training set, 
corresponding to the properties presented in (a). (c) Molecular property distribution 
calculated from samples generated by models trained on Multi-distribution Molecule 
Generation Task (Unconditional generation task 2). (d) The Wasserstein distance between the 
generated molecules and the training set, corresponding to the properties presented in (c). 
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Figure 3. Randomly selected optimization results. (a) Randomly sampled from Penalized LogP 
Optimization Task (molecule optimization task 1). (b) Randomly sampled from Penalized LogP 
Optimization Task (molecule optimization task 2). (c) Randomly sampled from QED 
Optimization Task (molecule optimization task 3).  (d) Randomly sampled from DRD2 
Optimization Task (molecule optimization task 4). 
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Figure 4. The intermediate molecular results during the backward process. We toke the 
molecular optimization result in Figure 3(a) as an illustrative example. (a) The length of the 
intermediate molecular tokens. (b) Truncated intermediate molecular tokens, corresponding 
to the temporal position in (a). 
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Table 1 Penalized LogP Optimization Results (Higher improvement scores of plogp reflects better 
performance.) 

Method plogp (Sim > 0.4) Improvement plogp (Sim > 0.6) Improvement 
JT-VAE 1.03 ± 1.39 0.28 ± 0.79 
CG-VAE 0.61 ± 1.09 0.25 ± 0.74 
GCPN 2.49 ± 1.30 0.79 ± 0.63 
MMPA 3.29 ± 1.12 1.65 ± 1.44 

Seq2Seq 3.37 ± 1.75 2.33 ± 1.17 
JTNN 3.55 ± 1.67 2.33 ± 1.24 

Hier-VAE 3.98 ± 1.46 2.49 ± 1.09 
DiffSeqMol 4.00 ± 1.55 2.72 ± 1.09 
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Table 2 QED Optimization Results & DRD2 Optimization Results (Higher successful rates reflect 
better performance.) 

Method QED (Successful Rate) DRD2 (Successful Rate) 
JT-VAE 8.8% 3.4% 
CG-VAE 4.8% 2.3% 
GCPN 9.4% 4.4% 
MMPA 32.9% 46.4% 

Seq2Seq 58.5% 75.9% 
JTNN 59.9% 77.8% 

Hier-VAE 76.9% 85.9% 
DiffSeqMol 80.0% 92.2% 
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