
Atlas: A Brain for Self-driving Laboratories

Riley J. Hickman,1, 2, 3, ∗ Malcolm Sim,1, 2 Sergio Pablo-Garćıa,1, 2 Ivan Woolhouse,1, 2 Han Hao,1, 2 Zeqing

Bao,4 Pauric Bannigan,4 Christine Allen,4, 5, 6 Matteo Aldeghi,1, 2, 3, † and Alán Aspuru-Guzik1, 2, 3, 5, 6, 7, 8, ‡

1Chemical Physics Theory Group, Department of Chemistry,

University of Toronto, Toronto, ON M5S 3H6, Canada

2Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6, Canada

3Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada

4Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada

5Acceleration Consortium, University of Toronto, Toronto, ON M5S 3E5, Canada

6Department of Chemical Engineering & Applied Chemistry,

University of Toronto, Toronto, ON M5S 3E5, Canada

7Department of Materials Science & Engineering,

University of Toronto, Toronto, ON M5S 3E4, Canada

8Lebovic Fellow, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada

(Dated: September 4, 2023)

Self-driving laboratories (SDLs) are next-generation research and development platforms for

closed-loop, autonomous experimentation that combine ideas from artificial intelligence, robotics,

and high-performance computing. A critical component of SDLs is the decision-making algorithm

used to prioritize experiments to be performed. This SDL “brain” often relies on optimization

strategies that are guided by machine learning models, such as Bayesian optimization. However,

the diversity of hardware constraints and scientific questions being tackled by SDLs require the

availability of a set of flexible algorithms that have yet to be implemented in a single software tool.

Here, we report Atlas, an application-agnostic Python library for Bayesian optimization that is

specifically tailored to the needs of SDLs. Atlas provides facile access to state-of-the-art, model-

based optimization algorithms—including mixed-parameter, multi-objective, constrained, robust,

multi-fidelity, meta-learning, asynchronous, and molecular optimization—as an all-in-one tool that

is expected to suit the majority of specialized SDL needs. After a brief description of its core ca-

pabilities, we demonstrate Atlas’ utility by optimizing the oxidation potential of metal complexes

with an autonomous electrochemical experimentation platform. We expect Atlas to expand the

breadth of design and discovery problems in the natural sciences that are immediately addressable

with SDLs.

Keywords: Self-driving Laboratories, Autonomous Experimentaion, Experiment Planning, Bayesian Opti-

mization, Electrochemistry, Python Software, Machine Learning

∗ riley.hickman@mail.utoronto.ca
† Current address: Bayer Research and Innovation Center, 238 Main St, Cambridge, MA 02142, USA
‡ alan@aspuru.com

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

2

I. INTRODUCTION

Self-driving laboratories (SDLs) are advanced technological platforms that use artificial intelligence, robotics, and

high-performance computing to perform complex research tasks autonomously, that is, without human intervention.

Such platforms aim to streamline and enhance the efficiency of scientific experimentation, research, and analytical

processes.1–7 SDLs can accelerate the rate at which advanced materials, functional molecules, and industrial pro-

cesses are designed by enhancing productivity, throughput, accuracy, and reproducibility. Early-stage SDLs have

targeted diverse research and development goals, including chemical reaction and process optimization,8–18 the design

of nanomaterials,19–22 and light-harvesting materials,23–26 to name a few.27–31

The cornerstone of an SDL is its decision-making algorithm (here informally referred to as its “brain”), which is

typically implemented as a data-driven experiment planning strategy. Compared to less dynamic strategies such as

Design of Experiment,32–34 data-driven approaches leverage feedback from previously completed experiments to inform

subsequent recommendations of experimental parameters, resulting in superior sample efficiency. Although many such

strategies have been proposed, including gradient-based optimizers,35 evolutionary strategies,36–41 and reinforcement

learning,42,43 Bayesian optimization (BO)44–46 has recently emerged as the most popular choice. BO is a sequential

optimization strategy for expensive-to-evaluate black-box functions based on machine-learned approximations of the

target objective being optimized.

Python libraries for general-purpose BO are plentiful. Popular examples include scikit-learn,47,48 GPyOpt,49

HyperOpt,50–53 SMAC3,54,55 Dragonfly,56 HEBO,57 BoTorch,58 Ax,59 and Vizier,60,61 amongst others. Most

of the aforementioned libraries are primarily scoped toward optimization of machine learning (ML) model hyperpa-

rameters, and often lack specific functionality requisite for the experimental sciences. For example, the proposed

parameters for hyperparameter tuning are generally expected to be executed exactly, while in a SDL it might be im-

possible to control experimental conditions to high levels of precision.62,63 Other requirements for broad applicability

of BO in experimental sciences include constrained optimization, with a priori known (physical hardware restrictions,

safety concerns)64,65 and unknown (failed/abandoned synthesis, inadequate conditions for property measurement)66–71

constraint functions, as well as the ability for asynchronous experimental execution (i.e. recommendation of new pa-

rameters before a complete batch of corresponding measurements are available).72,73 Although several such libraries

do contain the low-level infrastructure necessary to implement more advanced optimization techniques, it remains an

expert-level task to correctly organize the required building blocks to produce a working prototype. Software libraries

for data-driven decision-making in SDLs and experimental sciences have also been reported.19,74–81 While these stud-

ies constitute important landmarks in the burgeoning field of SDLs, most target specific experimental frameworks

and/or narrow problem types and do not cover the full extent of requirements needed for a truly general-purpose tool.

In this work, we introduce Atlas, an Object-Oriented Python library for BO that was designed with the broadest

applicability to SDLs and experimental science in mind. Figure 1 shows a summary of the main experiment-planning

capabilities of Atlas along with its place within the closed-loop experimentation paradigm. Atlas intends to

provide practitioners of autonomous science with state-of-the-art BO algorithms while abstracting away all complex

implementation details. We strived to provide researchers with the numerous, application-agnostic features often

required for the successful deployment of BO in practice. This flexibility is expected to allow researchers to focus on

customizing their experimental or computational protocols and expand the set of design and discovery problems that

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

3

BO and SDLs can tackle.

This paper is organized as follows: Section II provides a brief review of BO and its components. Section III lists the

notable features of the Atlas library and gives code snippet examples for each feature. Finally, Section IV describes

a real-world demonstration of Atlas used in conjunction with ChemOS 2.0,82 an SDL orchestration software, to

optimize the oxidation potential of metal complexes in a cyclic voltammetry experiment.

Self-driving Laboratory

Mixed-parameter
Bayesian

 optimization

a priori known
constraints

a priori unknown
constraints

Robust optimizationMulti-objective
optimization

Multi-fidelity
optimization

Meta-learning
optimization

Generalizable
 parameters

Molecular
kernel functions

Asynchronous
experimentation

Data-driven
experiment

planning

Automated
measurement

and testing

Automated
synthesis and

device
fabrication

The ATLAS
Python Library

FIG. 1. Conceptual figure showing the important capabilities of Atlas, as well as its place in a closed-loop experimentation

cycle utilized by an SDL.

II. OVERVIEW OF BAYESIAN OPTIMIZATION FOR EXPERIMENT PLANNING

In this section, we briefly review the basic principles of Bayesian optimization as a primer for discussion of the

capabilities of Atlas in Section III.

A. Bayesian optimization

Optimization problems involve identifying parameters, x, that produce the most desirable outcome for an objective

function, f(x). For a minimization problem, the solution is the set of parameters that minimizes f(x),

x∗ = argmin
x∈X

f(x) , (1)

where X is the parameter space, i.e. a structured input domain that can be explored during optimization. In a BO

setting, the objective function is considered to be a black-box function, meaning its structure is a priori unknown,

and can only be sequentially resolved by empirical measurement. Black-box functions also do not provide access to

gradient information, and measurements are typically expected to be corrupted by noise.

Measurements are collected sequentially, either in batches or one-by-one. After collection of a measurement y

corresponding to the parameter x, the surrogate model is trained on the dataset of all available observations, D =

{(xi, yi)}Ni=1. An acquisition function is then computed based on the surrogate model. The maximum of this function

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

4

FIG. 2. Conceptual figure showing Bayesian optimization of a 1d function. In this example, the surrogate model is a GP with

a Matérn 5/2 kernel, and the acquisition function is the expected improvement criterion.

defines the set of parameters expected to provide maximal utility, and corresponds to the parameter recommended for

subsequent measurement. Typically, this iterative procedure is repeated until a pre-defined stopping criterion, such

as the exhaustion of an experimental budget, is met. Algorithm 1 shows pseudocode for a BO loop, and Figure 2

visualizes the procedure. The first set of parameters is often not recommended by BO, but are rather produced by

random sampling, a low-discrepancy sequence, or an experimental design strategy. This is known as the initial design

phase.

Algorithm 1: Pseudocode for Bayesian optimization

Data: Parameter space X ∈ Rd, objective function f : X 7→ R, surrogate model M, acquisition function α : X 7→ R,

optimization budget b

Result: Dataset of objective measurements Db = {(xi, yi)}bi=1

D0 ← ∅ ;

neval ← 0 ;

while neval < b do

M← fit M to Dneval ; /* train surrogate model on current observations */

xnext ← arg maxx∈X α (x) ; /* optimize acqusition function for next parameter sample */

ynext = f (xnext) ; /* measure objective function at next parameter sample location */

Dneval+1 ← (xnext, ynext) ∪ Dneval ; /* append newest parameter-measurement pair to dataset */

neval ← neval + 1 ;

1. Acquisition functions

The surrogate model is constructed to approximate the objective function f(x) and can be queried for mean and

uncertainty estimates of the objective across the parameter space. Acquisition functions, α(x), are used to guide the

selection of parameter recommendations using the surrogate model’s prediction. Specifically, maximization of α(x)

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

5

reveals the parameters xnext for subsequent measurement.

xnext = argmax
x∈X

α(x) . (2)

Several acquisition functions are available for use in Atlas, including the upper and lower confidence bound,

expected improvement, probability of improvement, variance-based sampling, and greedy sampling. Our library

also features several specialty acquisition functions for more advanced BO concepts, including general parameter

optimization (Section III E), multi-fidelity optimization (Section III F), and meta-learning enhanced optimization

(Section IIIG).

2. Acquisition function optimization

A crucial subroutine in BO is the optimization of the acquisition function. Several factors influence the aptitude of

optimization strategies for this task, including the types of parameters making up the parameter space and its volume.

Atlas provides 3 distinct acquisition function optimization strategies that are each suited for specific problem types:

(i) a constrained gradient optimizer based on SLSQP58,83 or Adam,84 (ii) a constrained genetic algorithm (GA)

optimizer based on the PyMOO library,85 and (iii) a constrained GA based on the DEAP library.86,87 Gradient

strategies are well-suited for problems with fully-continuous parameter spaces, while GA strategies are well-suited for

mixed-parameter problems and fully discrete/categorical problems with large Cartesian product spaces.

B. Gaussian processes

A crucial component of the BO framework is the surrogate model, an ML model which produces an estimate of the

true objective function given a dataset of observations. Many ML models have been used as BO surrogates, including

Bayesian neural networks, tree-based models, and kernel smoothing, but the most prevelant and well-studied choice

is the Gaussian process (GP).88 GPs are non-parametric probabilistic ML models. They are a collection of random

variables such that the joint distribution of each finite set of variables is a multivariate normal. GPs are characterized

by a mean, m(x), and covariance function, k(x,x′), and are written as

f(x) ∼ GP (m(x), k(x,x′)) . (3)

For experiment planning applications, inputs x are vectors of parameters of the experiment. Conveniently, the

mean and variance of a GP can be written in closed form. For query parameters, x̂ (i.e. those which do not yet have

an associated measurement), the GP returns a predictive mean µ̂ and variance σ̂2.

1. Kernel functions

The choice of covariance or kernel function k(x,x′) is an crucial inductive bias for a GP model, and should be

selected according to the characteristics of the objective function being modelled. A popular choice for continuous

input domains is the Matérn kernel,

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

6

k (x,x′) =
1

Γ(ν)2ν−1

(√
2ν

ℓ
d (x,x′)

)ν

Kν

(√
2ν

ℓ
d (x,x′)

)
, (4)

where d (·, ·) is the Euclidian distance, Kν (·) is a modified Bessel function, and Γ (·) is the Gamma function. The

Matérn kernel also has an additional parameter, ν, which controls the smoothness of the resulting function (fixed at

5/2 in Atlas), and ℓ is a lengthscale hyperparameter. Atlas uses a Matérn 5/2 kernel for continuous and numerical

discrete input domains, but also supports categorical, mixed continuous/discrete-categorical, and molecular input

domains. For categorical spaces in which inputs are one-hot-encoded, we use a kernel function based on Hamming

distances,

k (x,x′) = exp [−dHamming (x,x
′) /ℓ] , (5)

where dHamming (x,x
′) = 0 if x = x′ and = 1 if x ̸= x′. Automatic relevance determination (ARD)89 is used for this

kernel for all input dimensions. For mixed continuous/discrete-categorical spaces, we use a mixed kernel comprising

Matérn 5/2 and Hamming parts,

k (x,x′) = kcat (xcat,x
′
cat)× kcont (xcont,x

′
cont) + kcat (xcat,x

′
cat) + kcont (xcont,x

′
cont) , (6)

where xcont and xcat are the continuous/discrete and categorical portions of the input vector, respectively. The reader

is referred to Section IIIH for discussion of the kernel used for molecular input domains.

2. Gaussian process training

Fitting a GP to a dataset of observations involes choosing hyperparameters of the kernel function (collectively

referred to as θ) and the likelihood noise σ2
y. Hyperparameters are chosen by minimizing the negative log marginal

likelihood,

log p (y|X,θ) = −1

2
y⊤ [Kθ (X,X) + σ2

yI
]−1

y︸ ︷︷ ︸
promotes data fit

− 1

2
log
∣∣Kθ (X,X) + σ2

yI
∣∣︸ ︷︷ ︸

penalizes model complexity

− N

2
log(2π) . (7)

y ∈ Rn is a vector of n objective measurements, X ∈ Rn×d is the design matrix of n d-dimensional input vectors.

Kθ (X,X) is a kernel matrix such that each entry [Kθ]i,j = k (xi,xj). σ2
yI is the variance of Gaussian noise on the

measurements y. Note that the first term encourages the model’s fit to the training data, while the second penalizes

overly complex models.90 This inherent regularization is attractive for modelling in a low-data setting, such as the

initial stages of a sequntial model-based optimization campaign.

3. Variational Gaussian process classifier

Atlas uses a GP-based binary classifier to learn the feasible-infeasible boundaries in parameter space for optimiza-

tion problems with unknown constraints. This capability is explained in detail in Section III B. Here, we provide

details of the GP classifer itself.

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

7

For feasibility classification using a GP, exact inference is intractable. Thus, Atlas approximates the classification

posterior using variational inference. Assume a dataset of n binary constraint function c(x) measurements, Dc =

{(xi, ỹi)}ni=1, where ỹ ∈ {0, 1} (0 for feasible measurements and 1 for infeasible measurements). For brevity, we

denote the n feasibility measurements as ỹ = {ỹi}ni=1 and the design matrix as X = {xi}ni=1. GP classification

squashes the latent GP output f through a sigmoidal inverse-link function, ϕ(x) =
∫ x

−∞ N (a|0, 1)da and a Bernoulli

likelihood function conditions the function values. The joint distribution of the feasibility measurements and the

latent values is

p (ỹ,f) =

n∏
i=1

B (ỹi|ϕ(fi)) p(f) , (8)

where B (ỹi|ϕ(fi)) = ϕ(fi)
ỹi (1− ϕ(fi))

1−yi is the Bernoulli distribution, and p(f) = N (f |0,Knn) is the usual prior

for the values of the GP.

Atlas’ classifier adopts an inducing point approach, in which the latent variables are augmented with additional

inducing points. Our strategy follows closely to the one detailed in Hensman et al.,91 where a bound on the marginal

likelihood for classification problems in derived. This bound is optimized by adjusting the hyperparameters of the GP

kernel, parameters of the multivariate normal variational distribution, and the inducing inputs/points simultaneously

using stochastic gradient descent. The classification approach is implemented using the GpyTorch library,92 and

has the added benefit of scaling more favourably with |Dc| than does exact GP inference.

III. ATLAS LIBRARY OVERVIEW

Atlas users interact with the package via a high-level “ask-tell” interface, in which a Planner instance is iteratively

queried for parameters, some physical or computational measurement is completed, and the parameter-measurement

pairs are added to a Olympus Campaign instance. Olympus79,80 is a complementary experiment-planning frame-

work developed by our research group that provides an interface to Atlas. For example, Olympus implements an

abstraction for a generic experiment planning strategy, from which all Atlas strategies inherit. Also, the Olympus

Campaign object is used for storing optimization trajectories and meta-information. Olympus also provides defini-

tions of parameter types and spaces, and achievement scalarizing functions for multi-objective optimization, all of

which are used by Atlas.

To demonstrate the usage of our software, we present a minimal code example in which the GPPlanner (Gaussian

Process Planner) from Atlas is used to minimize the Branin-Hoo surface,93 f : X ∈ R2 7→ R. “Ask-tell” experi-

mentation proceeds iteratively by generating parameters to be measured using the planner’s recommend() method,

and informing the Olympus Campaign instance about the corresponding measurement using its add observation()

method. We opt to use a flexible “ask-tell” interface to remain application-agnostic, as well as allow for analysis and

customization of the optimization loops. Measurement steps usually involve calls to specialized robotic laboratory

equipment or computational simulation packages, which can be fully customized by the user. Figure 3 visualizes the

results of this simple example. The num init design argument to the GPPlanner constructor defines the number of

parameters to recommend in the initial design phase. This value defaults to 5 and will not be listed as an argument

in subsequent examples for brevity.

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

8

from olympus import Surface, Campaign

from atlas.planners.gp.planner import GPPlanner

surface = Surface(kind='Branin') # instantiate 2d Branin-Hoo objective function

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space(surface.param_space) # save details of the optimization domain into the campaign object

planner = GPPlanner(goal='minimize', num_init_design=5) # instantiate Atlas planner

planner.set_param_space(surface.param_space) # define the optimization domain for the planner

while campaign.num_obs < 30: # run no more than 30 experiments

samples = planner.recommend(campaign.observations) # ask planner for batch of parameters

for sample in samples:

measurement = surface.run(sample) # measure Branin-Hoo function

campaign.add_observation(sample, measurement) # tell planner about most recent observation

FIG. 3. Visualization of the minimal code optimization of the 2d Branin-Hoo surface using Atlas. The left-most subplot

shows a contour plot of the Branin-Hoo surface with its triply-degenerate global minimum highlighted with pink stars. The

center subplot shows the location of the parameters recommended by Atlas as gray crosses. The right-most subplot shows the

optimization regret trace.

Atlas supports parameter spaces consisting of continuous, discrete, and categorical parameters, and arbitrary

combinations thereof, in sequential or batched optimization mode. The definition of vector-valued descriptors for

categorical parameter options is also supported.78 BO strategies in Atlas primarily use GP surrogate models,88 and

use the low-level infrastructure of the PyTorch,94 GpyTorch92 and BoTorch58 libraries. In the following section,

the main capabilities of Atlas (Figure 1) are explained. For more information on each concept, please visit the Atlas

GitHub,95 documentation, and tutorial notebook. Importantly, Atlas allows users to combine its key capabilities to

suit their specialized needs. Barring a few incompatibilities (described in detail in our documentation), capabilities can

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://matter-atlas.readthedocs.io/en/latest/
https://colab.research.google.com/github/aspuru-guzik-group/atlas/blob/main/atlas_get_started.ipynb
https://matter-atlas.readthedocs.io/en/latest/
https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

9

be combined and interchanged freely. For example, the a priori known and unknown constraints can be used for any

parameter space, with any acquisition function, acquisition optimizer, and any planner. Multi-objective optimization

via ASFs, robust optimization, and asynchronous optimization can also be used in this way.

A. A priori known constraints

Using a simple interface, users can specify arbitrary known constraint functions on the parameter space, which

results in portions of the space being omitted from consideration by planners.64 We also supply convenient ways to

specify commonly occurring known constraint types, including compositional (simplex),65 permutation (ordering),65

pending experiments, or process-constrained batches.96

The following code snippet shows the instantiation of the GPPlanner with a user-defined constraint function for

the Dejong surface, f : X ∈ R2 7→ R. Constraint functions are Python callables which return a boolean value,

True (False) for feasible (infeasible) parameters, and are passed to the constructor of GPPlanner as a list using the

known constraints argument.

from olympus import Surface, Campaign

from atlas.planners import GPPlanner

define the known constraint function

def known_constraint(params):

params is a array-like object representing one parameter setting

y = (params[0]-0.5)**2 + (params[1]-0.5)**2

if 0.05 < y < 0.15:

return False

return True

surface = Surface(kind='Dejong') # instantiate 2d Branin-Hoo objective function

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space(surface.param_space)

planner = GPPlanner(goal='minimize', known_constraints=[known_constraint])

planner.set_param_space(surface.param_space)

Next, we show an example of a special known constraint case built intoAtlas: compositional or simplex constraints.

This constraint type is useful when parameters (or a subset thereof) must lie on a standard n-simplex, i.e. ∆n =

{(x0, . . . , xn) ∈ [0, 1]n|
∑n

i=0 xi = 1, xi ≥ 0 ∀ i}. Such constraints are commonly encountered in SDL applications.65

To demonstrate this constraint type, we use the oer plate a dataset from Olympus, which reports high-

throughput screens for oxygen evolution reaction (OER) activity by systematically exploring high-dimensional

chemical spaces.97,98 The dataset is a discrete library of 2121 catalysts, comprising all unary, binary, ternary

and quaternary compositions from unique 6 element sets at 10% intervals. The composition system of the

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

10

oer plate a dataset is Mn-Fe-Co-Ni-La-Ce. Olympus emulates the discrete dataset with a Bayesian neural

network (BNN) to produce noisy virtual measurements.99 Fractional compositions must lie on the standard 6-

simplex ∆6 =
{
(x0, . . . , x5) ∈ [0, 1]6 |

∑5
i=0 xi = 1, xi ≥ 0 ∀ i

}
. The following code snippet shows instantiation of

the GPPlanner for this problem. The compositional params argument takes a list of integers representing the

parameter space indices to be treated with the compositional constraint. In this case, all 6 parameters are subject to

the constraint.

from olympus.emulators import Emulator

from atlas.planners import GPPlanner

instantiate the BNN emulator for the `oer_plate_a` dataset

emulator = Emulator(dataset='oer_plate_a', model='BayesNeuralNet')

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space(emulator.param_space)

planner = GPPlanner(goal='minimize', compositional_params[0,1,2,3,4,5])

planner.set_param_space(emulator.param_space)

Lastly, we show an example using the pending experiment known constraint type. The interpretation of this

constraint is simple: parameters that have been assigned to measurement, but for which the experiments have not

been completed yet, must be avoided by the planner to avoid duplicate recommendation. Atlas provides a simple

method for all planners to set pending experiments. The planner’s set pending experiments() method can be called

at any time within an optimization campaign to inform the planner about parameter settings to be avoided. This

method takes as an argument pending experiments, which is a list of Olympus ParameterVector objects. Each

subsequent call overwrites the pending parameters from the last iteration. To remove all the pending experiments,

one can use the planner’s remove pending experiments() method.

from olympus import Surface, Campaign

from atlas.planners import GPPlanner

surface = Surface(kind='CatCamel') # instantiate 2d categorical Camel surface

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space(surface.param_space)

planner = GPPlanner(goal='minimize') # instantiate Atlas planner

planner.set_param_space(surface.param_space)

while campaign.num_obs < 30:

pending_experiments = get_my_pending_exps() # user defined pending experiments

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

11

planner.set_pending_experiments(pending_experiments) # inform planner about pending experiment parameters

samples = planner.recommend(campaign.observations) # ask planner for batch of parameters

for sample in samples:

measurement = surface.run(sample) # measure CatCamel function

campaign.add_observation(sample, measurement) # tell planner about most recent observation

B. A priori unknown constraints

The inclusion of NaN (not a number) objective values is supported, which could occur due to attempted but failed

experimental measurements. Several strategies are provided which learn the unknown constraint function on the fly,

using a GP-based binary feasibility classifier (explained in detail in Section II B 3). These predictions are used in

conjunction with the typical regression surrogate model to parameterize feasibility-aware acquisition functions, αc(x).

All acquisition function types in Atlas have a feasibility-aware analogue.

We provide an example optimization of the Branin-Hoo surface with an a priori unknown constraint function

c(x), visualized by the shaded region in Figure 4. The example uses the feasibility-interpolated acquisition strategy

(fia-1) with the UCB acquisition function. Two additional arguments to the GPPlanner constructor are required

for optimization with unknown constraints. feas strategy indicates the feasibility-aware acquisition type, and

the feas param argument indicates the associated parameter. The fia strategies interpolate between the vanilla

acquisition function α(x) and the conditional output of the feasibility classifier, P (feasible|x) using the following

expression:

αc(x) =
(
1− ct

)
× α(x) + ct × P (feasible|x) . (9)

c is the ratio of infeasible measurements to total measurements, and t ∈ R+ is a parameter (specified with the

feas param argument) which controls risk when it comes to selecting infeasible parameters. Here, smaller values of t

de-emphasize the feasibility classifier’s contribution (second term in Equation 9) and thus indicate more risk, while

larger values do the opposite and represent less risk.

from olympus import Campaign

from atlas.planners import GPPlanner

instantiate 2d constrained Branin-Hoo objective function (available on GitHub repo)

surface = BraninConstr()

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space(surface.param_space)

planner = GPPlanner(

goal='minimize',

feas_strategy='fia',

feas_param=1.,

acquisition_type='ucb',

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

12

) # instantiate Atlas planner

planner.set_param_space(surface.param_space)

while campaign.num_obs < 100:

samples = planner.recommend(campaign.observations) # ask planner for batch of parameters

for sample in samples:

measurement = surface.run(sample) # measure constrained Branin-Hoo function

campaign.add_observation(sample, measurement) # tell planner about most recent observation

Figure 4 shows the results of a larger benchmark of feasibility-aware acquisition strategies in Atlas on the 2d con-

strained Branin-Hoo surface. The legend of the center subplot lists the unknown constraint strategies and associated

parameters available for use in Atlas. We omit a full discussion and benchmark of these strategies, as they will be

thoroughly detailed in an upcoming manuscript. Briefly, the naive-0 strategy is a simple baseline approach which

does not use the feasibility classifier. Instead, the NaN objective value of infeasible measurements is replaced by the

current worst feasible measurement in D.70 Although this strategy is effective for avoiding infeasible measurements

(lowest % infeasible measurements in right-most subplot), optimization performance is sacrificed, especially when the

optimum of the problem is located close to an infeasible region. fia-1 is among the top performers for this example.

FIG. 4. Visualization of an a priori unknown constraint optimization benchmark on the 2d Branin-Hoo surface using Atlas.

The left-most subplot shows a contour plot of the Branin-Hoo surface with its triply-degenerate global minimum highlighted with

pink stars, and the constrained regions shaded. The plot also shows the locations of the (in)feasible parameters recommended

by Atlas as (white)gray crosses (recommended using the fia-1 strategy). The center subplot shows regret traces for each

strategy averaged over 100 independent executions. The right-most subplot shows distributions of percentages of infeasible

measurements (i.e. NaN objective values) produced by each strategy during a run.

C. Multi-objective optimization

Atlas supports multi-objective optimization for all planners by using achievement scalarizing functions (ASFs)

defined in Olympus. Multi-objective problems feature an objective space Y ∈ Rn corresponding to a set of n > 1

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

13

objective functions f = {fi}ni=1 : X 7→ Y to be optimized concurrently. ASF S transforms a vector of objective

measurements to a scalar merit value, S : Y 7→ [0, 1] which is processed by the optimizer. Available ASF types are

Chimera,100 Hypervolume,101–104 Chebyshev,105,106 and Weighted Sum.107,108

As an illustrative example of multi-objective optimization in Atlas, we use the dye lasers dataset from Olympus,

which reports computed photophysical properties for 3458 organic molecules synthesized from three groups of molec-

ular building blocks – A, B, and C (resulting in A-B-C-B-A pentamers shown in Figure 5a).109 Each molecule was

subjected to a computational protocol consisting of cheminformatic, semi-empirical and ab initio quantum chemical

steps to compute absorption and emission spectra, as well as fluorescence rates. The objectives for this dataset are

i) the peak score, a dimensionless quantity given by the fraction of the fluorescence power spectral density that falls

within the 400 - 460 nm region (to be maximized), ii) the spectral overlap of the absorption and emission spectra (to

be minimized), and iii) the fluorescence rate (to be maximized).

The Hypervolume ASF is used for this example. One must include additional arguments to the GPPlanner

constructor, namely, a boolean value for is moo, the name of the ASF for scalarizer kind, the objective space Y

as an Olympus ParameterSpace object, and a list of goals representing the individual optimization goals for each

objective (either "max" or "min"). For parameter spaces with categorical parameters, note that we can toggle between

using a descriptor representation for the options and one-hot encodings using the use descriptors argument.

from olympus import Dataset, Campaign

from atlas.planners.gp.planner import GPPlanner

dataset = Dataset(kind='dye_lasers') # instantiate the `dye_lasers` dataset from Olympus

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space(dataset.param_space)

planner = GPPlanner(

goal='minimize', # overall goal must always be set to `minimize` for moo problems

use_descriptors=False,

is_moo=True,

scalarizer_kind='Hypervolume',

value_space=dataset.value_space,

goals=['max', 'min', 'max'], # individual goals for each objective

) # instantiate Atlas planner

planner.set_param_space(dataset.param_space)

while campaign.num_obs < 200:

samples = planner.recommend(campaign.observations) # ask planner for batch of parameters

for sample in samples:

measurement, _, __ = dataset.run(sample) # measure objectives of `dye_laser` dataset

campaign.add_observation(sample, measurement) # tell planner about most recent observation

Figure 5b shows the results of a larger scale benchmark experiment where the performance of the GPPlanner is

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

14

compared to a random search on the dye lasers dataset. Each subplot shows traces of the objective values associated

with the measurement assigned the best hypervolume as a function of the number of evaluations. While the peak

score and fluorescence rate traces are comparable between strategies, the GPPlanner is able to identify candidate

molecules with lower spectral overlap between absorption and emission spectra (a proxy for reduced losses from

self-absorption of emitted light) significantly quicker than random sampling. This indicates better multi-objective

optimization performance.

FIG. 5. a) Reaction scheme of iterative Suzuki-Miyaura cross-coupling reaction proposed to synthesize symmetric A-B-C-B-A

pentamers in the dye lasers dataset. b) Individual objective traces corresponding to the experiment with the best hypervolume

value as a function of the number of transpired experiments. Solid lines represent the mean objective values averaged over 50

independent runs and shaded regions represent the 95% confidence interval.

D. Robust optimization

For all planners and parameter types, we have integrated the Golem algorithm,62 which allows users to identify

optimal solutions that are robust to input parameter uncertainty. This helps ensure reproducible performance of

optimized experimental protocols and processes.

In order to demonstrate how Golem is integrated into Atlas, we reproduce the setup of the noisy high-performance

liquid chromatography (HPLC) protocol optimization experiment from the original publication.62 In this application,

an HPLC protocol is calibrated by adjusting 6 process parameters with the goal of maximizing the amount of drawn

sample reaching the detector (referred to as the peak area). It is assumed that input parameters P1 (sample loop)

and P3 (tubing volume) are subject to significant noise, and that the other four parameters are noiseless. Normally

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

15

distributed noise truncated at zero is used for both parameters, with standard deviations of 0.008 mL and 0.08 mL for

P1 and P3, respectively. The HPLC response is emulated within the Olympus package using BNNs (hplc dataset).

The problem setup for this example is shown in the following code snippet. For all planners, the constructor

argument golem config is available, which expects a dictionary whose keys are parameter names for which the user

would like to specify an input uncertainty distribution. The corresponding values are themselves dictionaries, for

which the user must specify the distribution type and its associated parameters. Golem ships with a diverse set of

distribution types, which are detailed in its documentation. For all parameters not itemized within the golem config

argument, Atlas automatically assigns them a Delta distribution, meaning no uncertainty/noiseless.

from olympus import Emulator, Campaign

from atlas.planners.gp.planner import GPPlanner

instantiate the `hplc` experiment emulator from Olympus

emulator = (dataset='hplc', model='BayesNeuralNet')

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space(emulator.param_space)

planner = GPPlanner(

goal='maximize',

golem_config={

'sample_loop': {

"dist_type": "TruncatedNormal",

"dist_params": {"std": 0.008, "low_bound": 0.0},

}, # P1 distribution config

'tubing_volume': {

"dist_type": "TruncatedNormal",

"dist_params": {"std": 0.08, "low_bound": 0.0 },

} # P3 distribution config

}

) # instantiate Atlas planner

planner.set_param_space(emulator.param_space)

while campaign.num_obs < 50:

samples = planner.recommend(campaign.observations) # ask planner for batch of parameters

for sample in samples:

measurement, _, __ = emulator.run(sample) # measure `hplc` response

tell planner about most recent observation

campaign.add_observation(sample, measurement)

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://aspuru-guzik-group.github.io/golem/distributions/index.html
https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

16

E. Optimization for generalizable parameters

Atlas includes a strategy based on BO and variance-based active learning110 to identify sets of parameters from X

that result in average-best performance over a set of variables S = {si}Ni=1. Instead of optimizing objective function

f(x), the objective f(x, s) = 1
N

∑N
i=1 f̃(x, si) is targeted. Our strategy is inspired by the approach reported by

Angello et al.,111 which was used to design chemical reaction conditions resulting in high yields across a range of

substrates. Importantly, this approach alleviates one from having to measure the full objective function for each

recommended set of parameters, which can become costly when the number of general parameter options are large.

As an illustrative example, we consider the suzuki i-suzuki iv datasets from Olympus, which report the yield

and catalyst turnover number for flow-based Suzuki-Miyaura coupling reactions with varying substrates shown in

Figure 6a and b.112 There are three continuous parameters (temperature, residence time, and catalyst loading) and

one categorical parameter (Pd catalyst ligand). The objective is to simultaneously maximize both the yield and

catalyst turnover number across all four substrates with the general parameter optimization strategy. Since this is

also a multi-objective optimization problem, we use the Hypervolume ASF.

The following code snippet describes the setup for this example. We add an additional categorical parameter

named "s", which comprises the general parameter options (in our case these are the different possible substrates for

the Suzuki-Miyaura reaction encoded as Roman numerals). For general parameter problems, the acquisition type

argument of the planner must be set to "general". Similar to the known constraints problems outlined in Section IIIA,

the constructor takes an argument called general parameters, which must be a list of integers representing the

parameter space indices of those parameters to be treated as general parameters. In our case, only the first parameter,

"s", is a general parameter.

from olympus import Emulator, Campaign

from atlas.planners.gp.planner import GPPlanner

instantiate the `suzuki_i`-`suzuki_iv` BNN emulators from Olympus

emulators = {

'i': Emulator(dataset='suzuki_i', model='BayesNeuralNet'),

'ii': Emulator(dataset='suzuki_ii', model='BayesNeuralNet'),

'iii': Emulator(dataset='suzuki_iii', model='BayesNeuralNet'),

'iv': Emulator(dataset='suzuki_iv', model='BayesNeuralNet'),

}

define measurement function

def measure(func_params, s):

measurement, _, __ = emulators[s].run(func_params)

return measurement

create parameter space with general parameter

param_space = ParameterSpace()

param_space.add(ParameterCategorical(name='s',options=['i', 'ii', 'iii', 'iv'])) # general parameter

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

17

for param in emulator_i.param_space: # functional parameters

param_space.add(param)

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space(param_space)

planner = GPPlanner(

goal='minimize', # overall goal must always be set to `minimize` for moo problems

is_moo=True,

scalarizer_kind='Hypervolume',

value_space=emulator_i.value_space,

goals=['max', 'max'],

acquisition_type='general', # acquisition function type must be 'general'

general_parameters=[0], # list of indices of general parameters in parameter space

) # instantiate Atlas planner

planner.set_param_space(param_space)

while campaign.num_obs < 50:

samples = planner.recommend(campaign.observations)

for sample in samples:

measurement, _, __ = measure(sample, sample.s)

tell planner about most recent observation

campaign.add_observation(sample, measurement)

Figure 6c shows the results of a larger scale benchmark experiment on this problem. We compare the performance of

the general parameter optimization stratetgy inAtlas to a strategy in which, for each set of recommended parameters,

we measure the full objective, i.e. f(x, s) = 1
4

∑4
i=1 f̃(x, si). Effectively, the latter strategy must make 4 objective

measurements for each set of recommened parameters, while the general parameter strategy must only make 1. The

box plots in Figure 6c show the hypervolume of solutions identified by each strategy averaged over the 4 reaction

types. On average, the general parameter strategy produces larger hypervolumes, indicating superior multi-objective

optimization perfomance.

F. Multi-fidelity optimization

Multi-fidelity BO targets problems where two or more “information sources” are available to the researcher. Typi-

cally, the information sources generate measurements of the same property at different levels of fidelity, precision, or

accuracy, and are available at varying cost. For instance, a chemical property could be estimated using a crude but in-

expensive simulation (low-fidelity) as a proxy for an accurate but expensive experimental determination (high-fidelity).

Multi-fidelity strategies are quickly becoming a popular approach for resource-intensive problems in chemistry and

materials science.113–119 Atlas provides a MultiFidelityPlanner based on the trace-aware knowledge gradient120,121

and augmented-EI (aEI) acquisition functions122 which allows for the inclusion of an arbitrary number of information

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

18

FIG. 6. a) Scheme for the Suzuki-Miyaura cross-coupling of two heterocycles in the presecence of 1,8-diazabicyclo[5.4.0]undec-

7-ene (DBU) and THF/water. b) Structure of the subtrates in each of the four Suzuki-Miyaura reaction cases, corresponding to

the suzuki {i,ii,iii,iv} datasets and general parameter. c) Results of the comparative optimization experiment. Boxplots

show the normalized average hypervolume across the four reactions for solutions from 50 independent runs (larger hypervolume

is better). The experimental budget for these runs was 30 measurements.

sources with discrete fidelity levels.

To illustrate multi-fidelity BO with Atlas, we use a dataset of simulated band gaps for 192 hybrid organic-

inorganic perovskite (HOIP) materials reported by Kim et al.123 HOIP candidates are designed from a set of 4 halide

anions, 3 group-IV cations and 16 organic anions. Electronic and geometric descriptors of the HOIP components are

available through Olympus. Two density functional theory (DFT) information sources are available for all 192 HOIP

candidates.

• low-fidelity : Band gaps computed using the generalized gradient approximation (GGA), EGGA
g .124

• high-fidelity : Band gaps computed using the Heyd-Scuseria-Ernzerhof (HSE06) exchange-correlation functional,

EHSE06
g .125,126

The GGA level of theory is computationally feasible for these systems but is known to underestimate Eg by 30%.124

The HSE06 level of theory is expected to be on par with experimentally determined band gaps but is computationally

restrictive. We omit a detailed comparison of the computational methods and estimate the HSE06 level of theory to

be an order of magnitude more expensive than the GGA level.

The following code snippet sets up this multi-fidelity optimization problem using Atlas’ MultiFidelityPlanner.

We’ve defined helper functions to measure the objective at each fidelity level (lookup table provided on GitHub repo),

and a function to compute the cumulative experimental cost. The ParameterSpace is constructed with an additional

fidelity parameter, "s", which is a ParameterDiscrete instance with options corresponding to the expense of low-

fidelity information sources relative to the high- or target fidelity source organized in increasing order. By convention,

Atlas expects the target fidelity to have a value of 1.0, while the lower fidelity levels have values 0.0 < s < 1.0. Here,

the choice of 0.1 for the EGGA
g determinations reflects our estimate that GGA is an order of magnitude cheaper than

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://github.com/aspuru-guzik-group/atlas
https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

19

HSE06. The constructor of the MultiFidelityPlanner must receive one additional argument, fidelity params,

which is the parameter space index of the fidelity parameter "s".

from olympus import Dataset, Campaign

from atlas.planners import MultiFidelityPlanner

dataset = Dataset(kind='perovskites') # instantiate `perovskites` dataset from Olympus

build parameter space with fidelity parameter

param_space = ParameterSpace()

param_space.add(ParameterDiscrete(name='s',options=[0.1, 1.0])) # fidelity parameter

for param in dataset.param_space: # add perovskite component parameters ('organic', 'cation', and 'anion')

param_space.add(param)

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space(param_space)

instantiate Atlas planner

planner = MultiFidelityPlanner(goal='minimize', use_descriptors=True, fidelity_params=0)

planner.set_param_space(param_space)

cumul_cost = 0.

while cumul_cost < 50.:

samples = planner.recommend(campaign.observations) # ask planner for batch of parameters

for sample in samples:

measure the HOIP band gap at one of two fidelity levels (user defined)

measurement = measure(sample, fidelity=sample.s)

campaign.add_observation(sample, measurement) # tell planner about most recent observation

compute cumulative experiment cost (user defined)

cumul_cost = compute_cost(campaign.observations.get_params())

Note that for this example, we define the BO stopping criterion to be a cumulative experimental cost budget

rather than the number of transpired objective evaluations. By default, the MultiFidelityPlanner automatically

determines which fidelity level to measure the objective at each iteration. However, an SDL resercher may want

to further customize their multi-fidelity optimization campaign such that, for example, they can alternate between

batches of low- and high-fidelity measurements. Atlas enables such customized campaigns by allowing the user to

specify the fidelity level they wish for the parameters to be measured for the upcoming batch of recommendations.

One may set the MultiFidelityPlanner’s current ask fidelity attribute by calling the set ask fidelity method

and specifying the desired level. Atlas employs constrained acquisition function optimization to deliver the desired

parameter recommendations. The following code snippet revistits the HOIP example and assumes the researcher

desires to alternate between low- and high-fidelity measurements.

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

20

cumul_cost = 0.

iter_ = 0

while cumul_cost < 50:

if iter_ % 2 == 0:

planner.set_ask_fidelity(1.0) # measure target fidelity on even iterations

else:

planner.set_ask_fidelity(0.1) # measure low-fidelity on odd iterations

samples = planner.recommend(campaign.observations) # ask planner for batch of parameters

for sample in samples:

measurement = measure(sample) # measure the HOIP bandgap at one of two fidelity levels

campaign.add_observation(sample, measurement) # tell planner about most recent observation

cumul_cost = compute_cost(campaign.observations.get_params()) # compute cumulative experiment cost

iter_+=1

Figure 7 shows the results of a larger-scale benchmark comparison between Atlas’ MultiFidelityPlanner and

GPPlanner on the persovskites problem. Boxplots show the cumulative simulation cost taken to identify the perovskite

with the lowest HSE06 bandgap, EHSE06
g in the dataset over 100 independently seeded runs for each strategy. The

MultiFidelityPlanner also has access to bandgap measurements at the GGA level (with an EGGA
g to EHSE06

g

measurement ratio of 8:1), while the GPPlanner has access to EHSE06
g measurements only. The ratio of low- to

high-fidelity measurements is set to 8:1 for the MultiFidelityPlanner. On average, the GPPlanner achieves the

lowest high-fidelity bandgap with a cost of 13.9± 0.56 a.u., while the MultiFidelityPlanner achives this with a cost

of only 9.6 ± 0.35 a.u. These results demonstrate the ability of multi-fidelity BO strategies to leverage inexpensive

measurements to augment cost-effective optimization of resource-intensive objectives in SDLs.

G. Meta-/few-shot learning enhanced optimization

With Atlas, users may easily incorporate data from historical optimization campaigns. These source tasks can

be leveraged to accelerate the optimization rate on a novel campaign by using one of two meta-/few-shot learning

planners: the Ranking-Weighted Gaussian Process Ensemble planner (RGPEPlanner)127,128 and the Deep Kernel

Transfer planner (DKTPlanner).129,130 Importantly, these strategies can each transcend the innate design restrictions

of typical BO by inferring an inductive bias implicitly from data. In SDLs, this amounts to learning inductive

biases that closely resemble particular concepts in chemistry or materials science, and then applying them to related

optimization problems. Such approaches have been used to optimize chemical reactions in SDL applications.131,132

We use the buchwald {a,b,c,d,e} datasets from Olympus to showcase the aptitude of meta-/few-shot learning

planners to accelerate optimization given historical optimization campaign data. The buchwald datasets comprise 5

datasets which each report the yield of Pd-catalyzed Buchwald-Hartwig amination reactions of aryl halides (3 options)

with 4-methylaniline in the presence of varying isoxazole additives (22 options), Pd catalyst ligands (4 options), and

bases (3 options).133 Each dataset consists of 792 yield measurements. The reaction scheme is shown in Figure 8a. We

compare the ability of the RGPEPlanner to maximize reaction yield on a particular target dataset after meta-training

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

21

FIG. 7. Results of multi-fidelity optimization benchmark using the HOIP dataset from Kim et al.123 Boxplots show the

cumulative simulation cost incurred before identification of the perovskite material with the smallest HSE06 bandgap in the

dataset. Each strategy is run 100 independent times. The MultiFidelityPlanner also has access to bandgap measurements at

the GGA level (with an EGGA
g to EHSE06

g measurement ratio of 8:1), while the GPPlanner has access to EHSE06
g measurements

only.

on yield measurements from the other 4 datasets. For instance, if the target dataset is buchwald c, the RGPEPlanner

has access to measurements from the buchwald {a,b,d,e} datasets. As a baseline, we optimize each target reaction

using Atlas’ GPPlanner, which has no access to historical reaction data.

The following code snippet shows the problem setup. The RGPEPlanner or DKTPlanner takes an argument called

train tasks, which must be a list of dictionaries containing the source task data (source tasks are provided for this

example in the GitHub repo).

from olympus import Dataset, Campaign

from atlas.planners import RGPEPlanner

target_dataset = Dataset(kind='buchwald_c') # instantiate the target dataset from Olympus

source_tasks = load_my_source_tasks() # load the source task data (provided on GitHub repo)

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space(target_dataset.param_space)

planner = RGPEPlanner(goal='maximize', train_tasks=source_tasks) # instantiate Atlas planner

planner.set_param_space(target_dataset.param_space)

while campaign.num_obs < 50:

samples = planner.recommend(campaign.observations) # ask planner for batch of parameters

for sample in samples:

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

22

measurement = target_dataset.run(sample) # measure objective of the target dataset

campaign.add_observation(sample, measurement) # tell planner about most recent observation

Figure 8b shows the results of this comparative experiment for 3 target reaction products: buchwald {c,d,e}. In

each case, the RGPEPlanner is able to identify higher yields with fewer objective evaluations compared to the GPlanner

by using intuition gleaned from meta-training on related reaction data.

FIG. 8. a) Reaction scheme for the Buchwald-Hartwig datasets. b) Optimization traces comparing the performance of Atlas’

RGPEPlanner and GPlanner on 3 target reaction datasets. Solid traces show the mean taken over 50 independently seeded runs.

Shaded regions show the 95% confidence interval. Horizontal dotted lines indicate the maximum possible yield reported by

Ahneman et al.133 for each reaction product.

H. Optimization over molecular domains

For optimization over molecular spaces, we provide a specialized GP kernel function that is compatible with all

planners and is based on the Tanimoto distance kernel.81,92 The Tanimoto kernel is a general similarity metric134,135

defined for binary vectors x,x′ ∈ {0, 1}d for d ≥ 1 as

kTanimoto (x,x
′) = σ2

f · ⟨x,x′⟩
∥x∥2 + ∥x′∥2 − ⟨x,x′⟩

, (10)

where ⟨·, ·⟩ is the Euclidean inner product, ∥ · ∥ is the Euclidean norm, and σ2
f is the kernel’s signal variance hyper-

parameter. Several binary vector representations of molecules are available, but perhaps the most well known are

extended-connectivity fingerprints (ECFPs).136

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

23

Atlas allows for use of any molecular representation based on binary vectors. Users must only specify, to the

constructor of the planner, the indices that identify molecular parameters with the parameter space using the

molecular params argument. Molecular parameters must be of type categorical, with options corresponding to

unique molecules. Users may then define their descriptors as the corresponding binary vectors. We show a simple

example in which we intend to minimize the aqueous solubility of molecules in the ESOL dataset.137

from olympus import Campaign, ParameterSpace, ParameterCategorical

from atlas.planners.gp.planner import GPPlanner

smiles = load_esol_smiles() # load list of smiles for molecules in ESOL (provided on GitHub repo)

ecfps = load_esol_ecfp() # load descriptors ECFP vectors for molecules in ESOL (provided on GitHub repo)

create parameter space with one molecular parameter

param_space = ParameterSpace()

param_space.add(ParameterCategorical(name='esol', options=smiles, descriptors=ecfps))

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space(param_space)

instantiate planner with list of parameter space indices of molecular parameter(s)

planner = GPPlanner(goal='minimize', molecular_params=[0])

planner.set_param_space(param_space)

While it has been shown that using physicochemical descriptor-based representations of molecules in a BO setting

can accelerate optimization rate,78,138 other studies have found that expert-crafted descriptors did not out-perform

simpler representations like fingerprints or even one-hot-encodings.139 Given the apparent dependence of optimal

molecular representation on the characteristics of the optimization problem at hand, Atlas provides users with the

flexibility to represent molecular parameters in several ways.

I. Asynchronous experimental execution

In many SDL applications, researchers have access to multiple robotic or computational workers and may parallelize

measurements. When performing batched BO in a setting where there is variability in measurement times for each

individual experiment, it is important to operate an SDL asynchronously, where a worker starts a new experiment

immediately after completion of the previous experiment.140 This approach has been shown to be overall more efficient

than waiting for an entire batch of experiments to complete before commencing the next batch.72,73

We provide template scripts for an asynchronous SDL setup on our GitHub repo. In this example, we optimize

a surface from Olympus using 3 workers, each of which can perform a measurement for a single set of parameters.

Workers can be assigned parameters to measure in parallel using multiprocessing, and measurement duration is

set to be variable. Upon receiving a measurement, Atlas re-trains its surrogate model, but also conditions its

recommendations on pending experiments, i.e. those that have been assigned to a worker but whose measurement

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://github.com/aspuru-guzik-group/atlas/tree/main/examples/asynchronous_execution
https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

24

has not completed (the reader is referred to Section IIIA for additional information on setting pending parameter

constraints in Atlas). This is achieved with a built-in mechanism to generate fictitious measurements, y′ for pending

parameters, x′. Specifically, we adopt the hallucination or kriging believer strategy first reported by Ginsbourger et

al.,72,73 which imputes the expected value of each pending parameter,

y′ = E [y|x′,D] , (11)

where D is the current dataset of observations. The fictitious measurement y′ is then used to augment the dataset of

observations, i.e. D′ = D ∪ {(x′, y′)}. Effectively, this strategy fixes the posterior mean of the surrogate model and

updates its variance in light of pending parameters. Atlas maintains a “priority queue” of recommended parameters

that is immediately updated in light of new measurements, such that parameter proposals are always informed by the

most recent observations. Proposals in the priority queue are then delegated to measurement workers as they become

available.

IV. EXPERIMENTAL DEMONSTRATION

In this section, we outline an experimental demonstration highlighting the use of Atlas in a simple SDL. Specifically,

we show how Atlas is combined with ChemOS 2.0,82 an SDL orchestration software, to optimize the oxidation

potential of a set of metal complexes in a cyclic voltammetry (CV) experiment. Figure 9a depicts the experimental

setup. The electrochemical SDL consists of two hardware parts: the automatic complexation robot module and the

E-chem analyzer module, both of which are controlled remotely from ChemOS 2.0. ChemOS 2.0 hosts Atlas,

and iteratively sends jobs to the E-chem setup for each evaluation step of the optimization campaign. In turn, it

receives the raw data and the treated oxidation potential from the instrument after execution of the CV experiment.

ChemOS 2.0 saves the raw CV data in its internal experimental database and also saves the results of the optimization

campaign. Data for the experiment reported in this work has all been stored on ChemOS 2.0.

The automatic complexation robot is a flow-based system based on a syringe pump and selection valves driven

by a Python controller developed in-house. Upon receiving instructions, it runs automatic complexation by trans-

ferring designated amounts of stock solutions (metal, ligand, electrolyte, buffer and water) to the reactor, conducts

a reactor mixing step, transfers the sample to the flow cell of the E-chem module, and invokes the electrochemistry

measurements. A standard clean-up step is executed after the electrochemistry is finished. The E-chem analyzer

consists of a flow cell equipped with a printed electrode and a low-cost potentiostat controlled by Python software.

The electrochemistry measurement is invoked by ChemOS 2.0 to measure the sample in the flow cell. In the context

of this demonstration, a fixed parameter CV experiment is conducted for all samples. The raw data collected from the

potentiostat is streamed to ChemOS 2.0 for further processing, and cleaning instructions are sent to the complexation

robot.

The parameter space for this experiment consists of 4 parameters, which are summarized in Table I. The ligand

options are H2O, Pyridine, and Ethylenediamine. The metal options are Silver (I) and Copper (II). The objective of

the optimization is to maximize the voltage of the oxidation peak. The GPPlanner of Atlas is run for 40 iterations,

the first 5 of which are randomly selected initial design points. Results of the optimization experiment are shown in

Figure 9b and 9c. Figure 9b shows two cyclic voltammograms collected during the optimization. The voltage peak is

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

25

selected using in-house software and is identified on the figure with a red cross and red vertical dotted line. Figure 9c

shows the maximum voltage peak identified by the GPPlanner as a function of the number of transpired experiments.

TABLE I. Parameter space for the electrochemical SDL demonstration with Atlas. † Discrete parameter has a stride of 1.

Parameter Type Range / Num Options Description Descriptors

Ligand Categorical 3 Ligand identity No

Metal Categorical 2 Metal identity No

mixings Discrete [1 - 10]† Number of pump mixing steps N/A

Ratio Continuous [1.0 - 9.0] Ligand/metal ratio N/A

Potentiostat Echem Cell

ChemOS 2.0

Metals

Ligands

Reactor

Pump

a) b)
Experimental data

Experiment Planner
c)

FIG. 9. a) Schematic diagram of automated electrochemical SDL setup. b) Two examples of cyclic voltammograms measured

during the campaign. The oxidation peak is identified using in-house software and is marked with a red cross and vertical

dotted line. c) Optimization trace showing the maximum oxidation peak voltage identified by Atlas’ GPPlanner as a function

of the number of completed experiments.

V. CONCLUSION

In summary, we introduce Atlas, a Bayesian optimization package with a comprehensive set of features designed

to suit most experimental settings and enable model-guided optimization in SDLs. Among the capabilities currently

available are optimizations over mixed-parameter, constrained, and molecular domains, in addition to supporting

multi-objective and multi-fidelity optimizations, as well as robust optimization and the incorporation of past knowledge

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

26

via meta-learning. Atlas uses Gaussian process surrogate models, and is built upon PyTorch,94 GpyTorch,92 and

BoTorch.58 It exposes its broad set of capabilities via the Olympus79 interface, and it integrates with ChemOS

2.082 for SDL deployment. Atlas is an open-source software, it is distributed under the MIT permissive license, and

comes with a documentation that includes examples for all case scenarios discussed in this manuscript. We expect

Atlas to be able to cover a much broader set of SDL setups and research challenges than the Bayesian optimization

packages developed to date.

CODE AND DATA AVAILABILITY

Atlas is available on GitHub at https://github.com/aspuru-guzik-group/atlas under an MIT license. The

measurements generated in the electrochemical SDL demonstration have been added to the Olympus package

as an emulated Dataset called electrochem, on which users may benchmark experiment planning strategies

(https://github.com/aspuru-guzik-group/olympus/tree/dev/src/olympus/datasets/dataset electrochem) ChemOS

2.0 is available on GitHub at https://github.com/malcolmsimgithub/ChemOS2.0 under an MIT license.

ACKNOWLEDGMENTS

The authors thank Dr. Felix Strieth-Kalthoff, Dr. Martin Seifrid, Dr. Shengyang Sun, Dr. Roger Grosse, Dr.

Robert Black, Guodong Zhang, Gary Tom, and Erfan Fathei for contribution to valuable discussion. R.J.H. gratefully

acknowledges the Natural Sciences and Engineering Research Council of Canada (NSERC) for provision of the Post-

graduate Scholarships-Doctoral Program (PGSD3-534584-2019), as well as support from the Vector Institute. C.A.

acknowledges an NSERC Discovery grant (RGPIN-2022-04910). A.A.-G. acknowledges support from the Canada 150

Research Chairs program and CIFAR, as well as the generous support of Dr. Anders G. Frøseth. This research

was undertaken thanks in part to funding provided to the University of Toronto’s Acceleration Consortium from

the Canada First Research Excellence Fund (CFREF). Computations reported in this work were performed on the

computing clusters of the Vector Institute and on the Niagara supercomputer at the SciNet HPC Consortium.141,142

Resources used in preparing this research were provided, in part, by the Province of Ontario, the Government of

Canada through CIFAR, and companies sponsoring the Vector Institute. SciNet is funded by the Canada Foundation

for Innovation, the Government of Ontario, Ontario Research Fund - Research Excellence, and by the University of

Toronto.

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://matter-atlas.readthedocs.io/en/latest/index.html
https://github.com/aspuru-guzik-group/atlas
https://github.com/aspuru-guzik-group/olympus/tree/dev/src/olympus/datasets/dataset_electrochem
https://github.com/malcolmsimgithub/ChemOS2.0
https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

27

CONFLICTS OF INTEREST

A.A.-G is a founding member of Kebotix, Inc. R.J.H, Z.B., P.B., C.A. and A.A.-G. are founding members of a new

company, 15073383 Canada Inc.

[1] F. Häse, L. M. Roch, and A. Aspuru-Guzik, “Next-Generation Experimentation with Self-Driving Laboratories,” Trends

in Chemistry, vol. 1, pp. 282–291, June 2019.

[2] E. Stach, B. DeCost, A. G. Kusne, J. Hattrick-Simpers, K. A. Brown, K. G. Reyes, J. Schrier, S. Billinge, T. Buonassisi,

I. Foster, C. P. Gomes, J. M. Gregoire, A. Mehta, J. Montoya, E. Olivetti, C. Park, E. Rotenberg, S. K. Saikin, S. Smullin,

V. Stanev, and B. Maruyama, “Autonomous experimentation systems for materials development: A community perspec-

tive,” Matter, vol. 4, pp. 2702–2726, Sept. 2021.

[3] C. W. Coley, N. S. Eyke, and K. F. Jensen, “Autonomous Discovery in the Chemical Sciences Part I: Progress,” Ange-

wandte Chemie International Edition, vol. 59, no. 51, pp. 22858–22893, 2020.

[4] C. W. Coley, N. S. Eyke, and K. F. Jensen, “Autonomous Discovery in the Chemical Sciences Part II: Outlook,” Ange-

wandte Chemie International Edition, vol. 59, no. 52, pp. 23414–23436, 2020.

[5] M. M. Flores-Leonar, L. M. Mej́ıa-Mendoza, A. Aguilar-Granda, B. Sanchez-Lengeling, H. Tribukait, C. Amador-Bedolla,

and A. Aspuru-Guzik, “Materials Acceleration Platforms: On the way to autonomous experimentation,” Current Opinion

in Green and Sustainable Chemistry, vol. 25, p. 100370, 2020.

[6] H. S. Stein and J. M. Gregoire, “Progress and prospects for accelerating materials science with automated and autonomous

workflows,” Chemical Science, vol. 10, no. 42, pp. 9640–9649, 2019.

[7] J. Yano, K. J. Gaffney, J. Gregoire, L. Hung, A. Ourmazd, J. Schrier, J. A. Sethian, and F. M. Toma, “The case for data

science in experimental chemistry: examples and recommendations,” Nat Rev Chem, vol. 6, pp. 357–370, Apr. 2022.

[8] J. P. McMullen and K. F. Jensen, “An automated microfluidic system for online optimization in chemical synthesis,”

Organic process research & development, vol. 14, no. 5, pp. 1169–1176, 2010.

[9] D. E. Fitzpatrick, C. Battilocchio, and S. V. Ley, “A novel internet-based reaction monitoring, control and autonomous

self-optimization platform for chemical synthesis,” Organic Process Research & Development, vol. 20, no. 2, pp. 386–394,

2016.

[10] D. Cortés-Borda, E. Wimmer, B. Gouilleux, E. Barré, N. Oger, L. Goulamaly, L. Peault, B. Charrier, C. Truchet,

P. Giraudeau, et al., “An autonomous self-optimizing flow reactor for the synthesis of natural product carpanone,” The

Journal of organic chemistry, vol. 83, no. 23, pp. 14286–14299, 2018.

[11] B. E. Walker, J. H. Bannock, A. M. Nightingale, and J. C. deMello, “Tuning reaction products by constrained optimisa-

tion,” Reaction Chemistry & Engineering, vol. 2, no. 5, pp. 785–798, 2017.

[12] S. Krishnadasan, R. Brown, A. Demello, and J. Demello, “Intelligent routes to the controlled synthesis of nanoparticles,”

Lab on a Chip, vol. 7, no. 11, pp. 1434–1441, 2007.

[13] L. M. Baumgartner, C. W. Coley, B. J. Reizman, K. W. Gao, and K. F. Jensen, “Optimum catalyst selection over

continuous and discrete process variables with a single droplet microfluidic reaction platform,” Reaction Chemistry &

Engineering, vol. 3, no. 3, pp. 301–311, 2018.

[14] A. Schweidtmann, A. Clayton, N. Holmes, E. Bradford, R. Bourne, and A. Lapkin, “Machine learning meets continuous

flow chemistry: Automated optimization towards the pareto front of multiple objectives,” Chem. Eng. J, pp. 177–282,

2018.

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

28

[15] A.-C. Bédard, A. Adamo, K. C. Aroh, M. G. Russell, A. A. Bedermann, J. Torosian, B. Yue, K. F. Jensen, and T. F.

Jamison, “Reconfigurable system for automated optimization of diverse chemical reactions,” Science, vol. 361, pp. 1220–

1225, Sept. 2018.

[16] M. Christensen, L. P. E. Yunker, F. Adedeji, F. Häse, L. M. Roch, T. Gensch, G. dos Passos Gomes, T. Zepel, M. S.

Sigman, A. Aspuru-Guzik, and J. E. Hein, “Data-science driven autonomous process optimization,” Communications

Chemistry, vol. 4, pp. 1–12, Aug. 2021.

[17] A. M. K. Nambiar, C. P. Breen, T. Hart, T. Kulesza, T. F. Jamison, and K. F. Jensen, “Bayesian Optimization of

Computer-Proposed Multistep Synthetic Routes on an Automated Robotic Flow Platform,” ACS Central Science, vol. 8,

pp. 825–836, June 2022.

[18] J. M. Granda, L. Donina, V. Dragone, D.-L. Long, and L. Cronin, “Controlling an organic synthesis robot with machine

learning to search for new reactivity,” Nature, vol. 559, no. 7714, pp. 377–381, 2018.

[19] P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker, M. Krein, J. Poleski, R. Barto, and B. Maruyama, “Autonomy in

materials research: a case study in carbon nanotube growth,” npj Computational Materials, vol. 2, no. 1, pp. 1–6, 2016.

[20] K. Vaddi, H. T. Chiang, and L. D. Pozzo, “Autonomous retrosynthesis of gold nanoparticles via spectral shape matching,”

Digital Discovery, vol. 1, pp. 502–510, Aug. 2022. Publisher: RSC.

[21] R. J. Hickman, P. Bannigan, Z. Bao, A. Aspuru-Guzik, and C. Allen, “Self-driving laboratories: A paradigm shift in

nanomedicine development,” Matter, Mar. 2023.

[22] A. Deshwal, C. M. Simon, and J. Rao Doppa, “Bayesian optimization of nanoporous materials,” Molecular Systems

Design & Engineering, vol. 6, no. 12, pp. 1066–1086, 2021.

[23] B. P. MacLeod, F. G. L. Parlane, T. D. Morrissey, F. Häse, L. M. Roch, K. E. Dettelbach, R. Moreira, L. P. E. Yunker,

M. B. Rooney, J. R. Deeth, V. Lai, G. J. Ng, H. Situ, R. H. Zhang, M. S. Elliott, T. H. Haley, D. J. Dvorak, A. Aspuru-

Guzik, J. E. Hein, and C. P. Berlinguette, “Self-driving laboratory for accelerated discovery of thin-film materials,”

Science Advances, vol. 6, p. eaaz8867, May 2020.

[24] B. P. MacLeod, F. G. L. Parlane, C. C. Rupnow, K. E. Dettelbach, M. S. Elliott, T. D. Morrissey, T. H. Haley,

O. Proskurin, M. B. Rooney, N. Taherimakhsousi, D. J. Dvorak, H. N. Chiu, C. E. B. Waizenegger, K. Ocean, M. Mokhtari,

and C. P. Berlinguette, “A self-driving laboratory advances the Pareto front for material properties,” Nature Communi-

cations, vol. 13, p. 995, Feb. 2022.

[25] N. T. P. Hartono, M. Ani Najeeb, Z. Li, P. W. Nega, C. A. Fleming, X. Sun, E. M. Chan, A. Abate, A. J. Norquist,

J. Schrier, and T. Buonassisi, “Principled Exploration of Bipyridine and Terpyridine Additives to Promote Methylammo-

nium Lead Iodide Perovskite Crystallization,” Crystal Growth & Design, vol. 22, pp. 5424–5431, Sept. 2022. Publisher:

American Chemical Society.

[26] S. Sun, A. Tiihonen, F. Oviedo, Z. Liu, J. Thapa, Y. Zhao, N. T. P. Hartono, A. Goyal, T. Heumueller, C. Batali, et al.,

“A data fusion approach to optimize compositional stability of halide perovskites,” Matter, vol. 4, no. 4, pp. 1305–1322,

2021.

[27] B. Burger, P. M. Maffettone, V. V. Gusev, C. M. Aitchison, Y. Bai, X. Wang, X. Li, B. M. Alston, B. Li, R. Clowes,

N. Rankin, B. Harris, R. S. Sprick, and A. I. Cooper, “A mobile robotic chemist,” Nature, vol. 583, pp. 237–241, July

2020.

[28] M. J. Tamasi, R. A. Patel, C. H. Borca, S. Kosuri, H. Mugnier, R. Upadhya, N. S. Murthy, M. A. Webb, and A. J.

Gormley, “Machine Learning on a Robotic Platform for the Design of Polymer–Protein Hybrids,” Advanced Materials,

vol. 34, no. 30, p. 2201809, 2022.

[29] M. J. Tamasi and A. J. Gormley, “Biologic formulation in a self-driving biomaterials lab,” Cell Reports Physical Science,

vol. 3, p. 101041, Sept. 2022.

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

29

[30] M. M. Noack, K. G. Yager, M. Fukuto, G. S. Doerk, R. Li, and J. A. Sethian, “A kriging-based approach to autonomous

experimentation with applications to X-ray scattering,” Scientific reports, vol. 9, no. 1, pp. 1–19, 2019.

[31] B. Rohr, H. S. Stein, D. Guevarra, Y. Wang, J. A. Haber, M. Aykol, S. K. Suram, and J. M. Gregoire, “Benchmarking

the acceleration of materials discovery by sequential learning,” Chemical Science, vol. 11, no. 10, pp. 2696–2706, 2020.

[32] R. A. Fisher, The design of experiments. Oliver and Boyd; Edinburgh; London, 1937.

[33] G. E. P. Box, J. S. Hunter, and W. G. Hunter, Statistics for experimenters: design, innovation and discovery, vol. 2.

2005.

[34] M. J. Anderson and P. J. Whitcomb, DOE simplified: practical tools for effective experimentation. CRC Press, 2016.

[35] A. Lucia and J. Xu, “Chemical process optimization using newton-like methods,” Computers & chemical engineering,

vol. 14, no. 2, pp. 119–138, 1990.

[36] I. Rechenberg, “Evolutionsstrategien,” in Simulationsmethoden in der Medizin und Biologie, pp. 83–114, Springer, 1978.

[37] H.-P. Schwefel, “Evolutionsstrategien für die numerische optimierung,” in Numerische Optimierung von Computer-

Modellen mittels der Evolutionsstrategie, pp. 123–176, Springer, 1977.

[38] G. Zames, N. Ajlouni, N. Ajlouni, N. Ajlouni, J. Holland, W. Hills, and D. Goldberg, “Genetic algorithms in search,

optimization and machine learning.,” Information Technology Journal, vol. 3, no. 1, pp. 301–302, 1981.

[39] J. R. Koza and J. R. Koza, Genetic programming: on the programming of computers by means of natural selection, vol. 1.

MIT press, 1992.

[40] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,” computer, vol. 27, no. 6, pp. 17–26, 1994.

[41] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber, “Natural evolution strategies,” The

Journal of Machine Learning Research, vol. 15, no. 1, pp. 949–980, 2014.

[42] Z. Zhou, X. Li, and R. N. Zare, “Optimizing Chemical Reactions with Deep Reinforcement Learning,” ACS Central

Science, vol. 3, pp. 1337–1344, Dec. 2017.

[43] C. Beeler, S. G. Subramanian, K. Sprague, N. Chatti, C. Bellinger, M. Shahen, N. Paquin, M. Baula, A. Dawit, Z. Yang,

X. Li, M. Crowley, and I. Tamblyn, “Chemgymrl: An interactive framework for reinforcement learning for digital chem-

istry,” 2023.

[44] J. Močkus, “On bayesian methods for seeking the extremum,” in Optimization techniques IFIP technical conference,

pp. 400–404, Springer, 1975.

[45] J. Mockus, V. Tiesis, and A. Zilinskas, “The application of bayesian methods for seeking the extremum,” Towards global

optimization, vol. 2, no. 117-129, p. 2, 1978.

[46] J. Mockus, Bayesian approach to global optimization: theory and applications, vol. 37. Springer Science & Business Media,

2012.

[47] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine

learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[48] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort,

J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for machine learning software:

experiences from the scikit-learn project,” in ECML PKDD Workshop: Languages for Data Mining and Machine Learning,

pp. 108–122, 2013.

[49] The GPyOpt authors, “GPyOpt: A bayesian optimization framework in python.” http://github.com/SheffieldML/

GPyOpt, 2016.

[50] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter optimization,” in Advances in

neural information processing systems, pp. 2546–2554, 2011.

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

30

[51] J. S. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” Journal of Machine Learning Research,

vol. 13, no. Feb, pp. 281–305, 2012.

[52] J. S. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model search: Hyperparameter optimization in hundreds

of dimensions for vision architectures,” JMLR, 2013.

[53] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. D. Cox, “Hyperopt: a python library for model selection and

hyperparameter optimization,” Computational Science & Discovery, vol. 8, no. 1, p. 014008, 2015.

[54] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, T. Ruhkopf, R. Sass, and F. Hutter,

“Smac3: A versatile bayesian optimization package for hyperparameter optimization,” 2021.

[55] M. Lindauer, K. Eggensperger, M. Feurer, S. Falkner, A. Biedenkapp, and F. Hutter, “Smac v3: Algorithm configuration

in python.” https://github.com/automl/SMAC3, 2017.

[56] K. Kandasamy, K. R. Vysyaraju, W. Neiswanger, B. Paria, C. R. Collins, J. Schneider, B. Poczos, and E. P. Xing,

“Tuning hyperparameters without grad students: Scalable and robust bayesian optimisation with dragonfly,” J. Mach.

Learn. Res., vol. 21, no. 81, pp. 1–27, 2020.

[57] A. I. Cowen-Rivers, W. Lyu, R. Tutunov, Z. Wang, A. Grosnit, R. R. Griffiths, H. Jianye, J. Wang, and H. B. Ammar,

“An empirical study of assumptions in bayesian optimisation,” arXiv preprint arXiv:2012.03826, 2020.

[58] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy, “BoTorch: A Framework for

Efficient Monte-Carlo Bayesian Optimization,” in Advances in Neural Information Processing Systems 33, 2020.

[59] The Ax authors, “Ax: Adaptive experimentation platform.” https://github.com/facebook/Ax, 2023.

[60] X. Song, S. Perel, C. Lee, G. Kochanski, and D. Golovin, “Open source vizier: Distributed infrastructure and api for

reliable and flexible black-box optimization,” in Automated Machine Learning Conference, Systems Track (AutoML-Conf

Systems), 2022.

[61] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley, “Google vizier: A service for black-box

optimization,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, Halifax, NS, Canada, August 13 - 17, 2017, pp. 1487–1495, ACM, 2017.

[62] M. Aldeghi, F. Häse, R. J. Hickman, I. Tamblyn, and A. Aspuru-Guzik, “Golem: an algorithm for robust experiment and

process optimization,” Chemical Science, Oct. 2021. Publisher: The Royal Society of Chemistry.

[63] S. Daulton, S. Cakmak, M. Balandat, M. A. Osborne, E. Zhou, and E. Bakshy, “Robust multi-objective Bayesian

optimization under input noise,” in Proceedings of the 39th International Conference on Machine Learning (K. Chaudhuri,

S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, eds.), vol. 162 of Proceedings of Machine Learning Research,

pp. 4831–4866, PMLR, 17–23 Jul 2022.

[64] R. J. Hickman, M. Aldeghi, F. Häse, and A. Aspuru-Guzik, “Bayesian optimization with known experimental and design

constraints for chemistry applications,” Digital Discovery, Sept. 2022. Publisher: RSC.

[65] S. G. Baird, J. R. Hall, and T. D. Sparks, “Compactness matters: Improving Bayesian optimization efficiency of materials

formulations through invariant search spaces,” Computational Materials Science, vol. 224, p. 112134, May 2023.

[66] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Optimization of Machine Learning Algorithms,”

arXiv:1206.2944 [cs, stat], Aug. 2012. arXiv: 1206.2944.

[67] M. A. Gelbart, J. Snoek, and R. P. Adams, “Bayesian Optimization with Unknown Constraints,” arXiv:1403.5607 [cs,

stat], Mar. 2014. arXiv: 1403.5607.

[68] R. B. Gramacy and H. K. H. Lee, “Optimization Under Unknown Constraints,” arXiv:1004.4027 [stat], July 2010. arXiv:

1004.4027.

[69] C. Antonio, “Sequential model based optimization of partially defined functions under unknown constraints,” Journal of

Global Optimization, vol. 79, pp. 281–303, Feb. 2021.

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://github.com/automl/SMAC3
https://github.com/facebook/Ax
https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

31

[70] Y. K. Wakabayashi, T. Otsuka, Y. Krockenberger, H. Sawada, Y. Taniyasu, and H. Yamamoto, “Bayesian optimization

with experimental failure for high-throughput materials growth,” npj Computational Materials, vol. 8, no. 180, 2022.

[71] “Bayesian optimization with active learning of design constraints using an entropy-based approach,” npj Computational

Materials, vol. 9, p. 49, Apr. 2023.

[72] D. Ginsbourger, J. Janusevskis, and R. L. Riche, “Dealing with asynchronicity in parallel Gaussian Process based global

optimization,” 2011.

[73] T. Desautels, A. Krause, and J. W. Burdick, “Parallelizing Exploration-Exploitation Tradeoffs in Gaussian Process Bandit

Optimization,” Journal of Machine Learning Research, vol. 15, no. 119, pp. 4053–4103, 2014.

[74] B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J. I. M. Alvarado, J. M. Janey, R. P. Adams, and A. G. Doyle,

“Bayesian reaction optimization as a tool for chemical synthesis,” Nature, vol. 590, pp. 89–96, Feb. 2021.

[75] J. G. Torres, S. H. Lau, P. Anchuri, J. Stevens, J. Tabora, J. Li, A. Borovika, R. Adams, and A. Doyle, “A Multi-Objective

Active Learning Platform and Web App for Reaction Optimization,” Aug. 2022.

[76] K. C. Felton, J. G. Rittig, and A. A. Lapkin, “Summit: Benchmarking Machine Learning Methods for Reaction Optimi-

sation,” Chemistry–Methods, vol. 1, no. 2, pp. 116–122, 2021.

[77] F. Häse, L. M. Roch, C. Kreisbeck, and A. Aspuru-Guzik, “Phoenics: A Bayesian Optimizer for Chemistry,” ACS Central

Science, vol. 4, pp. 1134–1145, Sept. 2018.

[78] F. Häse, M. Aldeghi, R. J. Hickman, L. M. Roch, and A. Aspuru-Guzik, “Gryffin: An algorithm for Bayesian optimization

of categorical variables informed by expert knowledge,” Applied Physics Reviews, vol. 8, p. 031406, Sept. 2021.

[79] F. Häse, M. Aldeghi, R. J. Hickman, L. M. Roch, M. Christensen, E. Liles, J. E. Hein, and A. Aspuru-Guzik, “Olympus:

a benchmarking framework for noisy optimization and experiment planning,” Machine Learning: Science and Technology,

vol. 2, p. 035021, July 2021. Publisher: IOP Publishing.

[80] R. Hickman, P. Parakh, A. Cheng, Q. Ai, J. Schrier, M. Aldeghi, and A. Aspuru-Guzik, “Olympus, enhanced: bench-

marking mixed-parameter and multi-objective optimization in chemistry and materials science,” May 2023.

[81] R.-R. Griffiths, L. Klarner, H. B. Moss, A. Ravuri, S. Truong, B. Rankovic, Y. Du, A. Jamasb, J. Schwartz, A. Tripp,

G. Kell, A. Bourached, A. Chan, J. Moss, C. Guo, A. A. Lee, P. Schwaller, and J. Tang, “Gauche: A library for gaussian

processes in chemistry,” 2022.

[82] M. Sim, M. G. Vakili, F. Strieth-Kalthoff, H. Hao, R. Hickman, S. Miret, S. Pablo-Garćıa, and A. Aspuru-Guzik, “ChemOS

2.0: an orchestration architecture for chemical self-driving laboratories,” Aug. 2023.

[83] D. Kraft et al., “A software package for sequential quadratic programming,” 1988.

[84] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv:1412.6980 [cs], Jan. 2017. arXiv:

1412.6980.

[85] J. Blank and K. Deb, “pymoo: Multi-objective optimization in python,” IEEE Access, vol. 8, pp. 89497–89509, 2020.

[86] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné, “DEAP: Evolutionary algorithms made

easy,” Journal of Machine Learning Research, vol. 13, pp. 2171–2175, 2012.

[87] F.-M. De Rainville, F.-A. Fortin, M.-A. Gardner, M. Parizeau, and C. Gagné, “Deap: A python framework for evolutionary

algorithms,” in Proceedings of the 14th annual conference companion on Genetic and evolutionary computation, pp. 85–92,

2012.

[88] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine learning. Adaptive computation and machine

learning, MIT Press, 2006.

[89] R. M. Neal, Bayesian Learning for Neural Networks, vol. 118 of Lecture Notes in Statistics. New York, NY: Springer,

1996.

[90] C. Rasmussen and Z. Ghahramani, “Occam’ s Razor,” in Advances in Neural Information Processing Systems, vol. 13,

MIT Press, 2000.

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

32

[91] J. Hensman, A. G. de G. Matthews, and Z. Ghahramani, “Scalable variational gaussian process classification,” in Inter-

national Conference on Artificial Intelligence and Statistics, 2014.

[92] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson, “Gpytorch: Blackbox matrix-matrix gaussian

process inference with gpu acceleration,” in Advances in Neural Information Processing Systems, 2018.

[93] G. P. Szego and L. C. W. Dixon, eds., Towards global optimisation 2. Amsterdam ; New York : New York: North-Holland

Pub. Co. ; sole distributors for the U.S.A. and Canada, Elsevier North-Holland, 1978.

[94] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Des-

maison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,

“Pytorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing

Systems 32, pp. 8024–8035, Curran Associates, Inc., 2019.

[95] The Atlas authors, “Atlas: A brain for self-driving laboratories.” https://github.com/aspuru-guzik-group/atlas,

2023.

[96] P. Vellanki, S. Rana, S. Gupta, D. Rubin, A. Sutti, T. Dorin, M. Height, P. Sanders, and S. Venkatesh, “Process-

constrained batch Bayesian optimisation,” in Advances in Neural Information Processing Systems, vol. 30, Curran Asso-

ciates, Inc., 2017.

[97] E. Soedarmadji, H. S. Stein, S. K. Suram, D. Guevarra, and J. M. Gregoire, “Tracking materials science data lineage to

manage millions of materials experiments and analyses,” npj Computational Materials, vol. 5, pp. 1–9, July 2019.

[98] H. S. Stein, D. Guevarra, A. Shinde, R. J. R. Jones, J. M. Gregoire, and J. A. Haber, “Functional mapping reveals

mechanistic clusters for OER catalysis across (Cu–Mn–Ta–Co–Sn–Fe)Ox composition and pH space,” Materials Horizons,

vol. 6, pp. 1251–1258, July 2019.

[99] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty in neural networks,” 2015.

[100] F. Häse, L. M. Roch, and A. Aspuru-Guzik, “Chimera: enabling hierarchy based multi-objective optimization for self-

driving laboratories,” Chemical Science, vol. 9, no. 39, pp. 7642–7655, 2018.

[101] E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary algorithms — A comparative case study,” in

Parallel Problem Solving from Nature — PPSN V (A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, eds.),

Lecture Notes in Computer Science, (Berlin, Heidelberg), pp. 292–301, Springer, 1998.

[102] J. Knowles, D. Corne, and M. Fleischer, “Bounded archiving using the lebesgue measure,” in The 2003 Congress on

Evolutionary Computation, 2003. CEC ’03., vol. 4, pp. 2490–2497 Vol.4, 2003.

[103] M. Li and X. Yao, “Quality evaluation of solution sets in multiobjective optimisation: A survey,” ACM Comput. Surv.,

vol. 52, mar 2019.

[104] A. P. Guerreiro, C. M. Fonseca, and L. Paquete, “The Hypervolume Indicator: Problems and Algorithms,” ACM Com-

puting Surveys, vol. 54, pp. 1–42, July 2021. arXiv:2005.00515 [cs].

[105] J. Knowles and E. J. Hughes, “Multiobjective optimization on a budget of 250 evaluations,” in Evolutionary Multi-

Criterion Optimization (EMO-2005) (C. Coello et al, ed.), vol. 3410 of LNCS, Springer-Verlag, 2005.

[106] J. Knowles, “Parego: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization

problems,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 1, pp. 50–66, 2006.

[107] I. Y. Kim and O. L. de Weck, “Adaptive weighted sum method for multiobjective optimization: a new method for Pareto

front generation,” Structural and Multidisciplinary Optimization, vol. 31, pp. 105–116, Feb. 2006.

[108] C. A. C. Coello, S. Gonzá, L. Brambila, Josué, F. Gamboa, M. G. C. Tapia, R. Herná, N. Gó,

and mez, “Evolutionary multiobjective optimization: open research areas and some challenges lying ahead.,” Complex

& Intelligent Systems, vol. 6, pp. 221–237, July 2020. Publisher: Springer.

[109] M. Seifrid, R. J. Hickman, A. Aguilar-Granda, C. Lavigne, J. Vestfrid, T. C. Wu, T. Gaudin, E. J. Hopkins, and

A. Aspuru-Guzik, “Routescore: Punching the Ticket to More Efficient Materials Development,” July 2021.

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://github.com/aspuru-guzik-group/atlas
https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

33

[110] B. Settles, “Active Learning,” Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 6, pp. 1–114, June

2012. Publisher: Morgan & Claypool Publishers.

[111] N. H. Angello, V. Rathore, W. Beker, A. Wo los, E. R. Jira, R. Roszak, T. C. Wu, C. M. Schroeder, A. Aspuru-Guzik, B. A.

Grzybowski, and M. D. Burke, “Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura

coupling,” Science, vol. 378, pp. 399–405, Oct. 2022. Publisher: American Association for the Advancement of Science.

[112] B. J. Reizman, Y.-M. Wang, S. L. Buchwald, and K. F. Jensen, “Suzuki–miyaura cross-coupling optimization enabled by

automated feedback,” Reaction chemistry & engineering, vol. 1, no. 6, pp. 658–666, 2016.

[113] C. Fare, P. Fenner, M. Benatan, A. Varsi, and E. O. Pyzer-Knapp, “A multi-fidelity machine learning approach to high

throughput materials screening,” npj Computational Materials, vol. 8, pp. 1–9, Dec. 2022.

[114] D. Bash, Y. Cai, V. Chellappan, S. L. Wong, X. Yang, P. Kumar, J. D. Tan, A. Abutaha, J. J. Cheng, Y.-F. Lim,

S. I. P. Tian, Z. Ren, F. Mekki-Berrada, W. K. Wong, J. Xie, J. Kumar, S. A. Khan, Q. Li, T. Buonassisi, and

K. Hippalgaonkar, “Multi-Fidelity High-Throughput Optimization of Electrical Conductivity in P3HT-CNT Composites,”

Advanced Functional Materials, vol. n/a, no. n/a, p. 2102606.

[115] A. Patra, R. Batra, A. Chandrasekaran, C. Kim, T. D. Huan, and R. Ramprasad, “A multi-fidelity information-fusion

approach to machine learn and predict polymer bandgap,” Computational Materials Science, vol. 172, p. 109286, Feb.

2020.

[116] A. Tran, J. Tranchida, T. Wildey, and A. P. Thompson, “Multi-fidelity machine-learning with uncertainty quantification

and Bayesian optimization for materials design: Application to ternary random alloys,” The Journal of Chemical Physics,

vol. 153, p. 074705, Aug. 2020.

[117] A. Tran, T. Wildey, and S. McCann, “sMF-BO-2CoGP: A Sequential Multi-Fidelity Constrained Bayesian Optimization

Framework for Design Applications,” Journal of Computing and Information Science in Engineering, vol. 20, June 2020.

[118] N. Gantzler, A. Deshwal, J. R. Doppa, and C. Simon, “Multi-fidelity Bayesian Optimization of Covalent Organic Frame-

works for Xenon/Krypton Separations,” June 2023.

[119] A. E. Gongora, K. L. Snapp, E. Whiting, P. Riley, K. G. Reyes, E. F. Morgan, and K. A. Brown, “Using simulation to

accelerate autonomous experimentation: A case study using mechanics,” iScience, vol. 24, p. 102262, Apr. 2021.

[120] M. Poloczek, J. Wang, and P. Frazier, “Multi-Information Source Optimization,” in Advances in Neural Information

Processing Systems, vol. 30, Curran Associates, Inc., 2017.

[121] J. Wu, S. Toscano-Palmerin, P. I. Frazier, and A. G. Wilson, “Practical Multi-fidelity Bayesian Optimization for Hyper-

parameter Tuning,” Mar. 2019. arXiv:1903.04703 [cs, math, stat].

[122] D. Huang, T. T. Allen, W. I. Notz, and R. A. Miller, “Sequential kriging optimization using multiple-fidelity evaluations,”

Structural and Multidisciplinary Optimization, vol. 32, pp. 369–382, Nov. 2006.

[123] C. Kim, T. Doan Huan, S. Krishnan, and R. Ramprasad, “A hybrid organic-inorganic perovskite dataset,” Scientific

Data, vol. 4, no. 170057, pp. 1–11, 2017.

[124] J. P. Perdew, “Density functional theory and the band gap problem,” International Journal of Quantum Chemistry,

vol. 28, no. S19, pp. 497–523, 1985.

[125] J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” The Journal of

Chemical Physics, vol. 118, pp. 8207–8215, Apr. 2003.

[126] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, “Influence of the exchange screening parameter on the

performance of screened hybrid functionals,” The Journal of Chemical Physics, vol. 125, p. 224106, Dec. 2006.

[127] M. Feurer, B. Letham, and E. Bakshy, “Scalable Meta-Learning for Bayesian Optimization using Ranking-Weighted

Gaussian Process Ensembles.” 2018.

[128] M. Feurer, B. Letham, F. Hutter, and E. Bakshy, “Practical Transfer Learning for Bayesian Optimization,”

arXiv:1802.02219 [cs, stat], Apr. 2021. arXiv: 1802.02219.

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

34

[129] M. Patacchiola, J. Turner, E. J. Crowley, M. O’ Boyle, and A. J. Storkey, “Bayesian Meta-Learning for the Few-Shot

Setting via Deep Kernels,” in Advances in Neural Information Processing Systems, vol. 33, pp. 16108–16118, Curran

Associates, Inc., 2020.

[130] M. Wistuba, N. Schilling, and L. Schmidt-Thieme, “Scalable Gaussian process-based transfer surrogates for hyperparam-

eter optimization,” Machine Learning, vol. 107, pp. 43–78, Jan. 2018.

[131] C. J. Taylor, K. C. Felton, D. Wigh, M. I. Jeraal, R. Grainger, G. Chessari, C. N. Johnson, and A. A. Lapkin, “Accelerated

Chemical Reaction Optimization Using Multi-Task Learning,” ACS Central Science, vol. 9, pp. 957–968, May 2023.

[132] R. J. Hickman, J. Ruža, H. Tribukait, L. M. Roch, and A. Garćıa-Durán, “Equipping data-driven experiment planning

for Self-driving Laboratories with semantic memory: case studies of transfer learning in chemical reaction optimization,”

Reaction Chemistry & Engineering, June 2023.

[133] D. T. Ahneman, J. G. Estrada, S. Lin, S. D. Dreher, and A. G. Doyle, “Predicting reaction performance in C–N cross-

coupling using machine learning,” Science, vol. 360, pp. 186–190, Apr. 2018.

[134] J. C. Gower, “A General Coefficient of Similarity and Some of Its Properties,” Biometrics, vol. 27, no. 4, pp. 857–871,

1971.

[135] L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi, “Graph kernels for chemical informatics,” Neural Networks: The

Official Journal of the International Neural Network Society, vol. 18, pp. 1093–1110, Oct. 2005.

[136] D. Rogers and M. Hahn, “Extended-Connectivity Fingerprints,” Journal of Chemical Information and Modeling, vol. 50,

pp. 742–754, May 2010.

[137] J. S. Delaney, “ESOL: Estimating Aqueous Solubility Directly from Molecular Structure,” Journal of Chemical Informa-

tion and Computer Sciences, vol. 44, pp. 1000–1005, May 2004.

[138] G. Tom, R. J. Hickman, A. Zinzuwadia, A. Mohajeri, B. Sanchez-Lengeling, and A. Aspuru-Guzik, “Calibration and

generalizability of probabilistic models on low-data chemical datasets with DIONYSUS,” Digital Discovery, vol. 2, no. 3,

pp. 759–774, 2023.

[139] A. Pomberger, A. A. Pedrina McCarthy, A. Khan, S. Sung, C. J. Taylor, M. J. Gaunt, L. Colwell, D. Walz, and A. A.

Lapkin, “The effect of chemical representation on active machine learning towards closed-loop optimization,” React.

Chem. Eng., pp. –, 2022.

[140] K. Kandasamy, A. Krishnamurthy, J. Schneider, and B. Poczos, “Parallelised Bayesian Optimisation via Thompson

Sampling,” in Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, pp. 133–

142, PMLR, Mar. 2018. ISSN: 2640-3498.

[141] M. Ponce, R. van Zon, S. Northrup, D. Gruner, J. Chen, F. Ertinaz, A. Fedoseev, L. Groer, F. Mao, B. C. Mundim,

et al., “Deploying a top-100 supercomputer for large parallel workloads: The niagara supercomputer,” in Proceedings of

the Practice and Experience in Advanced Research Computing on Rise of the Machines (learning), pp. 1–8, 2019.

[142] C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, et al.,

“Scinet: lessons learned from building a power-efficient top-20 system and data centre,” in Journal of Physics-Conference

Series, vol. 256, p. 012026, 2010.

https://doi.org/10.26434/chemrxiv-2023-8nrxx ORCID: https://orcid.org/0000-0002-5762-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8nrxx
https://orcid.org/0000-0002-5762-1006
https://creativecommons.org/licenses/by/4.0/

	 Atlas: A Brain for Self-driving Laboratories
	Abstract
	Introduction
	Overview of Bayesian optimization for experiment planning
	Bayesian optimization
	Acquisition functions
	Acquisition function optimization

	Gaussian processes
	Kernel functions
	Gaussian process training
	Variational Gaussian process classifier

	Atlas Library Overview
	A priori known constraints
	A priori unknown constraints
	Multi-objective optimization
	Robust optimization
	Optimization for generalizable parameters
	Multi-fidelity optimization
	Meta-/few-shot learning enhanced optimization
	Optimization over molecular domains
	Asynchronous experimental execution

	Experimental Demonstration
	Conclusion
	Code and Data Availability
	Acknowledgments
	Conflicts of Interest
	References

