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Abstract

Graphs are one of the most natural and powerful representations available for

molecules; natural because they have an intuitive correspondence to skeletal formu-

las, the language used by chemists worldwide, and powerful, because they are highly

expressive both globally (molecular topology) and locally (atomic properties). Graph

kernels are used to transform molecular graphs into fixed-length vectors, which can be

used as fingerprints in machine learning (ML) models. To date, kernels have mostly

focused on the atomic nodes of the graph. In this work, we developed an extended

graph kernel computing atom–atom, bond–bond, and bond–atom (AABBA) autocorre-

lations. The resulting AABBA representations were evaluated with a transition metal

complex benchmark, motivated by the higher complexity of these compounds relative

to organic molecules. In particular, we tested different flavors of the AABBA kernel

in the prediction of the energy barriers and bond distances of the Vaska’s complex

dataset (Friederich et al., Chem. Sci., 2020, 11, 4584). For a variety of ML mod-

els, including neural networks, gradient boosting machines, and Gaussian processes,

we showed that AABBA outperforms the baseline including only atom–atom auto-

correlations. Dimensionality reduction studies also showed that the bond–bond and

bond–atom autocorrelations yield many of the most relevant features. We believe that

the AABBA graph kernel can accelerate the discovery of chemical compounds and in-

spire novel molecular representations in which both atomic and bond properties play

an important role.
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Introduction

Machine learning (ML) is accelerating the fields of catalysis,1–6 materials science,7–12 and

drug discovery.13–18 This acceleration is particularly important in the current context defined

by the climate and health crises. The further development of deep,19–21 Bayesian,22–24 and

ensemble25–28 ML methods is crucial for achieving higher levels of accuracy, generalization,

and explainability. Nonetheless, research in the other key components of the ML pipeline,

namely data,29–31 and representations,32–34 is also crucial, especially in the field of transition

metal complex (TMC) chemistry,35–37 which remains incipient relative to organic chemistry.

TMC datasets are smaller and more scarce, and the associated representations can fall short

of capturing the intrinsic complexity of these compounds.

The representations commonly used for organic molecules are in general insufficient for

TMCs. For example, SMILES38 and other popular line notations cannot account for the

complicated bonding patterns found around metal centers. More advanced notations like

SELFIES39 should in principle overcome this issue but their extension toward TMCs re-

mains unexplored. Graph-based representations are a powerful alternative, due to the higher

expressivity of their topology and the possibility of attributing both the nodes (atoms) and

edges (bonds) with electronic and geometric data.40,41 In many ML methods, the graph can-

not be directly fed into the model, requiring a function, i.e. a graph kernel, which either

measures the similarity between graph pairs42 or, within the focus of this work, transforms

the graphs into fixed-length vectors that can be regarded as molecular fingerprints (Figure

1).43

The Moreau-Broto autocorrelation44 is a popular kernel consisting of an algorithm that

“walks” over the molecular graph computing atomic property products (Figure 1). The

algorithm iterates over the whole graph until an arbitrary depth, which is the maximum

number of bonds allowed in the shortest path connecting two autocorrelated nodes. For

each property, the products are added to yield the components of the final vector, which has

a fixed length defined by the number of properties and the depth of the representation. Ku-

3

https://doi.org/10.26434/chemrxiv-2023-5wbkr ORCID: https://orcid.org/0000-0002-3389-0543 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-5wbkr
https://orcid.org/0000-0002-3389-0543
https://creativecommons.org/licenses/by-nc-nd/4.0/


lik and co-workers adapted this approach for its application to TMCs by introducing origin

and scope as autocorrelation parameters.45 The origin defines a reference node for which

the property products are computed (e.g. the metal center), whereas the scope delimits

the autocorrelation to subgraph sets (e.g. axial and equatorial ligands). Further, property

products were extended with additional arithmetic operations (e.g. subtraction). This im-

plementation is computationally inexpensive and it has proven its efficiency in challenging

ML tasks, including the multiobjective optimization of TMCs,46 though it focuses only on

the graph nodes, limiting the extraction of electronic structure data and excluding geometric

information.

Figure 1: Extending the traditional Moreau-Broto atom–atom autocorrelation kernel to the atom–
atom bond–bond bond–atom (AABBA) kernel of this work. TMC = transition metal complex; AC
= autocorrelation; G = graph; p = atomic and bond properties; NBO = natural bond orbital.
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In this work, we introduce the atom–atom, bond–bond, bond–atom (AABBA) graph ker-

nel, which extends the traditional Moreau-Broto atom–atom autocorrelations44 with bond–

bond and bond–atom terms. These terms include bond properties providing both geometric

(e.g. bond distance) and electronic (e.g. bond order) structure information. Figure 1 il-

lustrates this concept using a transition metal complex (TMC) as an example. The idea of

extracting bond–bond and bond–atom relationships with the AABBA kernel was inspired by

these two theoretical frameworks; 1) natural bond orbital (NBO) analysis, in which localized

atomic (i.e. lone pairs and vacancies) and bond (i.e. 2- and 3-center non-bonding, bond-

ing, and anti-bonding) orbitals interact with each other;47 and 2) message-passing in graph

neural networks, in which local and global chemical environments are learned by informing

the atomic nodes with representations of their neighboring atoms and the bond edges con-

necting to them.48,49 The vectors generated by the AABBA kernel were leveraged in ML

models predicting TMC properties, including neural networks, gradient boosting machines,

and Gaussian processes. In particular, we predicted the energy barriers and bond distances of

the Vaska’s complex dataset.50 For both properties, the AABBA-based ML models achieved

accuracies significantly higher than those obtained with a baseline kernel including only

atom–atom terms. Further, quantitative measures of feature relevance showed that several

bond–bond and bond–atom terms were among the most important in the ML predictions.
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The AABBA graph kernel

We implemented the kernel in two different flavors: AABBA(I) and AABBA(II), as illus-

trated in Figure 2. Both act on molecular graphs, which, for organic molecules, can be

easily generated from a string representation like SMILES or the xyz coordinates. For the

benchmark of this study, which is based on TMCs, the robustness of these graph generation

approaches is compromised by the complex nature of the metal–ligand bonds. This issue was

addressed by using undirected natural quantum graphs (u-NatQG) derived from NBO anal-

ysis.41 The u-NatQG representation yielded a robust orbital-based definition of the graph

topology, in which the atomic nodes and the bond edges were attributed with either generic

properties (e.g. atomic number and bond order) or specific NBO electronic properties (e.g.

natural atomic charges and bond orbital symmetries).

In the AABBA(I) kernel, the atom–atom terms were computed using the traditional

Moreau-Broto autocorrelation (AA-AC; Figure 2). The origin of the AA-AC can be either

full (i.e. using all graph nodes as reference), or metal-centered (i.e. using only the metal

node as reference). From the origin, all AA-AC terms can be extended from depth zero to

an arbitrary maximum value. Figure 3 illustrates the depth concept in the metal-centered

framework for the three terms of the AABBA kernels. Further, though the default arithmetic

operation is the product, division, addition, and subtraction are also available. A similar

approach was used for the computation of the bond–bond (BB-AC) and bond–atom (BA-

AC) terms, for which we implemented these two methods: 1) for the metal-centered BB-AC,

we defined a “super-bond” edge origin merging all metal–ligand bonds (Figure 8 in the

Appendix) by either adding (BB-AC) or averaging (BB-AC) their properties and, 2) for the

BA-AC, we defined arithmetic operations consistent with the different dimensionality of the

atomic and bond property vectors (Equation 18). The final representation yielded by the

AABBA(I) kernel was built by concatenating the AA-AC, BB-AC, and BA-AC terms (which

can also be used independently) into a single vector. The dimensionality of this vector could

be easily augmented by expanding these terms with different origins and operators.
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Figure 2: Computational graphs showing the autocorrelations of the AABBA kernels. For
AABBA(I): The 1 Atom–Atom, 2 Bond–Bond, and 3 Bond–Atom autocorrelations. For

AABBA(II): 4 Concatenation of atom and bond properties and 5 Autocorrelation of the re-
sulting atom-bond properties. For the sake of clarity, only part of the arithmetic operations are
shown at depths 0 and 1. u-NatQG = Undirected Natural Quantum Graph.41
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Figure 3: Metal-centered definition of the depth in the AABBA graph kernels. TMC = transition
metal complex; M = metal; L = ligand; AC = autocorrelation; AA = atom–atom; BB = bond–
bond; BA = bond–atom; Ø = depth origin.

In AABBA(II), selected atomic and bond properties associated with each atom—atom

edge of the molecular graph were merged into an atom-bond property vector. For the

generic properties, we defined three variants (AABBA(II)1−3) differing in the definition of

the electronegativity and geometry components (see Equation 28 in the Appendix). For the

NBO properties, we defined two more variants (AABBA(II)4−5), differing in the NBO data

selected for the representation (Equations 29 and 30). Once defined, these merged property

vectors were autocorrelated following the same procedure used for BB-AC in AABBA(I). In

this case, there was no need to concatenate different terms since AABBA(II) generates the

final fingerprint vector directly. This representation can be regarded as a dimensionality-

reduced version of that generated by AABBA(I).
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For a detailed description of the AABBA graph kernels, including the underlying equa-

tions, the dimensions of the resulting vectors, the definition of the metal-centered edge origin,

and the systematic lists of generic and NBO properties, see the Appendix. Due to the modu-

lar nature of its vector concatenation operations, we believe that it should be easy to extend

these kernels to materials made of distinct molecular blocks assembled in a structurally

regular manner.

The Vaska’s dataset

The Vaska’s dataset used to benchmark the AABBA kernels is a curated collection of 1,947

iridium complexes with diverse σ-donor, σ/π-donor, and σ-donor/π-acceptor ligands. For

each complex, the dataset provides computational results at the DFT(PBE/def2SVP) level

for the transition state associated with the oxidative addition of molecular hydrogen, includ-

ing the energy barrier and the breaking H· · ·H bond distance.

Systematic neural network models

The performance of the AABBA(I) and AABBA(II) graph kernels was first assessed with

the Vaska’s dataset using neural networks (NNs) for two regression tasks, one predicting

the energy barrier and the other the H· · ·H bond distance. All models were based on a

multilayer perceptron architecture with the following hyperparameters: Two hidden layers

with 128 nodes each, ReLU activation, Adam optimizer minimizing the mean squared error

(MSE) loss, and a training:validation:test data split of 80:10:10 (further details in the SI).

The autocorrelation vectors can be computed in multiple ways depending on the property

set, arithmetic operator, origin, and maximum depth (see the Appendix). In the AABBA

framework, this diversity is further expanded by the possibility of using these six graph

kernels (Figure 2): AA-AC, BB-AC, BB-AC, BA-AC, AABBA(I), and AABBA(II). As a

first approach, we built the autocorrelation vectors in a systematic manner based on the

results obtained by gradually increasing their complexity and dimensionality (Tables 1 and
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2).

Table 1: Average and lowest test errors in the prediction of the Vaska’s dataset energy barriers
with neural networks. The inputs passed to the models were vectors defined with different graph
kernels (GK), property types (Prop), operators (Ôp), origins (Ø), and maximum depths (D), yielding
different dimensionality (dim). The mean absolute error (MAE) is given in kcal/mol.

Model
Input Average Errora Lowest Errora

GK Prop Ôp Øb D dimc MAE r2 MAE r2

1 AA Pd ⊙e MC 3 18 1.22 ± 0.02 0.844 ± 0.007 1.16 0.850
2 BB P ⊙ MC 3 12 1.42 ± 0.03 0.801 ± 0.005 1.37 0.803
3 BB P ⊙ MC 3 10 1.40 ± 0.04 0.765 ± 0.016 1.26 0.791
4 BA P ⊙ MC 3 20 2.14 ± 0.04 0.571 ± 0.013 2.05 0.595
5 If P ⊙ MC 3 48 0.90 ± 0.02 0.914 ± 0.003 0.86 0.916
6 I P ⊖χ

e MC 3 47 0.91 ± 0.01 0.913 ± 0.003 0.89 0.919
7 I P ⊘R

e MC 3 47 0.92 ± 0.02 0.911 ± 0.004 0.89 0.919
8 I NBOg ⊙ MC 3 212 0.89 ± 0.02 0.908 ± 0.007 0.85 0.913
9 I NBO ⊙ F 3 220 0.79 ± 0.02 0.927 ± 0.002 0.76 0.928
10 I NBO ⊙ MC 4 263 0.90 ± 0.02 0.899 ± 0.008 0.84 0.925
11 I NBO ⊙ MC 5 298 0.90 ± 0.02 0.904 ± 0.007 0.87 0.899
12 I NBO ⊙ MC 6 303 0.88 ± 0.02 0.907 ± 0.007 0.84 0.918
13 Ih NBO ⊙ F 3 223 0.78 ± 0.02 0.928 ± 0.004 0.73 0.933
14 II1

f P ⊙ MC 3 33 0.94 ± 0.02 0.906 ± 0.002 0.89 0.913
15 II2 P ⊙ MC 3 29 0.96 ± 0.03 0.904 ± 0.005 0.86 0.917
16 II3 P ⊙ MC 3 33 0.94 ± 0.02 0.908 ± 0.004 0.90 0.913
17 II4 NBO ⊙ MC 3 92 0.86 ± 0.02 0.918 ± 0.003 0.82 0.926
18 II5 NBO ⊙ MC 3 80 0.94 ± 0.02 0.907 ± 0.004 0.88 0.915
19 II4 NBO ⊙ F 3 98 1.15 ± 0.03 0.850 ± 0.007 1.05 0.862
20 II4 NBO ⊙ MC 4 111 0.88 ± 0.02 0.916 ± 0.005 0.85 0.914
21 II4 NBO ⊙ MC 5 129 0.85 ± 0.03 0.916 ± 0.004 0.81 0.923
22 II4 NBO ⊙ MC 6 129 0.85 ± 0.01 0.919 ± 0.003 0.83 0.921

aFrom ten repetitions with a training:validation:test split of 80:10:10; bMetal-centered (MC) or full (F);
cAfter removing redundant dimensions; dI.e. PA, PB, and PAB periodic and generic property sets; eAll
properties correlated by product (⊙), except the electronegativity in entry 6 (subtracted, ⊖χ), and the
covalent radius in entry 7 (divided, ⊘R);

fEntries 5-13 and 14-22 correspond to the AABBA(I) and
AABBA(II) kernels; gI.e. PA,NBO, PB,NBO, and PAB,NBO NBO property sets. hIncluding whole-graph

properties.

See the Appendix for further details.
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The results collected in Table 1 for the prediction of the oxidative addition barrier show

that the Moreau-Broto AA-AC achieved a mean absolute error (MAE) of 1.16 kcal/mol,

using the metal-centered autocorrelation of generic properties at a maximum depth of three

(model 1). Following the same approach, we also tested the autocorrelations leveraging bond

properties, i.e. the BB-, BB-, and BA-AC. In line with the smaller amount of properties

describing the bonds (three) relative to the atoms (nine), these autocorrelations showed

a poorer performance, though BB-AC achieved a remarkable accuracy, with MAE = 1.26

kcal/mol (model 3). Further, when the associated autocorrelation vector was concatenated

with those extracted by the AA- and BA-AC kernels, the resulting AABBA(I) representation

gave a MAE of 0.86 kcal/mol (model 5), which was 26% smaller than that of the AA-AC

baseline.

Going further with the AABBA(I) kernel, we investigated how accuracy could be im-

proved by fine-tuning other parameters. First, we considered other property operators and,

in particular, the use of deltametric (property differences) and ratiometric (property ratios)

ACs for the electronegativity and covalent radius, respectively (models 6 and 7 in Table 1).

These operators encoded local variations in bond polarization and relative atomic size but,

in practice, neither of them yielded lower MAEs. Next, we replaced the generic properties

with the NBO, which, with the full origin, yielded the second lowest MAE in the series of

numerical experiments: 0.76 kcal/mol (model 9). With the metal-centered origin, which

is more useful from the perspective of explainability, the MAE could be reduced to 0.84

kcal/mol after increasing the maximum depth of the representation to six (model 12). In

a final experiment, we enriched the most accurate representation by adding whole-graph

properties but the increase in accuracy was very small (model 13).
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Figure 4: Pair plots showing the correlation between the DFT-calculated and NN-predicted energy
barrier (∆E‡) and breaking H· · ·H bond distance (dH···H) of the Vaska’s dataset. All models refer
to Tables 1 and 2. Data points color code: • training, • validation, and • test.

The AABBA(II) kernel also outperformed the AA-AC baseline, reducing the MAE to

an extent similar to AABBA(I), from 1.16 to 0.89 kcal/mol, using the AABBA(II)1 kernel

(model 14 in Table 1). In contrast with AABBA(I), the use of NBO properties gave the

highest accuracy when the AABBA(II)4 kernel was combined with the metal-centered origin

and a maximum depth of five, yielding a MAE of 0.81 kcal/mol (model 21). Though it did

not achieve the lowest MAE of the series, a significant advantage of this representation is
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its low dimensionality (129) relative to its AABBA(I) equivalent (298; model 11). The pair

plots in Figure 4 show the performance of this AABBA(II) model relative to the AA-AC

baseline.

The prediction of the H· · ·H bond distance was explored following the same systematic

approach (Table 2). Using also the metal-centered autocorrelation of the generic properties

at a maximum depth of three, the graph kernels including only atom–atom or bond–bond

terms, i.e. AA-, BB-, and BB-AC, yielded similar accuracies, with MAE differences smaller

than 0.002 Å (models 23-25). In contrast with the prediction of the energy barriers (Table

1), where AA-AC was the most accurate of these three kernels, the lowest MAE was hereby

achieved with BB-AC (2.09·10−2 Å; model 25). This observation aligns with the notion

that bond properties are crucial in predicting the distance, thereby contributing to improved

results. The BA-AC kernel was also tested but it exhibited poorer performance (model 26).

Keeping the same properties, operator, origin, and depth, and expanding the autocorre-

lations with the AABBA(I) kernel, the MAE was reduced to 1.93·10−2 Å (model 27 in Table

2). Interestingly, by replacing the product autocorrelation of the electronegativity with its

deltametric, the MAE was further minimized down to 1.87·10−2 Å (model 30), which was

the lowest achieved with this kernel, showing the value of encoding bond polarity with elec-

tronegativity differences. Next, we moved to NBO properties, which, unlike the prediction

of the energy barriers (Table 1), did not improve the results. The model closest in accuracy

(35) used full autocorrelations with a maximum depth of five, thus producing large input

vectors (dim = 316).
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Table 2: Average and lowest test errors in the prediction of the Vaska’s dataset H· · ·H distance
with neural networks. The inputs passed to the models were vectors defined with different graph
kernels (GK), property types (Prop), operators (Ôp), origins (Ø), and maximum depths (D), yielding
different dimensionality (dim). The mean absolute error (MAE) is given in Å.

Model
Input Average Errora Lowest Errora

GK Prop Ôp Øb D dimc MAE r2 MAE r2

23 AA Pd ⊙e MC 3 18 2.38·10−2 ± 9·10−4 0.687 ± 0.012 2.11·10−2 0.727
24 BB P ⊙ MC 3 10 2.30·10−2 ± 4·10−4 0.706 ± 0.007 2.21·10−2 0.714

25 BB P ⊙ MC 3 12 2.35·10−2 ± 1.0·10−3 0.673 ± 0.020 2.09·10−2 0.729
26 BA P ⊙ MC 3 20 3.03·10−2 ± 6·10−4 0.537 ± 0.012 2.91·10−2 0.551

27 If P ⊙ MC 3 48 2.07·10−2 ± 4·10−4 0.747 ± 0.006 1.93·10−2 0.767
28 I P ⊙ F 3 220 2.12·10−2 ± 7·10−4 0.716 ± 0.015 1.98·10−2 0.739
29 I P ⊙ Fg 3 220 2.54·10−2 ± 1.0·10−3 0.632 ± 0.019 2.37·10−2 0.669
30 I P ⊖χ

e MC 3 47 1.96·10−2 ± 5·10−4 0.767 ± 0.007 1.87·10−2 0.769
31 I P ⊘R

e MC 3 47 2.04·10−2 ± 6·10−4 0.764 ± 0.004 1.96·10−2 0.761
32 I NBOh ⊙ MC 3 212 2.27·10−2 ± 8·10−4 0.663 ± 0.021 2.13·10−2 0.702
33 I NBO ⊙ MC 4 263 2.22·10−2 ± 7·10−4 0.676 ± 0.012 2.12·10−2 0.690
34 I NBO ⊙ MC 5 298 2.16·10−2 ± 6·10−4 0.705 ± 0.020 2.04·10−2 0.706
35 I NBO ⊙ F 5 316 2.10·10−2 ± 1.0·10−3 0.718 ± 0.021 1.89·10−2 0.748
36 I NBO ⊙ Fg 5 316 2.60·10−2 ± 5.2·10−3 0.586 ± 0.153 2.06·10−2 0.727
37 I NBO ⊙ MC 6 303 2.17·10−2 ± 7·10−4 0.704 ± 0.016 1.99·10−2 0.745

38 II1f P ⊙ MC 3 33 1.91·10−2 ± 4·10−4 0.771 ± 0.009 1.81·10−2 0.788
39 II2 P ⊙ MC 3 29 1.93·10−2 ± 4·10−4 0.768 ± 0.006 1.81·10−2 0.772
40 II3 P ⊙ MC 3 33 1.85·10−2 ± 5·10−4 0.781 ± 0.009 1.72·10−2 0.804
41 II3 P ⊙ F 3 54 1.97·10−2 ± 7·10−4 0.747 ± 0.013 1.87·10−2 0.765
42 II4 NBO ⊙ MC 3 92 2.21·10−2 ± 5·10−4 0.685 ± 0.013 2.13·10−2 0.704
43 II5 NBO ⊙ MC 3 80 2.20·10−2 ± 6·10−4 0.687 ± 0.024 2.05·10−2 0.749
44 II3 P ⊙ MC 4 42 1.87·10−2 ± 4·10−4 0.776 ± 0.009 1.82·10−2 0.785
45 II3 P ⊙ MC 5 51 1.86·10−2 ± 5·10−4 0.766 ± 0.011 1.78·10−2 0.795
46 II3 P ⊙ MC 6 51 1.86·10−2 ± 4·10−4 0.770 ± 0.008 1.74·10−2 0.792
47 II3i P ⊙ MC 3 36 1.86·10−2 ± 4·10−4 0.777 ± 0.008 1.74·10−2 0.799

aFrom ten repetitions with a training:validation:test split of 80:10:10; bMetal-centered (MC) or full (F); cAfter removing

redundant dimensions; dI.e. PA, PB, and PAB periodic and generic property sets; eAll properties correlated by product (⊙),

except the electronegativity in entry 8 (subtracted, ⊖χ), and the covalent radius in entry 9 (divided, ⊘R); fEntries 5-15 and

16-24 correspond to the AABBA(I) and AABBA(II) kernels, respectively; gFrom an extended neural network of 3 hidden

layers with 256 nodes each; hI.e. PA,NBO, PB,NBO, and PAB,NBO NBO property sets. iAlso including whole-graph properties.

See the Appendix for further details.

The lower-dimensionality representations extracted with the AABBA(II) kernel also

showed better performance with the generic properties than with the NBO (Table 2). The

most accurate model in this series yielded MAE = 1.72 · 10−2 Å (model 40) using the

AABBA(II)3 representation, which combines electronegativity differences with covalent ra-

dius instead of optimized interatomic distances, being thus geometry-agnostic. AABBA(II)3

reduced the MAE of the AA-AC baseline by 18% (the performance of both models is com-

pared in Figure 4). Increasing the maximum depth to six (models 44-46) or extending the

representation with whole-graph properties (model 47) did not improve accuracy any further,

suggesting that the H· · ·H distance is dominated by local rather than global effects.
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Dimensionality reduction by feature relevance

The results in Tables 1 and 2 show that the performance of the NN models is sensitive

to the nature of the graph kernel, as well as parameters like the origin and depth of the

representations. The manual adjustment of these variables is challenging and, beyond domain

knowledge and heuristics like, for example, using larger depths to capture remoter effects,

optimal solutions could be easily missed. From this perspective, the comparison of the

results obtained with the AABBA(I) and AABBA(II) kernels suggested that dimensionality

reduction could be an appropriate strategy for tackling this issue.

Gradient boosting machines

We explored feature selection based on ensemble models by defining autocorrelation vectors

with maximal dimensionality (MD), which were used to train gradient boosting machine

(GBM) models predicting the Vaska’s dataset energy barriers and breaking H· · ·H bond

distances. The GBM results were analyzed with the double aim of 1) comparing the different

autocorrelation features from the perspective of their importance in the predictions, and

2) making a selection of these features for dimensionality-reduced ML models, which are

presented in the next two sections.

The length of the MD autocorrelation vectors was maximized with the AABBA(I) graph

kernel (Figure 2), using both the full and metal-centered origins, with a maximum depth of

six, and all four arithmetic operators (see the Appendix). All these terms were concatenated

to form the final vI,MD
AABBA representation, which was either an 671- or 2750-dimensional vector,

depending on whether the generic or NBO properties, respectively, were used to compute the

autocorrelations. These dimensionalities are between six- and nine-times larger than those

of the vectors fed to the NN models in Tables 1 and 2.
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Table 3: Average and lowest test errors in the prediction of the Vaska’s dataset energy barrier
(∆E‡) and H· · ·H distance (dH· · ·H) with GBM models. The inputs passed to the models were
vI,MD
AABBA vectors defined with different property types (Prop) yielding different (maximal) dimen-
sionalities (dim). The mean absolute errors (MAEs) are given in kcal/mol for the barriers and Å
for the distances.

Target
Input Average Errora Lowest Errora

GK Prop dimb MAE r2 MAE r2

∆E‡ I Pc 671 1.00 ± 0.05 0.891 ± 0.004 0.91 0.919
∆E‡ AA Pc 223 1.09 ± 0.05 0.869 ± 0.02 1.01 0.896
∆E‡ BB Pc 188 1.20 ± 0.04 0.858 ± 0.016 1.14 0.860
∆E‡ BA Pc 260 1.29 ± 0.02 0.840 ± 0.018 1.24 0.867

dH· · ·H I Pc 671 1.86·10−2 ± 7·10−4 0.738 ± 0.022 1.73·10−2 0.760
dH· · ·H AA Pc 223 2.00·10−2 ± 5·10−4 0.711 ± 0.021 1.89·10−2 0.750
dH· · ·H BB Pc 188 2.06·10−2 ± 6·10−4 0.706 ± 0.021 1.97·10-2 0.732
dH· · ·H AB Pc 260 2.16·10-2 ± 7·10-4 0.671 ± 0.025 2.05·10-2 0.703

∆E‡ I NBOd 2750 0.84 ± 0.04 0.920 ± 0.016 0.77 0.940
∆E‡ AA NBOd 680 0.85 ± 0.04 0.918 ± 0.019 0.79 0.942
∆E‡ BB NBOd 1068 1.05 ± 0.02 0.888 ± 0.012 1.02 0.902
∆E‡ BA NBOd 1002 1.07 ± 0.04 0.877 ± 0.018 0.98 0.902

dH· · ·H I NBOd 2750 1.79·10−2 ± 6·10−4 0.753 ± 0.018 1.67·10−2 0.784
dH· · ·H AA NBOd 680 1.80·10-2 ± 6·10-4 0.748 ± 0.022 1.71·10-2 0.777
dH· · ·H BB NBOd 1068 1.99·10-2 ± 9·10-4 0.711 ± 0.032 1.86·10-2 0.762
dH· · ·H BA NBOd 1002 1.95·10-2 ± 6·10-4 0.708 ± 0.025 1.85·10-2 0.739

aFrom 5-fold cross-validation; bAfter removing redundant dimensions; cI.e. PA, PB, and PAB generic

property sets; dI.e. PA,NBO, PB,NBO, and PAB,NBO NBO property sets. See the Appendix for further

details.
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Regression trees (RTs) were used as base learners in the GBM ensemble models, which

included 1000 RTs with a maximum depth of 5. The models were trained by minimizing

the MSE loss with a learning rate of 0.05, and were tested by 5-fold cross-validation (further

details in the SI). Table 3 shows the performance of the GBMs in the prediction of the

Vaska’s energy barriers and H· · ·H distances. For both regression tasks, the NBO-informed

representations gave higher accuracies than those based on generic properties. Another

interesting observation is that the full vI,MD
AABBA vector achieved higher accuracies than the

BB, BA, and AA alone, though the latter performed at nearly the same level when using NBO

properties. The most accurate models yielded remarkably low errors; i.e. 0.77 kcal/mol for

the barrier (r2 = 0.940) and 1.67·10−2 Å for the distance (r2 = 0.784). The latter model was

the most accurate of the series reported in this work for the prediction of distances with NBO

properties. Since GBMs are designed to maximize accuracy by selecting the most relevant

features, these results suggested that the many dimensions of these autocorrelation vectors

could be redundant to a significant extent, thus showing that dimensionality reduction would

likely be an efficient strategy.

Figure 5: Relevances (y-axes, in %) of the twenty most important AABBA components (x-axes)
from the GBM models predicting the Vaska’s energy barriers. Bar color code: ■ AA-AC, ■ BB-AC
and BB-AC, and ■ BA-AC.
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Figure 6: Relevances (y-axes, in %) of the twenty most important AABBA components (x-axes)
from the GBM models predicting the Vaska’s breaking H· · ·H distances. Bar color code: ■ AA-AC,
■ BB-AC and BB-AC, and ■ BA-AC.

The relevance of the features, i.e. the components of the vI,MD
AABBA autocorrelation vectors,

was computed using the Friedman MSE criterion. This criterion exploits the ensemble nature

of the GBMs, quantifying the reduction of the residual sum of squares of the model by any

given feature relative to the total. Figures 5 and 6 show the twenty most relevant features

in the GBM models predicting the barriers and distances, respectively, from the generic

and NBO representations. In all cases, the three atom–atom, bond–bond, and bond–atom

components of the AABBA(I) graph kernel yielded features of high relevance. For example,

in the prediction of the energy barrier with generic properties, there is a similar number of

AA, BB, and BA features (i.e. 7, 7, and 6, respectively) among the most relevant, which

is also true in the other three cases. Table 4, which collects and describes only the 5 most

relevant features, also shows some interesting trends. For the barriers, there is a mix of full

and metal-centered features, which, with the generic properties, refer to chemical composition

(Z) and electronegativity (χ), whereas, with the NBO properties, refer to natural electron

counts and charges (qNat). There is also a mix of full and metal-centered features, which
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is consistent with the influence of both local and global effects on the oxidative addition

barrier. Further, features like the bond–atom metal-centered charges can be directly related

to the critical role played by the electron density of the metal center. For the distances,

most features are metal-centered at depth zero or one, in line with the local nature of the

H· · ·H bond cleavage, which takes place within the first coordination sphere of the metal

center. As for the barrier, the generic features involve mostly Z and χ, whereas the NBO

are dominated by qNat. Regardless of the target, the product autocorrelation operator is the

most common, appearing in half of the features, whereas the other half is diverse, including

the ratiometric, summetric, and deltametric operators.

Table 4: Five most relevant features in the prediction of the Vaska’s dataset energy barrier (∆E‡)
and breaking H· · ·H distance (dH· · ·H) with generic (P) and natural bond orbital (NBO) properties.
The rank refers to feature relevance as derived from the GBM models.

Target = ∆E‡, Properties = P
Rank Feature label Feature description
1 Z-2 FA AA Full atom–atom autocorrelation of atomic number at depth 2
2 Z-1 FA AA Full atom–atom autocorrelation of atomic number at depth 1
3 χ-1 MD AA Metal-centered atom–atom deltametric of electronegativity at depth 1
4 BD-0 MS BB Metal-centered averaged bond–bond summetric of distance at depth 0
5 χ-1 MR AA Metal-centered atom–atom ratiometric of electronegativity at depth 1

Target = ∆E‡, Properties = NBO
Rank Feature label Feature description
1 qNat-0 MD BA Metal-centered bond–atom deltametric of natural charge at depth 0
2 LPOcc-1 FR AA Full atom–atom ratiometric of lone-pair occupancies at depth 1
3 Nd-0 FA AA Full atom–atom autocorrelation of d-electron count at depth 0
4 qNat-1 MR BA Metal-centered bond–atom ratiometric of natural charge at depth 1
5 qNat-1 FA AA Full atom–atom autocorrelation of natural charge at depth 1

Target = dH· · ·H, Properties = P
Rank Feature label Feature description
1 Z-1 MA AA Metal-centered atom–atom autocorrelation of atomic number at depth 1
2 χ-0 MD BA Metal-centered bond–atom deltametric of electronegativity at depth 0
3 BD-1 MD BB Metal-centered averaged bond–bond deltametric of distance at depth 0
4 χ-0 MR BA Metal-centered bond–atom ratiometric of electronegativity at depth 0
5 Z-2 MA AA Metal-centered atom–atom autocorrelation of atomic number at depth 2

Target = dH· · ·H, Properties = NBO
Rank Feature label Feature description
1 qNat-1 MS BA Metal-centered bond–atom summetric of natural charge at depth 1
2 qNat-2 MA BA Metal-centered bond–atom autocorrelation of natural charge at depth 2
3 LP∆E-0 FA AA Full atom–atom autocorrelation of lone-pair energy gap at depth 0
4 qNat-1 MS AA Metal-centered atom–atom summetric of natural charge at depth 1
5 qNat-2 MD BA Metal-centered bond–atom deltametric of natural charge at depth 2
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Gaussian processes

The use of AABBA representations of reduced dimensionality was investigated with Gaussian

processes (GP) predicting the Vaska’s energy barriers and breaking H· · ·H distances. These

models were based on a composed Linear-RBF kernel (KLR; RBF = radial basis function)

in which both covariance functions were multiplied; i.e.

KLR(x, x
′) = σ2 · xTx′ · exp(−1

2
(x− x′)Tλ−2(x− x′)) (1)

where (x, x′) is a pair of data points, σ2 is the variance, and λ is the length-scale of the

kernel. Preliminary studies showed that these two kernels perform at a lower level when

used separately in these regression tasks.

The vI,MD
AABBA vectors with maximal dimensionality were simplified by gradually removing

terms according to the accumulated relevance found with the GBM models (vide supra).

MAEs were computed for each pruned representation, taking that of the full vI,MD
AABBA vector as

the baseline. In the prediction of ∆E‡ with generic properties (Figure 7), we observed a gentle

decrease of the MAE until a reduced dimensionality of ∼50, followed by a steep increase of

the MAE at smaller dimensionalities. The top-performance model used a 46-dimensional

AABBA representation (80% accumulated relevance), in which 59% of the terms were either

BB or BA (Table 5) – Remarkably, with MAE = 0.67 kcal/mol and r2 = 0.947, this GP

model was the most accurate of the series reported in this work. With the NBO features,

the convergence of the MAE with the reduction of the dimensionality was less stable and

two minima were observed, as clearly shown by the accumulated relevance plots (Figure S7).

The lowest MAE model was based on a 115-dimensional AABBA vector (86% accumulated

relevance) in which the BB and BA terms amounted 54% of the total dimensions. With

MAE = 0.77 kcal/mol and r2 = 0.930, this model performed at a level similar to that of the

most accurate NNs found in the systematic study (e.g. model 9 in Table 1).
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Figure 7: Influence of reducing the dimensionality of the AABBA representation in the MAEs
of the GP predicting the Vaska’s barriers (∆E‡; top) and distances (dH···H ; bottom) from generic
(left) and NBO (right) properties. The legend applies to all four plots.

Table 5: Test errors in the prediction of the Vaska’s dataset energy barrier (∆E‡) and H· · ·H
distance (dH· · ·H) with Gaussian processes. The inputs passed to the models were vI,MD

AABBA vectors
defined with different property types (Prop) after being pruned to a reduced dimensionality (rdim)
based on the accumulated relevance (AR) found with the GBM models. The mean absolute errors
(MAEs) are given in kcal/mol for the barriers and Å for the distances.

Target
Input Errora

Prop rdimb AR AA:BB:BA MAE r2

∆E‡ Pc 46 80% 19:12:15 0.67 0.947
∆E‡ Pc 46 80% 19:12:15 1.32 0.799
∆E‡ NBOc 115 86% 53:29:33 0.77 0.930
∆E‡ NBOc 115 86% 53:29:33 1.14 0.845

dH· · ·H Pc 100 82% 42:22:36 1.61·10-2 0.824
dH· · ·H Pc 100 82% 42:22:36 2.42·10-2 0.571
dH· · ·H NBOc 28 52% 13:7:8 1.72·10-2 0.783
dH· · ·H NBOc 28 52% 13:7:8 2.42·10-2 0.582

aFrom ten repetitions with a training:validation:test split of 80:10:10 (black) or 20:40:40 (purple); bAfter

pruning the AABBA representation with respect to the GBM relevances; cI.e. PA, PB, and PAB generic

property sets; dI.e. PA,NBO, PB,NBO, and PAB,NBO NBO property sets. See the Appendix for further

details.
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In the prediction of the distances (Figure 7), the generic properties showed a trend that

was less stable and yet similar to that observed for the barriers. The MAE was minimized

to 1.61 · 10−2 Å (r2 = 0.824) with a simplified input of 100 dimensions (82% accumulated

relevance), of which 58% were either BB or BA (Table 5). This model was also the most

accurate of the series, thus showing that the use of Gaussian processes with reduced AABBA

representations computed from generic properties is a powerful approach to the prediction

of the Vaska’s barriers and distances. With the NBO properties, there was a sharp decrease

in the MAE at ∼700 dimensions, reaching a minimum at 1.72 · 10−2 Å (r2 = 0.783) with a

28-dimensional vector, in which the BB and BA terms were 54% of the representation.

The data efficiency of the GP models was also investigated with a training:validation:test

data split of 20:40:40 (Table 5). Whereas the accuracy of the resulting models was reasonable

for the prediction of the barriers, with MAE = 1.1−1.4 kcal/mol and r2 = 0.79− 0.85, the

performance in the prediction of the distances was rather poor, with MAE = 2.42 · 10−2 Å

and r2 < 0.6, suggesting that the latter regression task must involve further changes in the

models before dimensionality reduction can be leveraged efficiently in a small-data training

context.

Neural networks

Dimensionality reduction was also explored in the prediction of the Vaska’s barriers and

distances with NN models. Due to higher computational cost, the recalculation of the GP

scatter plots of Figure 7 for the NNs was performed with a smaller resolution (Figure S8).

Since the trends observed with both models were similar, the NNs were fed with vI,MD
AABBA

vectors pruned down to the same optimally reduced dimensions found with the GP (Tables

5 and 6). For the sake of comparability, we used the same NN hyperparameters that yielded

the results shown in Tables 1 and 2.
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Table 6: Test errors in the prediction of the Vaska’s dataset energy barrier (∆E‡) and H· · ·H
distance (dH· · ·H) with NNs. The inputs passed to the models were vI,MD

AABBA vectors defined with
different property types (Prop) after being pruned to a reduced dimensionality (rdim) based on the
accumulated relevance (AR) and MAEs found with the GBM and GP models, respectively. The
mean absolute errors (MAEs) are given in kcal/mol for the barriers and Å for the distances.

Target
Input Average Errora Lowest Error

Prop rdimb AA:BB:BA AR MAE r2 MAE r2

∆E‡ Pc 46 19:12:15 80% 0.84 ± 0.02 0.926 ± 0.003 0.78 0.935
∆E‡ Pc 46 19:12:15 80% 1.37 ± 0.02 0.799 ± 0.007 1.31 0.809
∆E‡ NBOd 115 53:29:33 86% 0.79 ± 0.02 0.912 ± 0.005 0.74 0.931
∆E‡ NBOd 115 53:29:33 86% 1.33 ± 0.01 0.425 ± 0.108 1.29 0.503

dH· · ·H Pc 100 42:22:36 82% 1.88·10-2 ± 6·10-4 0.774 ± 0.013 1.70·10-2 0.808
dH· · ·H Pc 100 42:22:36 82% 2.77·10-2 ± 9·10-4 0.473 ± 0.034 2.53·10-2 0.572
dH· · ·H NBOd 28 13:7:8 52% 1.94·10-2 ± 4·10-4 0.744 ± 0.010 1.84·10-2 0.781
dH· · ·H NBOd 28 13:7:8 52% 2.50·10-2 ± 2·10-4 0.563 ± 0.010 2.46·10-2 0.577

aFrom ten repetitions with a training:validation:test split of 80:10:10 (black) or 20:40:40 (purple); bAfter

pruning the AABBA representation with respect to the GBM relevances; cI.e. PA, PB, and PAB generic

property sets; dI.e. PA,NBO, PB,NBO, and PAB,NBO NBO property sets. See the Appendix for further

details.

In the prediction of the barriers and distances with generic properties, the lowest errors,

i.e. MAE = 0.78 kcal/mol and 1.70 · 10−2 Å (Table 6), respectively, were either larger than

or similar to those found with the GP (Table 5) and systematic NN (Table 1) models. In

the predictions based on NBO properties, the model yielding MAE = 0.74 kcal/mol and

r2 = 0.931 for the prediction of the barriers was the most accurate of the series reported in

this work. For the distances, the performance level was lower than that of the GP and higher

than that of the systematic NNs, with MAE = 1.84·10−2 (Table 2). In a final experiment, we

explored small-data training with the reduced representations using a training:validate:test

ratio of 20:40:40, and, in line with the GP results, moderate accuracies were only achieved

in the prediction of the energy barriers.

In general, dimensionality could be significantly reduced to increase accuracy with both

the GP and NN models, in line with previous observations made for similar ML models lever-

aging only atom–atom autocorrelations.45 To some extent, this behavior could be expected

in a framework in which the dimensionality of the largest representations is similar to the

total number of data points available for training the models. Compared to the systematic
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models shown in Tables 1 and 2, in which the inputs were manually set, the GBM-engineered

AABBA representations achieved higher accuracies in the prediction of both targets with

both property types, though often by a small margin. This simplification of the vI,MD
AABBA

vector did not alter the nature of the properties yielding the lowest MAEs; i.e. generic

for the prediction of the distances and NBO for the barriers (Tables 5 and 6). Another

common trend between the GP and NNs is that the most accurate models using generic

properties needed more dimensions for predicting the distances than the barriers, whereas

the opposite was true with the NBO properties. These results also showed that, for these

regression tasks, accumulating all possible AABBA terms into a large-dimensional vector is

not an efficient strategy. Interestingly, in all cases, the bond–bond and bond–atom terms

extending the conventional atom–atom autocorrelations accounted for 50-60% of the reduced

representation.

Conclusions

In this work, we showed how to extract features from a molecular graph encoding informa-

tion on both atomic and bond properties. This was implemented by following two distinct

approaches: 1) Concatenation of atom–atom, bond–bond, and bond–atom autocorrelation

terms, as implemented in the AABBA(I) kernel; and 2) Merging atom and bond properties

into vectors that were subsequently autocorrelated into a smaller dimensionality representa-

tion, as implemented in the AABBA(II) kernel. The AABBA(I) kernel was implemented in a

modular way, allowing for using the AA-AC, BB-AC, BB-AC, and BA-AC autocorrelations

as stand-alone independent kernels.

The vectors generated by the AABBA kernels were assessed in the prediction of the energy

barriers and breaking H· · ·H distances of the Vaska’s dataset. In a systematic approach

gradually adding complexity and dimensionality to the input of NN models, we found that,

when used independently, the bond–bond kernels, especially the BB-AC, were performing

at a level similar to that of the AA-AC baseline. Once all these kernels were combined into
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AABBA(I), the resulting representation outperformed the AA-AC by a significant margin.

High accuracies could be obtained with this kernel using both generic and NBO properties. In

general, the influence of the origin, property operator, and maximal depth on the performance

of the NNs was either moderate or small. Interestingly, the accuracies achieved with the

lower-dimension AABBA(II) kernel were similar (barrier) or higher (distance) than those of

AABBA(I), showing the potential benefits of dimensionality reduction in this context.

After maximizing the dimensionality of the representation with the AABBA(I) kernel,

GBM models were used to quantify feature relevance in the prediction of the Vaska’s barriers

and distances. Among the 20 most important features, ca. half of them were extracted by the

BB-AC, BB-AC, and BA-AC components of the kernel, showing the advantage of leveraging

bond properties in these regression tasks. Feature relevance also allowed for interpreting

the predictions, showing that, whereas the barriers were mostly related to global features

encoding electronic structure information, distances were more connected to local metal-

centered features encoding bond information. Dimensionality reduction was also explored

with GP and NN models in which the dimensions of the AABBA(I) representation were

gradually removed according to the feature relevances found by the GBMs. This approach

proved efficient, yielding many of the most accurate models reported in this study. In line

with the GBM results, ∼50% of the reduced autocorrelation vector dimensions were extracted

by a kernel component operating on bond properties.

In summary, this work showed that the Moreau-Broto atom–atom autocorrelation kernel

on molecular graphs can be extended to include bond–bond and bond–atom terms, increas-

ing the accuracy of the ML models in which the resulting vectors are leveraged as input.

For optimal results with the AABBA(I) kernel, we recommend performing dimensionality

reduction to simplify the input and achieve higher accuracies. If this feature engineering

approach is too involved for the application intended, the AABBA(II) kernel does virtually

the same in an implicit and simple manner, achieving similar accuracies. Further, if accuracy

is not critical, the stand-alone use of the bond–bond kernels, in particular the BB-AC, can
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also yield satisfactory results at a level close to that of the conventional AA-AC kernel and

with the advantage of using a smaller dimensionality representation.

Supporting information

The SI provides further information about the maximal metal-centered depths, computa-

tional details of the NN, GBM, and GP models, and additional details about feature rele-

vance and dimensionality reduction.

Data and code

The code of the AABBA graph kernels is openly available at github.com/lmoranglez/

AABBA. This URL also provides access to the u-NatQG graphs of the Vaska’s complex

dataset, the associated AABBA vectors, and the code of all ML models reported in this work.

The HyDGL program was used to generate the u-NatQG graphs (github.com/hkneiding/

HyDGL).
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Appendix

Atom–Atom Autocorrelation

The original atom–atom autocorrelation (AA-AC) of Moreau and Broto44 (Figure 2) transforms any con-

nected molecular graph G into a fixed-length vector, vAA, regardless of the size of G. The calculation of vAA

is based on the autocorrelation function

fAC(NG , p, d) =

NG∑
i=1

NG∑
j=1

pipjδd,di,j
(2)

where NG is the number of atomic nodes in the molecular graph, p is an atomic property (e.g. the atomic

number), i and j are atomic indices, pi and pj are the correlated properties of atoms i and j, and δ is the

Kronecker delta; i.e. δd,di,j = 1 for d = di,j and 0 for d ̸= di,j , where d, the depth, is the distance in the

number of edges (i.e. chemical bonds) along the shortest path connecting the atomic nodes i and j. The

fAC function is permutation invariant relative to the (i, j) indices of G.

The visual intuition behind Equation 2 is the use of the skeletal formula of a TMC as a computational

graph (Figure 2) in which the properties of the atoms are correlated by multiplication to those of the

neighborhood at a given depth, adding the resulting values to obtain the components of the autocorrelation

vAA vector. Since, in general, the dimensionality of this vector is smaller than that of the associated graph,

the G ⇒ vAA transformation can be seen as a data compression operation yielding a molecular fingerprint.

The vAA vector is generated by collecting the fAC values at different depths (Figure 2), as shown in

Equation 3

vAA(D) = (fAC(d = 0), fAC(d = 1), ..., fAC(d = D)) (3)

where d is expanded from d = 0 to the maximum depth of the representation, D, in +1 increments; i.e.

d ∈ {0, 1, 2..., D}.

The vAA vector is further extended by expanding the property p to a set of K atomic properties, PA;

i.e.

PA = {PA,1, PA,2, PA,3..., PA,K} (4)
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from which, considering the depth, results

vAA(P,D) =

(fAC(PA,1, d = 0), ..., fAC(PA,1, d = D), ...,fAC(PA,K , d = 0), ..., fAC(PA,K , d = D))

(5)

with an overall dimensionality of

dim(vAA) = (D + 1)×K (6)

For example, the use of the atomic number (Z) and covalent radius (R) as properties (vide infra) for a

maximum depth of 3 yields the following eight-dimensional autocorrelation vector:

vAA = (Z0, Z1, Z2, Z3, R0, R1, R2, R3) (7)

In addition to the depth and the atomic properties, the autocorrelation algorithm depends on two more

variables; namely 1) the definition of the d = 0 origin, and 2) the arithmetic operator applied to the

properties.

For mononuclear TMCs, the metal atom is a natural and unambiguous choice for setting the depth origin

(Figure 3) from which metal-centered (MC) autocorrelations can be computed with this equation:

fAC(NG , p, d) =

NG∑
j=1

pMpjδd,dM,j
(8)

where M is the metal center index. The other possibility is to do a full (F) autocorrelation in which all

nodes are recursively used as the d = 0 origin once (i.e. Equation 2). Whereas the full AA-AC can compress

more information into the vAA vector, the metal-centered flavor can express electronic and steric properties

over the {α, β, γ, ...} positions around the metal center, which are equivalent to d = 0, 1, 2, ..., in a way that

organometallic and inorganic chemists can relate intuitively to proximal and distal effects.
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Regarding the arithmetic operator, and besides the product autocorrelation (⊙), which is the one most

commonly used, division, summation, and subtraction,

fAC(NG , p, d) =

NG∑
i=1

NG∑
j=1

pi
pj

δd,di,j
(9)

fAC(NG , p, d) =

NG∑
i=1

NG∑
j=1

(pi + pj)δd,di,j (10)

fAC(NG , p, d) =

NG∑
i=1

NG∑
j=1

(pi − pj)δd,di,j
, (11)

can also be used and referred to as ratiometric (⊘; Equation 9), summetric (⊕; Equation 10), and deltametric

(⊖; Equation 11) autocorrelations.

For TMCs, another possibility is to compute autocorrelations with distinct scopes reflecting the coor-

dination geometry.45 For example, for a trigonal bipyramid TMC, it is possible to define separate terms

for the axial and equatorial ligands. This option was not considered in the present study since we were

interested in generalizing the AABBA graph kernels over datasets containing a wide range of different coor-

dination geometries. For example, the tmQMg dataset41 contains thousands of linear, bent, trigonal planar,

tetrahedral, square planar, trigonal bipyramid, square pyramid, and octahedral complexes.

Bond–Bond Autocorrelation

Adding to the AA-AC term, and inspired by the donor-acceptor interactions between bond orbitals in NBO

analysis (Figure 1), we developed the bond–bond autocorrelation concept (BB-AC; Figure 2). In the full

BB-AC implementation, bond properties are autocorrelated with the same fAC function used to compute

AA-AC, considering all bonds as the depth origin once. For this purpose, Equation 2 is reinterpreted as if

the chemical bonds were the graph nodes; i.e. NG is the number of bonds in the molecular graph, p is a

bond property, i and j are bond indices, pi and pj are the correlated properties of bonds i and j, and, in the

Kronecker delta δd,di,j
, d is the distance in the number of atoms along the shortest path connecting bonds i

and j.
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At the computational graph level (Figure 2), the visual interpretation of BB-AC is analogous to that

of AA-AC, now feeding the product operator with bond properties instead of atom properties. As for

vAA, the BB-AC autocorrelation vector, vBB , is composed with Equation 5 after collecting the values of

its components at different depths for different properties, which can be calculated using any of the four

arithmetic operators (equations 2 and 9-11). The set of properties is

PB = (PB,1, PB,2, PB,3..., PB,L) (12)

which contains L bond properties and, in general, L < K because there are more properties available to

describe the atoms than the bonds. The resulting dimensionality is thus

dim(vBB
AC ) = (D + 1)× L (13)

Figure 8: Definition of the edge origin e0 (red ellipse) in the metal-centered BB-AC autocorre-
lation. The dotted-line black circle comprises the metal center and the bonds connected to it.

The metal-centered BB-AC requires redefining the depth origin (Figure 3). Whereas in AA-AC the origin

is trivial and unique for any mononuclear TMC, in BB-AC the origin involves several bonds connecting the

metal center to the ligands. Figure 8 illustrates how we implemented the BB-AC depth origin; the index of

the metal center is used to identify the bonds involving it, which, as a whole, form the edge origin, e0, at

d = 0; i.e. e0 is the following set of metal-ligand bond edges:

e0 = {e0,1, e0,2, ..., e0,CN} (14)

where CN is the coordination number of the metal center.
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The properties of e0, pe0 , are calculated by either averaging the properties of the edge set:

pe0(CN, p) =

CN∑
i=1

pe0,i

CN
(15)

or summing them up:

pe0(CN, p) =

CN∑
i=1

pe0,i (16)

Once the edge origin and its properties are defined, the metal-centered BB-AC autocorrelations are

calculated with this function:

fAC(NG , p, d) =

NG∑
j=1

Pe0pjδd,de0,j
(17)

and the resulting vBB vector, which collects all property and depth dimensions as in Equation 5, is labeled

either BB-AC or BB-AC, depending on whether Pe0 is equal to pe0 or pe0 , respectively.

Bond–Atom Autocorrelation

Further adding to the AA-AC and BB-AC terms, we also implemented the bond–atom autocorrelations

(BA-AC; Figure 2), which were inspired by both NBO analysis and the coupling between embedded atom

and bond properties in message-passing graph neural networks (Figure 1). The full BA-AC is implemented

with this equation:

fAC(NG,V , NG,E , p, d) =

NG,V∑
i=1

NG,E∑
j=1

pipjδd,di,j (18)

where NG,V and NG,E are the number of atomic nodes and bond edges in the molecular graph, respectively,

pi and pj are the correlated properties of atom i and bond j, and, in the Kronecker delta δd,di,j
, d is the

distance in number of atoms between node i and bond j. The computational graph underlying Equation 18

is shown in Figure 2.

The metal-centered BA-AC is computed with this equation:

fAC(NG,E , p, d) =

NG,E∑
j=1

pMpjδd,dM,j
(19)

where pM is an atomic property of the metal center. As for AA-AC and BB-AC, the BA-AC autocorrelation

vector, vBA, is composed using Equation 5 to gather all depth and property dimensions.
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The product between the atomic and bond properties, which belong to sets of different dimensionality

(Equations 4 and 12), was implemented as follows:

pipj =

L∑
l=1

pipj,l (20)

where, for pj , L is the dimensionality of the bond property set and, for pi, i is either any graph node

(full BA-AC) or the metal (metal-centered BA-AC). Thus, in both cases, the final dimensionality of the

representation is

dim(vBA) = (D + 1)×K (21)

where K is the dimensionality of the atomic property set.

The mixing of atomic and bond properties in Equation 18 may suggest that the term crosscorrelation

could be more appropriate than autocorrelation for referring to BA-AC. However, since both terms have

additional and different meanings in the field of signal processing, we decided to keep the autocorrelation

term originally proposed by Moreau and Broto for molecular graphs.44

Atomic and bond properties

The vAA vector can be derived from a set of features including atomic properties (PA) that can be generic

(e.g. extracted from the periodic table). In this work, we used this popular PA set for TMCs:

PA = {Z, I, V,R, χ} (22)

From a chemical perspective, the most relevant properties are the atomic number (Z), the covalent radius

(R), and the electronegativity (χ). The properties I and V are relevant from both a chemical and a graph

theory perspective: V is the atomic valence, which is equal to the node degree (i.e. number of neighbors

connected to a node), and I, which is either 0 or 1, indicates the absence or presence, respectively, of a node

at any given depth in the graph paths walked by the autocorrelation algorithm (Equation 2).

With this simple set of properties, the AA-AC autocorrelations already provide rich information about

the systems they encode, including chemical composition and environment, through Z and V , and steric

bulk, through R. Further, the variation of I over d = 0, 1, ..., D reflects the shape of the TMC (e.g. linear

versus branched), and, by changing the arithmetic operator, additional information can be included in the

vAA vector; e.g., bond polarization can be encoded by applying the subtraction operator (Equation 11) to χ

(i.e. deltametric electronegativity).
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For the vBB vector, we used this set of bond properties:

PB = {BO, I,BD } (23)

to compute the BB-AC autocorrelations, where BO is the bond order, I is the identity, which has the same

meaning as in PA, and BD is the bond distance in Å, which gives further geometric information in addition

to that provided by R and I in PA.

Table 7: NBO properties included in the atomic (PA,NBO) and bond (PB,NBO) property sets.a

PA,NBO PB,NBO

Z Atomic number BD Bond distance (Å)
qNat Natural charge (e) BONat Natural Wiberg bond order
VNat Natural valence index NBN # bonding NBOs
Ns # s electrons in nat. config. BNE E of highest-lying BN (Ha)
Np # p electrons in nat. config. BN∆E Lowest/highest-lying BN E gap (Ha)
Nd # d electrons in nat. config. BNOcc Electron occupancy of highest-E BN
NLP # Lone pairs BNs s-character of highest-E BN (%)
LPE E of highest-lying LP (Ha) BNp p-character of highest-E BN (%)
LP∆E Lowest/highest-lying LP E gap (Ha) BNd d-character of highest-E BN (%)
LPOcc Electron occupancy of highest-E LP NBN∗ # non- & anti-bonding NBOs
LPs s-character of highest-E LP (%) BN∗

E E of lowest-lying BN∗ (Ha)
LPp p-character of highest-E LP (%) BN∗

∆E Lowest/highest-lying BN∗ E gap (Ha)
LPd d-character of highest-E LP (%) BN∗

Occ Electron occupancy of lowest-E BN∗

NLV # Lone vacancies BN∗
s s-character of lowest-E BN∗ (%)

LVE E of lowest-lying LV (Ha) BN∗
p p-character of lowest-E BN∗ (%)

LV∆E Lowest/highest-lying LV E gap LV (Ha) BN∗
d d-character of lowest-E BN∗ (%)

LVOcc Electron occupancy of lowest-E LV
LVs s-character of lowest-E LV (%)
LVp p-character of lowest-E LV (%)
LVd d-character of lowest-E L (%)

aAbbreviations: # = Number of; E = Energy; Nat. = Natural; LP = Lone Pair; LV = Lone Vacancy;
Config. = Configuration; BO = Bond Order; NBOs = Natural Bond Orbitals; BN = Bonding NBO;

BN∗ = Non- and anti-bonding NBOs.

Except for the bond distance, the properties included in the PA and PB sets are generic, thus having

a limited capacity in distinguishing different chemical environments; e.g. the C atom of any R–CH2–R’

fragment is described with the same PA values regardless of the nature of R and R’. This limitation can be

tackled by using specific electronic structure properties from inexpensive quantum mechanical calculations.

In a recent study, we showed that the leverage of this electronic structure information in graph neural

networks boosts the prediction accuracy of the resulting models to an extent larger than that provided by

geometric information.41 In the present work, we investigated the use of NBO data in the computation of

the autocorrelation vectors.
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The set of NBO atomic properties, PA,NBO, includes the atomic number, the natural charge and valence

index, the number of lone pairs (LP) and vacancies (LV), and the electron occupancies and symmetries of

the highest- and lowest-energy LP and LV orbitals, respectively. The set of NBO bond properties, PB,NBO,

includes the same information for the bonding and antibonding valence orbitals, as well as the natural bond

order and the bond distance. Table 7 provides a systematic list of all NBO data included in PA,NBO and

PB,NBO.

Whole-graph properties

We defined a set of whole-graph properties; i.e.

PG = {q,M,NAt, Ne}, (24)

which contains the charge of the metal complex (q), its molecular mass (M), and the total number of atoms

(NAt) and electrons (Ne). These properties were appended to the end of the AABBA autocorrelation vector

(vide infra) in the ML models:

vGAABBA = vAABBA ⊕ PG (25)

where ⊕ denotes the vector concatenation operation and vAABBA is either vIAABBA or vIIAABBA, as described

in the next section.

Atom–Atom Bond–Bond Bond–Atom Autocorrelations

With the aim of developing a molecular graph-to-vector transformation in which both atom and bond

properties are autocorrelated separately and jointly, we developed an atom–atom bond–bond bond–atom

AABBA graph kernel yielding vAABBA autocorrelation vectors through two distinct implementations that

can be regarded as being either explicit or implicit.

In the explicit implementation of the graph kernel, AABBA(I), the resulting vector representation,

vIAABBA, was composed by simply joining the AA-AC, BB-AC, and BA-AC autocorrelations as follows:

vIAABBA = vAA ⊕ v BB ⊕ vBA (26)

which has dimensionality

dim(vIAABBA) = (D + 1)× (2K + L) (27)
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where D = maximum depth, K = dim(PA), and L = dim(PB); the NBO PA,NBO and PB,NBO property

sets can be also correlated, expanding the dimensionality of the resulting representations.

In the implicit implementation, AABBA(II), the vIIAABBA vector was computed with the bond–bond

autocorrelation function, as defined in Equation 17, applied to property sets that describe both the bond

and the atoms associated to it (PAB); in particular, for any i–j bond edge connecting the atomic nodes i

and j, we considered these three sets based on generic properties:

PAB,1 = {Zi, Zj , Vi, Vj , χi, χj , BD,BO, I};M = 9

PAB,2 = {Zi, Zj , Vi, Vj , χi − χj , BD,BO, I};M = 8

PAB,3 = {Zi, Zj , Vi, Vj , χi − χj , Ri, Rj , BO, I};M = 9

(28)

In PAB,1, each bond is described by its distance and order, whereas the associated atoms are described by

their atomic number, valence, and electronegativity. In PAB,2, the latter is replaced by the χi−χj difference,

which accounts for the polarization of the i–j bond. Lastly, in PAB,3, the bond distance is replaced by the

covalent radii of the atoms to yield a geometry-agnostic representation. We also defined two additional PAB

sets based on NBO properties:

PAB,4 = {qNat,i, qNat,j , VNat,i, VNat,j , Ns,i, Ns,j , Np,i, Np,j , Nd,i, Nd,j , NLP,i, NLP,j , NLV,i, NLV,j ,

BD,BONat, NBN , BNs, BNp, BNd, NBN∗ , BN∗
s , BN∗

p , BN∗
d , I};M = 25

(29)

PAB,5 = {qNat,i, qNat,j , VNat,i, VNat,j , NLP,i, NLP,j , LPE,i, LPE,j , LP∆E,i, LP∆E,j ,

NLV,i, NLV,j , LVE,i, LVE,j , LV∆E,i, LV∆E,j , BD,BONat, NBN , BNE , BN∆E ,

NBN∗ , BN∗
E , BN∗

∆E , I};M = 25

(30)

where PAB,4 is rich in orbital symmetry information whereas PAB,5 is rich in orbital energy information.

The resulting autocorrelations were labeled AABBA(II)n, where n is the index of the PAB,n property

set used in their calculation. The dimensionality of the associated vectors is

dim(vIIAABBA) = (D + 1)×M (31)

where M is the number of properties included in the PAB sets, as shown in Equations 28, 29 and 30. Both

the AABBA(I) and AABBA(II)n kernels are available in the full and metal-centered flavors.
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Maximal dimensionality autocorrelation vectors

With the aim of selecting and interpreting features with GBM models, we extended the autocorrelation

vectors to maximal dimensionality (MD). For both the generic and NBO properties, separately, we used the

AABBA(I) graph kernel to compute the vI,MD
AABBA autocorrelation vectors, with the concatenation operation

defined in Equation 26, and including both the BB-AC and BB-AC autocorrelations in the bond–bond term.

Further, all terms were expanded in both full and metal-centered fashions, and using, in this order, the

product, subtraction, division, and summation operators; for example, for the atom–atom autocorrelation:

vAA ∈ vI,MD
AABBA = (v⊙AA ⊕ v⊖AA ⊕ v⊘AA ⊕ v⊕AA)full ⊕ (v⊙AA ⊕ v⊖AA ⊕ v⊘AA ⊕ v⊕AA)MC (32)

in which each vector component was expanded from depth zero to six (Figure S1).
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