
An introductory tutorial to the
SEEKR2 (Simulation enabled
estimation of kinetic rates v. 2)
multiscale milestoning software
[Article v1.0]
Anupam Anand Ojha1*, Lane William Votapka1, Gary Alexander Huber1, Shang
Gao1, Rommie Elizabeth Amaro2*

1Department of Chemistry and Biochemistry, University of California San Diego, La Jolla,
California, 92093, United States; 2Department of Molecular Biology, University of
California San Diego, La Jolla, California, 92093, United States

Abstract
SEEKR2 (Simulation enabled estimation of kinetic rates v. 2) is a powerful and versatile software
tool designed to computationally estimate the kinetics and thermodynamics of complex molecu-
lar processes, particularly emphasizing the process of receptor-ligand binding and unbinding. We
present a suite of tutorials for the SEEKR2 (Simulation enabled estimation of kinetic rates v. 2)
multiscale milestoning software. This tutorial presents a comprehensive guide for users offering
the best practices for preparing, executing, and analyzing molecular dynamics (MD) and Brown-
ian dynamics (BD) simulations using SEEKR2. This tutorial highlights the advancements presented
in SEEKR2 - the latest iteration within the SEEKR programs, including significant improvements in
speed and capabilities compared to its earlier versions. SEEKR2 now supports both NAMD and
OpenMM simulation engines, providing users with more flexibility in their simulation setups. Addi-
tionally, the BD component has been upgraded to the Browndye2 engine, enhancing the accuracy
and efficiency of simulations. This tutorial aims to guide users to install SEEKR2, run MD and BD
simulations within the framework of the SEEKR2 program, and analyze and interpret the kinetics
and thermodynamics of binding and unbinding of model host-guest systems, thereby demonstrat-
ing its ease of usability and extensible features that allow for future expansions of the method.
This tutorial equips users with the necessary knowledge to effectively prepare, execute, and ana-
lyze simulations using SEEKR2. By following the best practices outlined in the tutorial, users can
leverage the power of the SEEKR2 program to gain insights into complex molecular processes and
accelerate their understanding of key biomolecular interactions.

*For correspondence:
aaojha@ucsd.edu (AAO); ramaro@ucsd.edu (REA)

1 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

aaojha@ucsd.edu
ramaro@ucsd.edu
https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

TUTORIAL OUTLINE

Section 1: Introduction

□ Scope of tutorials
□ Learning outcomes
Section 2: Prerequisites

□ Background knowledge and experience
□ Software and hardware requirements
Section 3: Background and Theory

□ Brownian dynamics
□ Markovian milestoning with Voronoi tessellations
□ The SEEKR2 framework
Section 4: SEEKR2 Installation

□ Creating a new conda environment
□ Installing SEEKR2 dependencies
□ Installing Browndye
□ Conda installation of SEEKR2
□ Installing SEEKR2 from source
Section 5: SEEKR2 tutorials

□ Basic Tutorial: β-cyclodextrin (host)-guest complexes
□ Advanced Tutorial: Trypsin-benzamidine complex
Section 6: SEEKR2 benchmarking
Section 7: Conclusion

1 Introduction
Significant progress has been made in computational
biophysics since the 1970s with the advent of powerful com-
puters and the development of molecular dynamics (MD)
simulations and other computational techniques, enabling
researchers to understand complex biological processes at
the atomic level. Capitalizing on large-scale MD simulations
and advanced computational approaches, this field pro-
vides useful perspectives into the molecular complexities
of biological entities. From visualizing MD in real-time to
predicting protein structures and drug-receptor interactions,
the tools at our disposal have expanded precipitously.
Techniques such as enhanced MD dynamics sampling and
multiscale modeling emphasize the extent of its capabilities
[1–8]. Such advancements not only elucidate kinetic and
thermodynamic properties of interest in complex systems
but also pave the way for transformative drug design and
molecular biology breakthroughs [1, 9]. Among the recent
advances, SEEKR2 (Simulation enabled estimation of kinetic
rates v. 2) has emerged as a powerful tool to compute the ki-
netics and thermodynamics of complex biological processes,

such as receptor-ligand binding and unbinding [10–14].
SEEKR2 is a multiscale simulation method that combines MD
and Brownian dynamics (BD) simulations to compute the
receptor-ligand binding (kon) and unbinding (koff) rates whileproviding valuable insights into the underlying mechanisms.
1.1 Scope of tutorials
This tutorial aims to provide a comprehensive understand-
ing of the SEEKR2 multiscale milestoning software with
detailed instructions to install the software, step-by-step in-
structions to set up SEEKR2 simulations, analyze the results,
and interpret the kinetic and thermodynamic quantities
obtained from simulations. Clear instructions and exam-
ples ensure users quickly adapt the tutorial and apply the
SEEKR2 framework to their specific systems of interest. The
authors expect this tutorial to serve as a practical guide for
researchers interested in using this method to investigate
receptor-ligand binding and unbinding kinetics.
1.2 Learning outcomes
Upon completion of the tutorial, readers should be able to:

• Conceptualize SEEKR2 framework

– Understand the underlying theory behind the
SEEKR2 framework.

– Understand the multiscale nature of SEEKR2 sim-
ulations, i.e., MD and BD simulations within the
SEEKR2 framework.

• Setup and Installation
– Install necessary dependencies for SEEKR2 instal-
lation.

– Install the SEEKR2 package either by conda instal-
lation or directly from source.

– Identify key configuration files and their purposes.
• Run SEEKR2 simulations

– Hands-on experience with SEEKR2 simulations
for the host-guest and trypsin-benzamidine
complexes.

– Walk through the three stages of SEEKR2 calcula-
tions for each complex, i.e., prepare, run, and ana-
lyze.

– Outline the key steps and procedures involved in
each stage.

– Use SEEKR2 commands to initiate and monitor
simulations.

• Post-SEEKR2 simulation analysis and troubleshoot-
ing

– Analyze and interpret free energy profiles gener-
ated from SEEKR2 simulations.

2 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

– Troubleshoot common issues that may arise dur-
ing SEEKR2 simulations, utilizing the documenta-
tion and community resources effectively.

2 Prerequisites

2.1 Background knowledge and experience
To ensure a successful installation and effective utilization
of the SEEKR2 software, users are recommended to possess
foundational knowledge in several key areas. Familiarity with
the following topics prior to proceeding with the installation
and utilization of SEEKR2 will greatly facilitate the process
and enhance the ability of users to harness the full potential
of SEEKR2:

• Linux: SEEKR2 runs on Linuxmachines, necessitating a
working knowledge of Linux commands. Users should
be comfortable navigating the Linux file systems,
executing commands with the Linux environment, and
managing files using the terminal interface.

• Anaconda: Experience with Anaconda, a popular pack-
agemanager and environmentmanagement system, is
required for installing SEEKR2. Users should be familiar
with creating new conda environments, managing and
installing conda packages, and activating or deactivat-
ing environments as necessary.

• MD simulations using OpenMM: Prior experience in
running MD simulations using the OpenMM engine is
crucial for effectively utilizing SEEKR2. Users should
have a substantial understanding of MD simulation
principles, such as force fields, integrators, and sim-
ulation parameters and their implementation in the
OpenMM simulation engine [15].

• Force field parameterization using Amber: It is
beneficial for users to be familiar with AmberTools,
especially with Amber’s antechamber and LEaP pro-
grams for force field parameterization and system
preparation, respectively. LEaP is essential for system
preparation, including solvation, ion addition, and
force field assignment, while the antechamber pro-
gram is employed for parameterizing small molecules.
Familiarity with these tools ensures smooth integration
into the SEEKR2 workflow [16, 17].

• Research collaboratory for structural bioinformat-
ics (RCSB) protein data bank: To initiate a SEEKR2
simulation, users need a Protein Data Bank (PDB) file,
which can be obtained from the RCSB Protein Data
Bank (https://www.rcsb.org). Users should be familiar
with searching for specific PDB files and downloading
them from the database for use in SEEKR2 simulations.
Alternatively, one may obtain structures or systems

already prepared for simulation from collaborators or
a previous study.

2.2 Software and hardware requirements
Using Anaconda or Miniconda to install SEEKR2 is recom-
mended because their package and environment manage-
ment capabilities ensure easy installation and compatibility.
Users can either install from the conda-forge channel or
manually install SEEKR2 from the source code, but the latter
approach can be more time-consuming and error-prone.
MD simulations in the SEEKR2 framework are run using the
OpenMM or the Nanoscale Molecular Dynamics (NAMD)
simulation engines. The OpenMM engine can be installed
simultaneously during the conda installation of the SEEKR2
OpenMM plugin when users select to install the SEEKR2
package through conda-forge. OpenMM must be installed
from source (See section 4.5.1) when users opt to install
SEEKR2 from the source code. Alternatively, if OpenMM
is not available or preferred, users can opt for the NAMD
simulation engine. NAMD is a parallel MD code commonly
accessible on computing clusters and supercomputers. It
should be noted that although NAMD is a viable option for
basic applications, not all SEEKR2 functionalities may be
supported. Instructions for NAMD installation can be found
at https://www.ks.uiuc.edu/Research/namd/.
Users may want to use a GPU-enabled machine to
achieve higher-speed OpenMM simulations through
the SEEKR2 framework. Following the instructions at
https://developer.nvidia.com/cuda-toolkit or https://docs.nvidia.
com/cuda/cuda-installation-guide-linux/index.html is highly rec-
ommended to download and install CUDA. Browndye2 must
be installed for kon calculations using BD simulations. Please
refer to section 4.3 for instructions to install Browndye2.
To execute SEEKR2 simulations, users must have access to a
Linux-based machine. Simulations can be carried out with
just one processor, though this will be very slow for systems
of interest in biomedical research and drug discovery. A GPU
device or cluster is recommended for optimal performance
of MD engines. When working with large receptor-ligand
complexes, faster processors and greater memory capacity
may be required to implement SEEKR2 calculations suc-
cessfully. Users are advised to run the simulations while
monitoring the resource usage to estimate the necessary
storage and memory. Employing multiple processors for
SEEKR2 simulations within each anchor is recommended for
BD simulations, where multiple processors can be utilized.
When the NAMD simulation engine is used, employing
multiple CPU processors will also accelerate the calculations.
However, when using OpenMM, increasing the number of
CPU processors may not lead to faster simulation speeds.

3 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://www.rcsb.org
https://www.ks.uiuc.edu/Research/namd/
https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

3 Background and Theory

3.1 Brownian dynamics
To compute the association rate constant (kon) for receptor-ligand complexes, we must use BD. BD simulations are
computationally less expensive as compared to MD simu-
lations due to implicit solvent and approximations such as
the often-used rigid body approximation. Moreover, the
encounter-based approach focuses on the initial stages
of the binding process when the ligand is far from the
receptor-binding site, and the approximations in BD suffice
as a physical description. Explicit electrostatic interactions
are considered between the protein and the ligand, which is
particularly important for receptor-ligand complexes where
electrostatic forces play a significant role in molecular recog-
nition and binding. Browndye [18] is a software package that
runs the BD simulations to compute the second-order rate
constants for encountering two molecules using a simplified
physical model.
Brownian dynamics describes motion at a mesoscopic level,
in which models of large molecules are usually simplified to
smaller collections of rigid bodies, and the solvent is treated
using continuum theories [19] instead of explicitly with indi-
vidualmolecules. A recent review summarizes theoretical de-
tails, commonmethods and software, and some of the most
recent applications of BD [20]. Considering Newton’s equa-
tions ofmotion and assuming a separation between the time
scales of themacromolecules and the solventmolecules, one
can derive the following stochastic differential equation of
motion [21]:

dx = –(kBT)–1D · ∇Vdt +√2dtD ·W (1)
where V is the potential energy of the system and the vec-
tor, x represents the state variables, such as positions and
orientations of the solute molecules (solvent molecules are
not typically explicitly included). The matrix, D (generalized
diffusivity), represents the dynamic effects of the solvent, i.e.,
the hydrodynamic damping causedbymotion through afluid
and the addition of thermal energy. The vector,W of uncorre-
lated randomnumbers following a unit Gaussian distribution
gives stochastic effects. It is worth noting that the presence
of the temperature, along with Boltzmann’s constant, affects
the thermal fluctuations. Like the MD models, there exists
a force term (the gradient of the potential energy) in the BD
model with components that include intermolecular electro-
statics and also the averaged effects of the solvent, such as
hydrophobic and solvent dielectric effects. As an example of
the latter, the Browndye2 engine uses the software package
APBS (Adaptive Poisson-Boltzmann Solver) to compute the
electric field around amacromolecule, given the bulk proper-

Figure 1. Computation of association rate using the Luty-McCammon-Zhou method

ties of the solvent and dissolved ions [22]. Because BD sim-
ulations encompass several approximations from MD simu-
lations, the number of variables is significantly reduced, and
the time step dt can be in orders of magnitude larger than
that used in MD simulations. In the case of the receptor-
ligand complexes presented in this tutorial, both the receptor
and the ligand are treated as rigid bodies at the BD level.
Given the simplifications and speedup of using BD simu-
lations, it is possible to generate elongated trajectories of
the ligand in the space around the receptor to estimate
the association rate. Browndye2 uses the Luty-McCammon-
Zhou algorithm (Figure 1) [23] (a variation of the earlier
Northrup-Allison-McCammon algorithm [24]), which gener-
ates multiple trajectories, each of which ends either in an
encounter with the receptor, or an escape. The ligand is
started on a sphere surrounding the receptor and moves
until it either reaches a final encounter with the receptor or
reaches another sphere, larger and concentric with the first.
If it reaches this second sphere, it either escapes, ending the
trajectory, or it is placed back on the first sphere to continue
the trajectory. The probability of the escape versus continu-
ing from the inner sphere depends on several factors, such
as the diameters of the spheres, the total charge on each
system (ligand and the receptor), and the ionic strength of
the solvent. Ultimately, the second-order association rate
constant is computed from the proportion of encounters
to escapes, and therefore a large number of trajectories
are required to estimate that probability precisely. When

4 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

used with SEEKR2, the encounter complex is defined as the
ligand reaching the outermost milestone that encompasses
the MD region. The milestoning calculations, with their
parameters computed from the MD simulations, convert
this initial rate constant into the final rate constant estimate,
which accounts for the atomic details in the binding site, as
described in section 3.2 and 3.3.

3.2 Markovian milestoning with Voronoi
tessellations

A series of mathematical equations are employed in the
SEEKR2 milestoning methodology for calculating the mean
first passage time (MFPT) and free energy related to bind-
ing for each milestone (∆Gi). This tutorial recognizes the
value of revisiting essential equations from our earlier
works. Previous SEEKR2 publications employ the following
mathematical representations [2, 3, 12, 25]. For the sake of
comprehensiveness and to ensure this tutorial remains a
self-contained resource, we have chosen to present these
equations again.
Let us begin by segmenting the phase configuration of a
bimolecular complex into N distinct milestones. The transi-
tions between milestones is described in the transition rate
matrix, Q, of size N × N, which represents the fluxes across
milestones, as shown in equation 2. The matrix Q consists
of diagonal elements, qii, and off-diagonal elements, qij.

Q =

q1,1 q1,2 · · · q1,N
q2,1 q2,2 · · · q2,N...
qN,1 qN,2 · · · qN,N

 (2)

Given the number of transitions between milestones i and j
as Nij, with the ith milestone as the last milestone the trajec-
tory has interacted with, and Ri represents the duration the
trajectory has spent in the particular milestone, the expres-
sions for qii and qij are given by equations 3 and 4 respec-
tively.

qii = –∑
j ̸=i

qij (3)

qij =

Nij
Ri if Ri ̸= 0
0 if Ri = 0 (4)

For a trajectory within the Voronoi cell, Vα, its position and
velocity vectors are denoted as xα and vα respectively. The
position and velocity of this trajectory at time, t + ∆t, as es-
timated by the integrator algorithm (Langevin integrator, at
most times), are given by xα∗ and vα∗. Equations 5 and 6

enforce reflective boundaries to ensure trajectories are con-
fined to their respective Voronoi cells.

xα(t +∆t) =
xα∗ if xα∗ ∈ Vα
xα(t) otherwise (5)

vα(t +∆t) =
vα∗ if xα∗ ∈ Vα
–vα(t) otherwise (6)

The equilibrium probabilities of Voronoi cells Vα and Vβ are
represented by πα and πβ respectively, with the total simula-
tion time within these cells given by Tα and Tβ . A dimension-
consistent normalization factor, T, is given by equation 7.

T =
(n∑

α=1
πα
Tα

)–1
(7)

If Nα
ij denotes the number of collisions with the jth milestone

after last visiting the ith milestone, the total transitions be-
tween the ith and jth milestones, Nij, is given by equation 8.

Nij = T
n∑

α=1
πα

Nα
ij
Tα

(8)
Given Riα represents the time a trajectory spends in Voronoi
cell Vα after its last interaction with the ith milestone, the ag-
gregate time post the last interaction with the ith milestone,
Ri, is given by equation 9.

Ri = T
n∑

α=1
πα

Rαi
Tα

(9)
To compute the stationary probabilities π, onemust consider
both Nα,β (number of collisions in Voronoi cell Vα that occur
at its boundary shared with Vβ) and Nβ,α (number of colli-
sions in Vβ at its shared boundary with Vα), as given by equa-tions 10 and 11.

n∑
β=1,β ̸=α

πβ
Nβ,α
Tβ

= n∑
β=1,β ̸=α

πα
Nα,β
Tα

(10)
n∑

α=1
πα = 1 (11)

Consider ∧
Q as the matrix of size N-1 by N-1 extracted from

the upper left quadrant of Q and 1 represents a vector of
ones, the mean free passage times from each milestone, TN,
can be determined by solving equation 12.

∧
QTN = –1 (12)

The stationary probabilities of the milestones, p, are
obtained by solving equation 13.

Qp = p (13)
5 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

The stationary probabilities for the ith milestone and the ref-
erencemilestone are represented by pi and pref, respectively.Using these parameters, the free energy landscape for the ith
milestone, ∆Gi, is given by equation 14, where kB stands forBoltzmann’s constant and T designates the temperature.

∆Gi = –kBT ln
(

pi
pref

)
(14)

3.3 The SEEKR2 workflow
Let us consider the case of a model receptor-ligand complex
to understand the steps involved in the SEEKR2workflow. Ini-
tially, a structural (PDB) file containing the receptor protein
and the ligand in an explicit solvent is provided as an input
file (Figure 2a).

Figure 2. Different stages of the SEEKR2 simulation framework Figure 3. A MMVT model of a simple Muller potential system withinthe SEEKR2 framework

6 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

We then identify the ligand in the PDB file through its atom
indices. Once the ligand and the receptor protein are iden-
tified, we define a collective variable (CV). In most cases, for
receptor-ligand binding and unbinding processes, we choose
the CV to be the distance between the center of mass (COM)
of α-carbon atoms at the binding site of the receptor and the
COM of the heavy atoms of the ligand (Figure 2b).
Atomistic simulation details are required for receptor-ligand
complexes when the ligand is close to the binding site, and
conformational changes in the receptor are observed as the
ligand slowly unbinds. In cases where the ligand is far from
the receptor-ligand binding site, these two entities can be
treated as point charges. Hence, BD is employed beyond a
cut-off distance defined by the user. Therefore, the phase
space of the receptor-ligand complex is comprised of theMD
region and the BD region (Figure 2c). We further subdivide
the MD region into milestones based on a pre-defined CV.
In one dimension, these milestones are concentric spheres
with radii based on the increasing distance between the COM
of the receptor-ligand binding site and the ligand (Figure 2d).
Independent MD and BD simulations are performed; re-
flective boundary conditions are imposed within the MD
Voronoi cells (Figure 2e). Once the simulation finishes, we
can use milestoning theory to obtain the receptor-ligand
unbinding rate (koff) and the addition of BD theory to obtain
the receptor-ligand binding rate (kon) (Figure 2f). Thermo-
dynamic parameters can then be obtained from the kinetic
rates, kon and koff.To further understand the process of milestoning employed
in the SEEKR2 framework, let us consider a system exhibit-
ing a simple Muller potential, where an energy barrier ex-
ists between the two equilibrium states, A and B (Figure 3a).
Let us define a CV as a distance variable that approximately
describes the transition from state A to state B (Figure 3b).
Anchor points are designated on the distance variable, con-
stituting a one-dimensional Voronoi tesselation (Figure 3c).
Once the anchor points are defined, milestones are placed
between the anchor points (Figure 3d). Independent and par-
allel MD simulations are run in the region defined by two suc-
cessive milestones with reflective boundary conditions.

4 SEEKR2 Installation
Before proceeding with the SEEKR2 installation, we assume
that the user has a working knowledge of Linux and has suc-
cessfully installed the Anaconda or Miniconda distribution
in the system. This tutorial also assumes the user possesses
a computer with one or more graphical processing units
(GPUs) capable of installing GPU-enabled software and
running MD simulations on GPUs.

4.1 Creating a new conda environment
• To verify the installation of conda in our system, we can
run the following command in the terminal:

which conda

If conda is properly installed, it will display the path to
the conda executable.

• We will create a dedicated conda environment for the
SEEKR2 package. We execute the following command
in the terminal to create a new environment named
SEEKR2 with Python version 3.9:

conda create ––name SEEKR2 python=3.9

• To use the SEEKR2 environment, we need to activate it
by executing the following command in the terminal:

conda activate SEEKR2

4.2 Installing SEEKR2 dependencies
• We will ensure that the SEEKR2 conda environment is
activated.

conda activate SEEKR2

• To ensure that the Cython and git packages are in-
stalled, we execute the following commands in the
terminal:

pip install ––upgrade cython

conda install git

• For the proper execution of the tutorial scripts, we in-
stall the Ambertools and mdtraj packages via conda.

conda install -c conda-forge ambertools

conda install -c conda-forge mdtraj

• When installing SEEKR2 from source, we will also need
to install the following additional packages (otherwise,
not required for conda installation of SEEKR2):

conda install numpy

conda install scipy

conda install netcdf4

conda install mpi4py

7 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

conda install swig

conda install -c conda-forge doxygen

To install the ccmake package, sudo privileges are re-
quired (otherwise, not required for conda installation
of SEEKR2). We execute the following command in the
terminal:

sudo apt-get install cmake-curses-gui

To ensure the successful installation of ccmake,
execute the following command:

which ccmake

4.3 Installing Browndye
Browndye2 (the latest version of the Browndye software) is
compatible with various operating systems, including Linux,
BSD, MacOS, and MSWindows. This tutorial will only provide
instructions to install the Browndye package on Linux distri-
butions. The recommended method for installing Browndye
is to download the source code and compile it. Browndye
relies on Ocaml and C++ compilers, with the C++17 version
being the minimum requirement.

• We install the necessary package dependencies based
on the Linux distribution:
ForUbuntu (20.04 and 22.04), we run the following com-
mand in the terminal:

apt-get install make gcc g++ ocaml \
libexpat-dev liblapack-dev apbs

For CentOS 7 distribution, we run the following com-
mands to update the compilers and install the required
packages:

yum install centos-release-scl epel-release

yum install devtoolset-9 ocaml expat-devel \
lapack-devel apbs

scl enable devtoolset-9 bash

• We will download the Browndye2 source code from
https://browndye.ucsd.edu/downloads/browndye2.tar.gz.
We recommend the user, though not required, to
install the software in the home directory. We then
extract the downloaded source code archive and install
BrownDye2 by executing the following commands:

wget https://browndye.ucsd.edu/downloads/
browndye2.tar.gz

tar xvfz browndye2.tar.gz

cd browndye2

make -j 4 all

• Once we have finished unpacking the files, it is impor-
tant to ensure that we include the installation location
of the Browndye2 software in the system’s PATH vari-
able. This will allow us to run the software from any
directory without specifying the full path each time. If
the software has been installed in the home directory,
we can add the path by using the following command:

export PATH=/home/USERNAME/browndye2/bin:\
${PATH}

• To remove the downloaded file that is no longer neces-
sary, move to the folder where Browndye2 is installed
and execute the following command:

rm browndye2.tar.gz

Once the compilation process is complete, Browndye2 will
be installed and ready to use on the Linux distribution.
4.4 Conda installation of SEEKR2

4.4.1 Installing SEEKR2-OpenMM plugin
• If not already activated, we first activate the SEEKR2
conda environment.

conda activate SEEKR2

• We will install the SEEKR2 plugin, which installs the
OpenMM MD engine (version 7.7) and the CUDA
Toolkit version 10.2 (compatible with SEEKR2), along
with installing other dependencies.

conda install -c conda-forge \
seekr2_openmm_plugin cudatoolkit=10.2 \
openmm=7.7

• To test the successful installation of SEEKR2, open a
Python terminal and enter the following command:

python
>>> import seekr2plugin

8 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://browndye.ucsd.edu/downloads/browndye2.tar.gz
https://browndye.ucsd.edu/downloads/browndye2.tar.gz
https://browndye.ucsd.edu/downloads/browndye2.tar.gz
https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

4.4.2 Installing SEEKR2
• If not already activated, we first activate the SEEKR2
conda environment.

conda activate SEEKR2

• It is recommended, though not required, to install the
SEEKR2 program in the homedirectory. So, we navigate
to the home directory.

cd ∼

• We will clone the SEEKR2 Python API repository by run-
ning the following command in the terminal:

git clone https://github.com/seekrcentral/seekr2.git

• We then proceedwith the installation of SEEKR2 Python
API in the cloned seekr2 directory:

cd seekr2

python setup.py install

• Once the installation is complete, it is recommended
to run tests to ensure the proper functioning of SEEKR2.
Fromwithin the seekr2 directory, we execute the follow-
ing command:

python setup.py test

Running the tests may generate one or two failures depend-
ing on the availability of NAMD and Browndye2 software,
which can safely be ignored if these programs are not
required for your specific use case. SEEKR2 is now success-
fully installed on our system, and we can begin utilizing its
features and functionalities.
4.4.3 Installing Seekrtools
Seekrtools is a suite of software utilities designed to
work with SEEKR2 to streamline the preparation pro-
cess and execution of multiscale milestoning simula-
tions. For more comprehensive instructions and tu-
torials, please refer to the official documentation at
https://seekrtools.readthedocs.io/en/latest. Ensuring that
SEEKR2 and OpenMM packages are installed before in-
stalling Seekrtools is crucial, as most programs within
Seekrtools rely on these packages.

• If not already activated, we first activate the SEEKR2
conda environment.

conda activate SEEKR2

• It is recommended, though not required, to install the
seekrtools program in the home directory. So, we navi-
gate to the home directory.

cd ∼

• We will clone the seekrtools Python API repository by
running the following command in the terminal:

git clone https://github.com/seekrcentral/
seekrtools.git

• We then proceed with the installation of seekrtools
Python API in the cloned seekrtools directory:

cd seekrtools

python setup.py install

• Once the installation is complete, it is recommended
to run tests to ensure the proper functioning of seekr-
tools. From within the seekrtools directory, we execute
the following command:

python setup.py test

4.5 Installing SEEKR2 from source

4.5.1 Installing OpenMM from source
Sometimes, a SEEKR2 installation from conda-forge will not
be possible or desirable. In those cases, one will need to
perform the more arduous and difficult process of installing
OpenMM and the SEEKR2 OpenMM Plugin from source.
Before installing the OpenMM package, it is essential to
install CUDA. Please follow NVIDIA’s CUDA toolkit installation
manual instructions and refer to the documentation at
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/
index.html. Carefully read and follow the steps outlined in the
guide to ensure a successful CUDA installation. Once CUDA
is installed, we can proceed with installing the OpenMM
package.

• If not already activated, we first activate the SEEKR2
conda environment.

conda activate SEEKR2

• It is recommended, though not required, to install the
OpenMM repository in the home directory. So, we nav-
igate to the home directory.

cd ∼

9 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://github.com/seekrcentral/seekr2.git
https://seekrtools.readthedocs.io/en/latest
https://github.com/seekrcentral/seekrtools.git
https://github.com/seekrcentral/seekrtools.git
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

• To clone the OpenMM repository:
git clone https://github.com/openmm/openmm.git

• We then navigate to the openmm directory:
cd openmm

• Create a build directory:
mkdir build

• To navigate to the build directory:
cd build

• To configure the build using ccmake:
ccmake ..

The above command opens the ccmake GUI. Press
’c’ to configure and ’t’ to toggle advanced mode. We
now modify the necessary variables in the ccmake GUI.
We will set CMAKE_INSTALL_PREFIX to a local directory
where we want to install the OpenMM engine (e.g.,
/home/USERNAME/bin/openmm). If the directory does
not exist, we will create it. Alternatively, we can leave
this variable the default if we have sudo privileges and
want to install OpenMM globally. We will then review
andmodify any other variables if needed. After modify-
ing the variables, we press ’c’ to configure. If any issues
arise, ccmake will notify us. Once the configuration is
successful, we press ’g’ to generate the build files. The
ccmake GUI will then close automatically.

• To install OpenMM, execute the following commands
in the build directory:

make

make install

make PythonInstall

• To test the successful installation of OpenMM:
python -m openmm.testInstallation

The above command will run a series of tests to ensure
OpenMM is installed correctly on our system.

We have now installed OpenMM and its plugins from the
source on our local machine.

4.5.2 Installing SEEKR2-OpenMM plugin from source
Once the OpenMM engine is installed, we will install the
SEEKR2 plugin on top of the installed version of OpenMM. It
is recommended, though not required, to install the plugin
in the home directory.

• If not already activated, we first activate the SEEKR2
conda environment.

conda activate SEEKR2

• It is recommended, though not required, to install the
SEEKR2 plugin in the home directory. So, we navigate
to the home directory.

cd ∼

• To clone the SEEKR2-OpenMM plugin repository:
git clone https://github.com/seekrcentral/seekr2_
openmm_plugin.git

• We then navigate to into the seekr2_openmm_plugin di-
rectory:

cd seekr2_openmm_plugin/seekr2plugin

• Create a build directory:
mkdir build

• To navigate to the build directory:
cd build

• To configure the build using ccmake:
ccmake ..

The above command opens the ccmake GUI.
Press ’c’ to configure. We now modify the nec-
essary variables in the ccmake GUI. We will set
CMAKE_INSTALL_PREFIX to the directory similar to the
CMAKE_INSTALL_PREFIX as set during the OpenMM in-
stallation (e.g., /home/USERNAME/bin/openmm). We will
also set theOPENMM_DIR to the directory similar to the
CMAKE_INSTALL_PREFIX as set during the installation of
OpenMM engine (e.g., /home/USERNAME/bin/openmm).
We will set the SEEKR2_BUILD_OPENCL_LIB to OFF.
After modifying the variables, we press ’c’ to configure.
If any issues arise, ccmake will notify us. Once the
configuration is successful, we then press ’g’ to gen-
erate the build files. The ccmake GUI will then close
automatically.

10 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://github.com/openmm/openmm.git
https://github.com/seekrcentral/seekr2_openmm_plugin.git
https://github.com/seekrcentral/seekr2_openmm_plugin.git
https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

• To install the SEEKR2 plugin, we execute the following
commands in the build directory:

make

make install

make PythonInstall

• To ensure proper installation of the SEEKR2 plugin, we
execute the following command in the terminal:

make test

4.5.3 Installing SEEKR2
Please refer to section 4.4.2 for detailed instructions to install
SEEKR2. However, for the sake of completion, we execute the
following commands to install SEEKR2.

conda activate SEEKR2
Activate SEEKR2 environment, if not activated

cd ∼
Navigate to home directory (recommended)

git clone https://github.com/seekrcentral/seekr2.git
Clone the SEEKR2 repository

cd seekr2
Navigate to the seekr2 directory

python setup.py install
Install SEEKR2

python setup.py test
Run tests to check successful installation

4.5.4 Installing Seekrtools
Seekrtools is a suite of software utilities designed to work
with SEEKR2 applications, primarily SEEKR2, to streamline the
preparation process and execution of multiscalemilestoning
simulations. For more comprehensive instructions and tu-
torials, please refer to the official documentation at https://
seekrtools.readthedocs.io/en/latest. Ensuring that SEEKR2 and
OpenMM packages are installed before installing Seekrtools
is crucial, as most programs within Seekrtools rely on these
packages.

• If not already activated, we first activate the SEEKR2
conda environment.

conda activate SEEKR2

• It is recommended, though not required, to install the
seekrtools program in the home directory. So, we navi-
gate to the home directory.

cd ∼

• We will clone the seekrtools Python API repository by
running the following command in the terminal:

git clone https://github.com/seekrcentral/
seekrtools.git

• We then proceed with the installation of seekrtools
Python API in the cloned seekrtools directory:

cd seekrtools

python setup.py install

5 SEEKR2 tutorials
We will explore the three distinct stages of a SEEKR2 calcu-
lation: prepare, run, and analyze. Every stage is required to
obtain estimates of the kinetics and thermodynamics of a sys-
tem. This tutorial assumes that we use a computer with one
or more graphical processing units (GPUs). If the computer
does not have a GPU, we ought to transfer all files to a com-
puter equipped with a GPU (and OpenMM, with the SEEKR2
OpenMM Plugin and SEEKR2 Python API installed) to run MD
simulations.
To begin with the SEEKR2 tutorials, we first activate the
SEEKR2 conda environment, if not already activated.

conda activate SEEKR2

We download the SEEKR_tutorials repository by executing
the following command in the terminal:

git clone https://github.com/anandojha/SEEKR_tutorials

Within the working_examples directory of the SEEKR_tuto-
rials repository, there exist three subdirectories, i.e.,
beta_cyclodextrin_guest_complexes, trypsin_benzamidine_com-
plex, and simulation_data (Outline 1). The beta_cyclodext-
rin_guest_complexes and the trypsin_benzamidine_complex
directories contain all the necessary files for running
SEEKR2 simulations for receptor-ligand complexes. The
simulation_data directory contains reference SEEKR2
simulations offering users to perform post-simulation
analyses. To start with the tutorials, we now navigate to the
working_examples directory:

11 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://github.com/seekrcentral/seekr2.git
https://seekrtools.readthedocs.io/en/latest
https://seekrtools.readthedocs.io/en/latest
https://github.com/seekrcentral/seekrtools.git
https://github.com/seekrcentral/seekrtools.git
https://github.com/anandojha/SEEKR_tutorials
https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

cd ∼/SEEKR_tutorials/SEEKR_tutorials/
cd working_examples

The working_examples directory contains the SEEKR2
tutorials on biomolecular complexes, i.e., the seven β-
cyclodextrin-guest complexes (Figure 4) and the trypsin-
benzamidine complex (Figure 6). One of the subdirectories,
beta_cyclodextrin_guest_complexes, contains the seven host-
guest complexes where necessary files and scripts are
located for each of the complexes to set up the SEEKR2
calculation, run MD and BD simulations, and analyze
SEEKR2 simulations to calculate thermodynamic and ki-
netic quantities of interest. The tutorial will go through
one of the host-guest complexes, i.e., the BCD-1-butanol
complex. The user may follow the same instructions to get
started with the other six host-guest complexes within the
beta_cyclodextrin_guest_complexes directory. Similarly, the
other subdirectory, trypsin_benzamidine_complex contains
the files and scripts to parameterize the receptor-ligand
complex, set up the SEEKR2 simulations, and perform the
post-SEEKR2 analysis.

Outline 1: Overview of the working_examples
directory within SEEKR_tutorials directory

working_examples

beta_cyclodextrin_guest_complexes

BCD_1-butanol

BCD_1-napthylethanol

BCD_1-propanol

BCD_2-napthylethanol

BCD_aspirin

BCD_methyl_butyrate

BCD_terbutanol

simulation_data

beta_cyclodextrin_guest_complexes

trypsin_benzamidine_complex

trypsin_benzamidine_complex

5.1 Basic Tutorial: β-cyclodextrin
(host)-guest complexes

Stage 1: Prepare
The first stage of a SEEKR2 calculation is the preparation
phase. This stage involves setting up the necessary input
files and defining parameters for the simulation. Let us
subdivide the preparation phase further into three stages:
1. Obtaining the structure and the parameter file for the
host-guest complex

If not already activated, we first activate the SEEKR2 conda
environment.

conda activate SEEKR2

We start with a structure (PDB) file for the host-guest com-
plex. We then prepare a force field parameter file specific
to the complex. In this tutorial, we have taken the initiative
to provide the parameter file for the receptor-ligand com-
plex. We assume that the users have prior experience with
force field files for receptor complexes. Let us begin with the
hostguest.pdb and hostguest.parm7 files.

Figure 4. β-cyclodextrin (host) and the seven ligand (guest)molecules

Outline 2 shows the files we will require for the success-
ful completion of the SEEKR2 tutorial on the host-guest
complexes.
2. Preparing PQR files for Brownian dynamics simula-
tions

Given the hostguest.pdb file containing the receptor (β-
cyclodextrin) and the ligand molecule, we will obtain

12 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

separate PQR files for the receptor and ligand molecule,
respectively. These files are required to run BD simulations
to calculate the receptor-ligand binding rates (kon). To
obtain the PQR files, we will use the ambpdb program
integrated into the Ambertools. The ambpdb program
requires a topology file (hostguest.parm7) and a coordinate
file (hostguest.inpcrd) to create a PQR file (hostguest.pqr). The
PQR file is almost identical to a PDB file, except the charge
and radius columns in the PQR files substitute the beta and
occupancy columns in the PDB file. Once a hostguest.pqr file
is created using the ambpdb tool, we want to create two
separate PQR files from the hostguest.pqr file, i.e., the recep-
tor.pqr file containing the coordinate, charge, and radius
information of the receptor atoms and the ligand.pqr file
containing the coordinate, charge, and radius information
of the ligand atoms.
The python script, create_BD_files.py generates a coordinate
file, i.e., hostguest.inpcrd using the CPPTRAJ module with the
structure and topology files as input. Once the coordinate
file is generated, the script then creates a PQR file, i.e.,
hostguest.pqr by executing the following command:

ambpdb -p hostguest.parm7 -c hostguest.inpcrd \
-pqr > hostguest.pqr

Outline 2: Overview of the beta_cyclodextrin_guest_
complexes directory within working_examples

directory

beta_cyclodextrin_guest_complexes

BCD_1-butanol

hostguest.pdb

hostguest.parm7

create_BD_files.py

input_SMD_HIDR.xml

BCD_1-napthylethanol

BCD_1-propanol

BCD_2-napthylethanol

BCD_aspirin

BCD_methyl_butyrate

BCD_terbutanol

The script then further creates receptor.pqr and ligand.pqr
files by reading into the hostguest.pqr file. To achieve this,
we execute the following command in the terminal:

python create_BD_files.py

The Browndye2 software lumps all the charges of the residue
into one point charge, whichmay be acceptable for a protein,
as in the case of the receptor.pqr file where all the atoms of a
particular residue have the same numbering. But for a small
ligand, the accuracy can be further improved if we consider
each atom as a point charge. This is accomplished by renum-
bering the atoms of the ligand, each with a different number.
To achieve this, we execute the following command in the
terminal:

python ∼/$PWD/scripts/pqr_resid_for_each_atom.py \
ligand.pqr ligand.pqr
where $PWD is seekrtools/seekrtools/scripts

Now, we have the required files to proceed to the next step.
3. Running Steered MD simulations to obtain starting
structures for SEEKR2 simulations

Determining the anchor points for the host-guest complex
is the first step towards milestoning simulations in the
SEEKR2 framework. We first choose an appropriate collec-
tive variable (CV) to determine the anchor points that could
describe the receptor-ligand binding and unbinding dynam-
ics. In the case of the host-guest complex, we choose the
distance between the center of mass (COM) of the receptor
(β-cyclodextrin) and the ligand as the CV to determine the
anchor points. The anchor points, therefore, lie on a line
composed of the COM-COM distance. Once the anchor
points are determined, we define concentric spherical
milestones around the receptor-ligand binding site where
the concentric radii are midpoints of any two consecutive
anchor points. These milestones will act as reference points
during the simulation. We then use steered MD (SMD) to
slowly pull the ligand away from the binding site with a
harmonic restraint and save the trajectory snapshots as it
crosses the anchor point while slowly moving out of the
binding pocket. Once the ligand is pulled out completely, we
have the saved structure files, which will be used to create a
SEEKR2 file tree where SEEKR2 simulations will occur.
Holo insertion by directed restraints (HIDR), a computational
method employed in the SEEKR2 framework, utilizes one or
more initial configurations alongside a SEEKR2 input XML
file, pulls the system towards all the anchors present in
the SEEKR2 framework until starting structures exist in all
of them. The HIDR algorithm employs SMD simulations to
accomplish this.
The HIDR program needs amodel.xml file to run the SMD sim-
ulations, so we run the prepare.py script on amodel input file.
The model input XML file for SEEKR2 calculations contains

13 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

various parameters and settings that define the configura-
tion and behavior of the calculation (Summary 1). It should
be noted that the <md_steps_per_anchor> tag defines the
number of MD simulation steps per anchor, and for tutorial
purposes, the simulation steps in each anchor are reduced
compared to our original study. The <root_directory> tag has
to be explicitly defined by the user in the input_SMD_HIDR.xml
file. To run the prepare.py script on the model input file, we
execute the following command in the terminal:

python ∼/seekr2/seekr2/prepare.py \
input_SMD_HIDR.xml

Summary 1: Overview of sections and tags within
the XML file

• <calculation_type>: Specifies the type of mile-
stoning model to employ. SEEKR2 either em-
ploys the "mmvt" (Markovian milestoning with
Voronoi Tesselations) or the "elber" model for
the original Elber milestoning method.

• <calculation_settings>: A block of settings spe-
cific to the chosen calculation type. The tags
within this section vary depending on the calcu-
lation type.

• <md_output_interval>: Interval between
outputs of simulation state information, tra-
jectory frames, and restart checkpoints (in MD
timesteps).

• <md_steps_per_anchor>: Total number of MD
timesteps to be run per anchor.

• <temperature>: Temperature (in Kelvin) to be
used for all stages of the calculation.

• <pressure>: Pressure (in bar) for simulations if
the ensemble is set to npt. Ignored if the ensem-
ble is set to nvt.

• <ensemble>: Defines the ensemble of MD sim-
ulations. Options include nvt (constant volume
and temperature) and npt (constant pressure
and temperature).

• <root_directory>: Filesystem path to the direc-
tory where the calculation files will be written.

• <md_program>: Specifies the MD simulation
engine to use. The user has the option to
choose either openmm or namd.

• <constraints>: Specifies the type of bond and
angle constraints in the MD simulation.

• <rigid_water>: Specifies whether water
molecules will have a rigid angle.

• <hydrogen_mass>: Mass (in AMU) to use for

hydrogen mass repartitioning (HMR).
• <integrator_type>: Type of integrator to be
used for simulation dynamics.

• <timestep>: MD timestep (in ps).
• nonbonded_cutoff: Nonbonded cutoff (in nm)
for MD simulations.

• <cv_inputs>: Settings defining the collective
variables (CVs) and their associated anchors
and milestones.

• <cv_input>: Input structure for a CV, with the
CV type defined by the class attribute.

• <group>: Lists of atom indices for CV func-
tions involving centers of masses of groups of
molecules.

• <bd_group>: Atomswithin PQR files used in BD
simulations to define the CV.

• <input_anchors>: Block of input anchors used
to construct model anchors.

• <input_anchor>: Input for an anchor, with
the class attribute matching a particular
CV. Attributes depend on the anchor type,
such as <starting_amber_params>, <radius>,
<lower_milestone_radius>, <upper_milestone_ra
dius>, etc.

• <browndye_settings_input> (optional): Set-
tings for Browndye simulations and koncalculations.

• <binary_directory>: Directory containing
Browndye2 programs

• <receptor_pqr_filename>: Path to the PQR file
representing the receptor.

• <ligand_pqr_filename>: Path to the PQR file
representing the ligand.

• <apbs_grid_spacing>: Grid spacing (in Å) for
APBS calculations.

• <receptor_indices>: Atom indices defining the
binding site in the receptor PQR file.

• <ligand_indices>: Atom indices defining the
center of the ligand molecule in the ligand PQR
file.

• <ions>: Block of ion objects used in APBS and
BD calculations.

• <ion>: Object representing an ion with at-
tributes like <radius>, <charge>, and <conc>.

• <num_b_surface_trajectories>: Total number
of trajectories for b-surface simulations.

• <n_threads>: Number of CPUs to use in
Browndye2 calculations.

Now the model XML file and the SEEKR2 file tree have been
generated in a separate SEEKR_simulation directory as speci-

14 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

fied explicitly by the <root_directory> tag in the model input
XML file, i.e., the input_SMD_HIDR.xml file. HIDR will now em-
ploy SMD simulations to gradually pull the system into every
anchor and save the structures for subsequent SEEKR2 cal-
culations. It is important to note that HIDR offers alternative
approaches, such as random acceleration MD (RAMD) and
ratcheting, to populate starting structures. For detailed in-
structions on utilizing these alternative methods, it is recom-
mended to refer to the HIDR documentation and seekrtools
tutorials. To run SMD simulations with the HIDR algorithm,
execute the following command in the terminal:

python ∼/seekrtools/seekrtools/hidr/hidr.py \
any SEEKR_simulation/model.xml -M SMD -p \
hostguest.pdb

This command is likely to run for hours or days, depending
on the speed of the GPU. We can obtain a comprehensive
overview of HIDR arguments by executing HIDR with the -h
argument using the following python command:

python ∼/seekrtools/seekrtools/hidr/hidr.py -h

Several important options are available, such as specifying
the number of equilibration steps to be executedbefore SMD
simulations. For example, including the argument below will
instruct HIDR to perform5,000,000 equilibration steps (10 ns)
before initiating any SMD simulations:

python ∼/seekrtools/seekrtools/hidr/hidr.py \
any SEEKR_simulation/model.xml -M SMD -p \
hostguest.pdb -e 5000000

Additionally, we can allow for some equilibration stepswithin
each anchor after the SMD simulation has reached that par-
ticular anchor. These equilibration steps are referred to as
settling steps in HIDR. To specify the number of settling steps,
the -S argument is used. To allow for 200,000 settling steps
(0.2 ns), we execute the following command in the terminal:

python ∼/seekrtools/seekrtools/hidr/hidr.py \
any SEEKR_simulation/model.xml -M SMD -p \
hostguest.pdb -S 100000

By default, HIDR SMD simulations move the system towards
each anchor at an approximate 0.01 nm/ns speed. This
speed is designated to let the system reach each anchor
within a reasonable time frame while avoiding excessive
perturbations to the system. However, the speed can be
adjusted using the -v argument. For instance, if the user
desires to perform SMD simulations ten times faster (thus
completing in one-tenth of the time), the speed can be set

to 0.1 nm/ns:
python ∼/seekrtools/seekrtools/hidr/hidr.py \
any SEEKR_simulation/model.xml -M SMD -p \
hostguest.pdb -v 0.1

To keep the directory clean, we can optionally choose to
delete the intermediate files:

rm hostguest.inpcrd hostguest.pqr ligand.pqr \
receptor.pqr

Stage 2: Run
During the prepare stage of a SEEKR2 calculation, a file tree
containing all the necessary files and directories is generated
at the specified location indicated by the <root_directory> tag
in the model input file. Once the preparation stage is com-
plete, we move on to the run stage.
The run stage involves executing the simulations based on
the files and directories from the prepare stage. Inside this
directory, i.e., SEEKR_simulation, a model.xml file exists. In
the subsequent stages of SEEKR2, especially the run stage
and beyond, the path to the model.xml file is used as an
argument in most SEEKR2 programs. It is important to note
that modifying the model.xml file directly without re-running
the prepare.py script is not recommended. To start the run
stage, we will use the run.py script. The following command
launches the script to run MD simulations within the SEEKR2
milestones:

python ∼/seekr2/seekr2/run.py any \
SEEKR_simulation/model.xml

In the above command, the word "any" is the instruction ar-
gument for the run.py script. It instructs the script to run any
unfinished MD or BD simulations. We can use "any_md" or
"any_bd" as an instruction input to run only unfinished MD
or BD simulations. Please refer to the SEEKR2 documenta-
tion for a comprehensive list of available instruction inputs
as run.py arguments.
Once we initiate the run.py script, simulations will run until
completion or interruption. The SEEKR2 framework saves
checkpoints for both MD and BD simulations, allowing us to
resume the calculation from where it was interrupted. To
track the progress and convergence of the simulations, we
use the converge.py script:

python ∼/seekr2/seekr2/converge.py any \
SEEKR_simulation/model.xml

Running the converge.py script generates convergence plots,

15 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

and images are saved in the plots_and_images subfolder
within the <root_directory>. For additional arguments that
can be used with both run.py and converge.py, we can run
either script with the -h argument (Summary 2).
Summary 2: Arguments for converge.py

Positional Arguments

• MODEL_FILE: This argument specifies the name of
the model file for the SEEKR2 calculation. We need
to replace MODEL_FILE with the model file name,
i.e.,model.xml used in the calculation.

Optional Arguments

• -s K_ON_STATE: This argument allows us to define
the bound state used to compute the kon value. Ifwe want to specify a particular bound state, we in-
clude the -s option followed by the state name.

• -d IMAGE_DIRECTORY: Using this argument, we
can define the directory where plots and images
will be saved. If we want to specify a different di-
rectory, we include the -d option followed by the
desired directory path. By default, all the plots will
be saved to the images_and_plots directory.

• -c CUTOFF: This argument sets the minimum con-
vergence value required to conclude that the cal-
culations have converged for a given anchor. The
default value is 0.1, but we can specify a different
cutoff value by including the -c option followed by
the desired value.

• -m MINIMUM_ANCHOR_TRANSITIONS: Using
this argument, we can set the minimum number
of transitions that must be observed per mile-
stone in a given anchor as a criterion for SEEKR2
simulations. The default value is 100, but we can
specify a different value by including the -m option
followed by the desired number.

• -l, –long_converge: This argument determines
whether to run a complete convergence analysis.
Including the -l flag in the commandwill enable the
extended convergence analysis. By default, this is
set to False.

Stage 3: Analyze
The final stage within the SEEKR2 framework involves analyz-
ing the results obtained from the simulations. This stage en-
ables the construction of kinetics and thermodynamics pro-
files for the studied process.

Summary 3: Arguments for analyze.py

Positional Arguments

• MODEL_FILE: This argument specifies the name of
the model file for the SEEKR2 calculation. We need
to replace MODEL_FILE with the model file name,
i.e.,model.xml used in the calculation.

Optional Arguments

• -f, –force_warning: By default, missing statistics
for any anchors will generate fatal errors. This op-
tion will instead raise a warning and attempt the
calculation anyway.

• -n NUM_ERROR_SAMPLES: This argument speci-
fies the number of error samples to generate for
estimating the error/uncertainty of computed val-
ues. The default value is 100.

• -S STRIDE_ERROR_SAMPLES: This argument spec-
ifies the number of strides between saved error
samples. An argument of None automatically as-
signs the quantity at the number of milestones in
the model squared. The default value is None.

• -K SKIP_ERROR_SAMPLES, –skip_error_samples
SKIP_ERROR_SAMPLES: This argument specifies
the number of error samples to skip before using
them. An argument of None automatically assigns
the quantity at ten times the number ofmilestones
in the model squared. The default value is None.

• -d IMAGE_DIRECTORY: By using this argument, we
can define the directory where plots and images
will be saved. If we want to specify a different di-
rectory, we include the -d option followed by the
desired directory path. By default, all the plots will
be saved to the images_and_plots directory.

• -s, –skip_checks: By default, post-simulation
checks will be run before the analysis is started,
and if the checks fail, the analysis will not proceed.
This argument bypasses those checks and allows
the analysis to proceed anyways.

• -t MINIMUM_TIME: A user may wish to skip a sim-
ulation time for each anchor before counting the
transitions for milestoning analysis. When per-
forming analysis, we enter the time (in ps) to skip
a portion of the production simulations.

• -T MAXIMUM_TIME, –maximum_time MAXI-
MUM_TIME: A user may wish to stop the analysis
of simulation time for each anchor at a particular
time. We enter the time (in ps) to end the analysis
at a given anchor if the simulation time exceeds it.

16 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

To execute the post-simulation SEEKR2 analysis:
python ∼/seekr2/seekr2/analyze.py \
SEEKR_simulation/model.xml

The analyze.py script takes the model.xml file as an argu-
ment. It constructs the milestoning model, populates it
with transition probabilities and simulation times within
each milestone, and computes error margins. For a list of
arguments that can be used with analyze.py, we can run the
script with the -h argument (Summary 3). Figure 5 shows
the free energy profile per milestone for the BCD-1-butanol
complex, obtained by executing the analyze.py script.

Figure 5. Free energy profile per milestone (∆Gi) obtained from theSEEKR2 milestoning method for the β-cyclodextrin (host) and the 1-butanol (guest) complex.

5.2 Advanced Tutorial: Trypsin-benzamidine
complex

Stage 1: Prepare
1. Obtaining the structure and the parameter file for the
trypsin-benzamidine complex

This section will prepare input files for the SEEKR2 simulation
to determine the (un)binding kinetics between the receptor
protein, trypsin, and the ligand molecule, benzamidine. The
Amber molecular mechanics forcefield is used to parameter-
ize the receptor-ligand complex. This tutorial assumes the
user has some familiarity with AmberTools. If the user is new
to AmberTools, we recommend visiting the Amber tutorials
page (https://ambermd.org/tutorials/) or reviewing the Amber
manual (https://ambermd.org/Manuals.php) for a comprehen-
sive understanding. Outline 3 shows the files we will require

for the successful completion of the SEEKR2 tutorial on the
trypsin-benzamidine complex.
(i) Identify the ligand molecule and the receptor protein
in the receptor-ligand complex

The first step is to identify the molecules in the receptor-
ligand complex. In this case, we have trypsin as the target
molecule and benzamidine as the ligand molecule. The
trypsin-benzamidine complex is a standard complex for
studying binding and unbinding kinetics.
(ii) Parameterization of the receptor-ligand complex
In the SEEKR2 framework, to estimate the binding and
unbinding of receptor-ligand bimolecular complexes, one of
the molecules is the ligand that needs to be parameterized
separately. One method to accomplish this is to use the An-
techamber program in AmberTools. Antechamber requires
a structure file specific to the small molecule to perform the
parameterization. In our case, we will utilize a PDB file that
contains only the benzamidine structure, which has been
parametrized using a semi-empirical method and the gener-
alized AMBER force field. Although semi-empirical methods
for assigning charges are quick and convenient, they may
not provide the most accurate results for assigning partial
charges to a molecule. It is advisable to explore more pre-
cise levels of quantum calculations to obtain partial charges,
such as Hartree Fock with Density Function Theory (HF-DFT)
or Møller-Plesset 2 (MP2) calculations within a charge model
such as RESP or CHELPG. However, these calculations
involving higher levels of quantum theory require dedicated
quantum calculation software like Gaussian, GAMESS, ORCA,
etc. Incorporating parameters from quantum calculation
software is a complex topic that is beyond the scope of this
tutorial.

Outline 3: Overview of the trypsin_benzamidine_
complex directory within working_examples

directory

trypsin_benzamidine_complex

hostguest.pdb

minimize_equilibriate.py

extract_benzamidine.py

create_BD_files.py

parameterize_trypsin_benzamidine.tleap

save_benzamidine_lib.tleap

input_SMD_HDR.xml

17 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://ambermd.org/tutorials/
https://ambermd.org/Manuals.php
https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

To save a separate PDB structure of the ligand molecule
(benzamidine.pdb) from the given receptor-ligand complex
(trypsin_benzamidine_init.pdb), we execute the following
command in the terminal.

python extract_benzamidine.py

We use the Antechamber program, part of AmberTools to
parameterize the benzamidine molecule. The antechamber
command takes several arguments to specify input and out-
put files, formats, and parameters (Summary 4). We will exe-
cute the following command in the terminal to parameterize
the benzamidine molecule.

antechamber -i benzamidine.pdb -fi pdb -bk BEN \
-o benzamidine.mol2 -fo mol2 -c bcc -nc 1

We will now generate a parameter modification (frcmod) file
containing the molecular force field parameters for the ben-
zamidinemolecule. This file is later used in the LEAP function-
ality of the Ambertools to parameterize the receptor-ligand
complex. The ParmChk2 program generates the frcmod file
for the benzamidine molecule. We will execute the following
command in the terminal to generate the frcmod file.

parmchk2 -i benzamidine.mol2 -f mol2 -o \
benzamidine.frcmod

Figure 6. Trypsin - benzamidine complex

We generate a .lib file, a library file of forcefield parameters
for the benzamidine molecule, by executing the following
command in the terminal:

tleap -f save_benzamidine_lib.tleap

The final step in parameterizing the trypsin-benzamidine
complex involves solvating the system with water molecules
and applying periodic boundary conditions. This ensures
that the simulation accurately represents the behavior of
the complex in an aqueous environment while accounting
for long-range interactions and avoiding edge effects. Addi-
tionally, counterions are added to neutralize any net charge
in the system, creating an electrically neutral simulation
system. We execute the following command in the terminal
to parameterize the trypsin-benzamidine complex:

tleap -f parameterize_trypsin_benzamidine.tleap

Summary 4: Arguments used in the antechamber pa-
rameterization of the ligand

• -i benzamidine.pdb : Take the ben.pdb file as in-
put.

• -fi pdb: The format of benzamidine.pdb is in PDB
format.

• -bk BEN: The component/block ID for benzamidine
in the PDB file is BEN.

• -o benzamidine.mol2: Specifies the output file
name of the benzamidine molecule.

• -fo mol2: Outputs the benzamidine.mol2 file in
MOL2 format.

• -c bcc: Uses the AM1-BCC semi-empirical method
to assign partial charges of the atoms.

• -nc 1: The molecule has a net molecular charge of
+1 due to its protonation state in aqueous environ-
ments at pH = 7.

In the parameterize_trypsin_benzamidine.tleap file, explana-
tions for the commands are as under:

• source leaprc.protein.ff14SB: Sourcing the ff14SB
forcefield, a recently generated force field parameter
set known for its good performance in molecular
simulations of proteins, provides accurate descriptions
of protein atoms and their interactions.

• source leaprc.water.tip4pew: By sourcing the
leaprc.water.tip4pew file, the TIP4Pew water model
is employed. This water model is considered more
accurate than the commonly used TIP3P model.

• solvateoct receptor_ligand_complex TIP4PEWBOX 8:
This command solvates the receptor-ligand complex,
represented by the variable receptor_ligand_complex,

18 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

in a truncated octahedral box using TIP4Pew water
molecules. The truncated octahedral shape is pre-
ferred over a simple cubic box due to its more efficient
use of space, reducing the number of water molecules
required to solvate the system. The specified padding
of 8 Å creates a buffer region around the protein
to prevent any artifacts from periodic boundary
conditions.

• addIons2 mol Cl- 7: Since the system has a net
positive charge, adding chloride ions (Cl-) neutralizes
the overall charge. When setting up simulations, it is
generally recommended to carefully consider the ions
present in the experimental or physiological conditions
to mimic the real environment closely. However, in
this specific scenario, the decision to use only chloride
ions is based on the information available and the
challenges associated with including other ions.

To remove multiple output files generated by the antecham-
ber and leap commands, which are no longer required for
subsequent parameterization steps, we can execute the fol-
lowing command in the terminal:

rm *ANTECHAMBER* ATOMTYPE.INF *sqm* leap.log \
benzamidine.frcmod benzamidine.lib \
benzamidine.mol2 benzamidine.pdb

The next step involves the energyminimization of the trypsin-
benzamidine complex to its local minima, followed by equi-
libration in the NVT ensemble. System minimization aims
to find an energetically stable conformation of the system
by iteratively adjusting the atomic positions to minimize the
potential energy, therefore beginning with a favorable start-
ing structure. Equilibration prepares the biomolecular com-
plexes for MD production runs by resolving initial structural
and energetic irregularities, ensuring stable and reliable sim-
ulations under target conditions. To perform the energymin-
imization followed by system equilibration, we execute the
following command in the terminal:

python minimize_equilibriate.py

2. Preparing PQR files for Brownian dynamics simula-
tions

Given the trypsin_benzamidine.pdb file containing the recep-
tor (trypsin) protein and the ligand (benzamidine) molecule,
we will obtain separate PQR files for the receptor and ligand
molecule, respectively. The ambpdb program requires a
topology file (trypsin_benzamidine.prmtop) and a coordi-
nate file (trypsin_benzamidine.inpcrd) to create a PQR file
(trypsin_benzamidine.pqr). Once a trypsin_benzamidine.pqr

file is created using the ambpdb tool, we would want to cre-
ate two separate PQR files from the trypsin_benzamidine.pqr
file, i.e., the trypsin.pqr file containing the coordinate, charge,
and radius information of the receptor atoms and the
benzamidine.pqr file containing the coordinate, charge, and
radius information of the ligand atoms.
The python script, create_BD_files.py generates a coordinate
file, i.e., trypsin_benzamidine.inpcrd using the CPPTRAJ mod-
ule with the structure and topology files as input. Once the
coordinate file is generated, the script then creates a PQR file,
i.e., trypsin_benzamidine.pqr by executing the following com-
mand:

ambpdb -p trypsin_benzamidine.prmtop -c \
trypsin_benzamidine.inpcrd -pqr > \
trypsin_benzamidine.pqr

The script then further creates trypsin.pqr and benzami-
dine.pqr files by reading into the trypsin_benzamidine.pqr file.
To achieve this, we execute the following command in the
terminal:

python create_BD_files.py

While the Browndye2 software consolidates all residue
charges into a single point charge, suitable for proteins
like in the case of trypsin.pqr file with uniformly numbered
atoms within a residue. But for small ligands, accuracy is
enhanced by treating each atom as a distinct point charge
and renumbering them individually. To achieve this, we
execute the following command in the terminal:

python ∼/$PWD/scripts/pqr_resid_for_each_atom.py \
benzamidine.pqr benzamidine.pqr
where $PWD is seekrtools/seekrtools/scripts

Now, we have the required files to proceed to the next step.
3. Running Steered MD simulations to obtain starting
structures for SEEKR2 simulations

To determine the anchor points for milestoning simulations
in the SEEKR2 framework, we choose the appropriate CV
for the trypsin-benzamidine complex. Here, the distance
between the center of mass (COM) of the binding site of the
trypsin protein and the ligand serves the CV, followed by
determining the anchor points (Figure 7). Subsequently, we
establish concentric spherical milestones around the bind-
ing site, using midpoints between successive anchor points
as their radii. Through SMD simulations, the benzamidine
ligand is slowly extracted from the binding site, capturing
trajectory snapshots at each anchor point. Once the ligand
is pulled out entirely and we have the saved structure files,

19 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

a SEEKR2 file tree is created where SEEKR2 simulations will
occur.
As mentioned previously, the HIDR program requires a
model.xml file to run the SMD simulations, so we run the
prepare.py script on a model input file. It should be noted
that the <md_steps_per_anchor> tag defines the number of
MD simulation steps per anchor, and for tutorial purposes,
the simulation steps in each anchor are reduced. The
<root_directory> tag has to be explicitly defined by the user
in the input_SMD_HIDR.xml file. To run the prepare.py script
on the model input file, we execute the following command
in the terminal:

python ∼/seekr2/seekr2/prepare.py \
input_SMD_HIDR.xml

Figure 7. Trypsin-benzamidine complex with the benzamidinemolecule (in black) and surrounding residues constituting the bind-ing site (in orange). The distance between the center of mass of theheavy atoms of the benzamidine molecule and the α-carbons of thebinding site residues constitute the collective variable.

Now the model XML file and the SEEKR2 file tree have been
generated in a separate SEEKR_simulation directory as speci-
fied explicitly by the <root_directory> tag in the model input
XML file, i.e., the input_SMD_HIDR.xml file. HIDR will now em-
ploy SMD simulations to gradually pull the system into every
anchor and save the structures for subsequent SEEKR2 cal-

culations. To run SMD simulations with the HIDR algorithm,
execute the following command in the terminal:

python ∼/seekrtools/seekrtools/hidr/hidr.py \
any SEEKR_simulation/model.xml -M SMD -p \
trypsin_benzamidine.pdb

This command is likely to run for hours or days, depending
on the speed of the GPU. We can obtain a comprehensive
overview of HIDR arguments by executing HIDR with the -h
argument using the following python command:

python ∼/seekrtools/seekrtools/hidr/hidr.py -h

Several options in the HIDR program can be specified (de-
scribed earlier in section 5.1), such as determining the equi-
libration steps before SMD simulations, allowing for some
equilibration steps (settling steps) within each anchor after
the SMD simulation has reached that particular anchor, and
adjusting the speed of HIDR simulations.
To keep the directory clean, we can optionally choose to
delete the intermediate files:

rm trypsin_benzamidine.inpcrd trypsin.pqr \
trypsin_benzamidine.pqr benzamidine.pqr

Stage 2: Run
During the prepare stage of a SEEKR2 calculation, a file tree
with essential files and directories is created at the location
specified by the <root_directory> tag in the model input file.
The run phase begins, executing SEEKR2 simulations based
on the files and directories from the prepare stage. Within
the main directory (SEEKR_simulation), a model.xml file exists.
The path to the model.xml file is frequently used as an ar-
gument in many subsequent SEEKR2 processes, especially
during the run phase. It is to be noted that directly alter-
ing the model.xml without reinitiating prepare.py is not rec-
ommended. The run.py script initiates the run phase, and
the following command launches the script to run MD simu-
lations within the SEEKR2 milestones.

python ∼/seekr2/seekr2/run.py any \
SEEKR_simulation/model.xml

In the above command, "any" serves as the instruction
argument for the run.py script, prompting it to complete any
pending MD or BD simulations. One might use "any_md"
or "any_bd" to address unfinished MD or BD simulations.
Please refer to the SEEKR2 documentation for a detailed set
of available directives for the run.py script.

20 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

Once we initiate the run.py script, simulations will run until
completion or interruption. The SEEKR2 framework saves
checkpoints for both MD and BD simulations, allowing us to
resume the calculation from where it was interrupted. To
track the progress and convergence of the simulations, we
use the converge.py script:

python ∼/seekr2/seekr2/converge.py any \
SEEKR_simulation/model.xml -l

Running the converge.py script generates convergence plots,
and images are saved in the plots_and_images subfolder
within the <root_directory>. For additional arguments that
can be used with both run.py and converge.py, we can run
either script with the -h argument.
Stage 3: Analyze
The final stage within the SEEKR2 framework involves analyz-
ing the results obtained from the simulations. This stage en-
ables the construction of kinetics and thermodynamics pro-
files for the studied process. To execute the post-simulation
SEEKR2 analysis:

python ∼/seekr2/seekr2/analyze.py \
SEEKR_simulation/model.xml

Figure 8. Free energy profile per milestone (∆Gi) obtained from theSEEKR2 milestoning method for the trypsin-benzamidine complex.

The analyze.py script takes the model.xml file as an argu-
ment. It constructs the milestoning model, populates it with
transition probabilities and simulation times within each
milestone, and computes error margins. For a detailed
understanding of the MMVT error margins, please refer to

the SEEKR2 manuscript [12]. Figure 8 shows the free energy
profile per milestone for the trypsin-benzamidine complex,
obtained by executing the analyze.py script.

6 SEEKR2 benchmarking
Benchmarking simulations were performed on a Linux
machine with an NVIDIA Quadro RTX 5000 GPU with 16 GB
RAM and an Intel Xeon W-10885M CPU. SEEKR2 milestoning
simulations were run using the OpenMM version 7.7 for all
the seven host-guest complexes and the trypsin benzami-
dine complexes, using 1 GPU with CUDA version 10.2. Table
1 describes the benchmarking results.

Receptor-ligand complex Benchmark
(ns/day)

BCD-1-butanol (5358 atoms) 569.60
BCD-1-napthylethanol (5362 atoms) 544.92
BCD-1-propanol (5361 atoms) 540.00
BCD-2-napthylethanol (5368 atoms) 526.27
BCD-aspirin (5361 atoms) 559.68
BCD-methyl butyrate (5360 atoms) 556.87
BCD-terbutanol (5358 atoms) 564.95
Trypsin-benzamidine (23036 atoms) 171.11

Table 1. Benchmarking rates for SEEKR2 simulations performed onthe seven host-guest complexes and the trypsin-benzamidine com-plex performed on a single NVIDIA Quadro RTX 5000 GPU.

7 Conclusion
SEEKR2 has emerged as a multiscale simulation tool de-
signed to increase the speed and efficiency of calculating
kinetic and thermodynamic properties of receptor-ligand
binding and unbinding. This tutorial covers the underlying
theory behind SEEKR2, describing how kinetic and ther-
modynamic properties are calculated. Beginning with the
installation and setup, this manuscript guides the readers
through the processes of preparing SEEKR2 simulations,
highlighting essential options such as equilibration steps
and adjusting the speed of HIDR simulations. The subse-
quent sections then provide a detailed walkthrough of the
run and analysis stages, emphasizing the significance of
files like model.xml and scripts like run.py and analyze.py.
Having achieved the learning outcomes outlined at the
beginning, this tutorial is a comprehensive guide to installing
and running SEEKR2 simulations, ensuring that even those
unfamiliar with SEEKR2 can navigate its various features. We
expect researchers are now well-positioned to apply SEEKR2
to their systems of interest.

21 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

Author Contributions
AA Ojha conceptualized and wrote the tutorial journal and is
a developer of the SEEKR2 package. LW Votapka is the lead
developer of the SEEKR2 package. GA Huber contributed to
the Brownian dynamics section in the tutorial. RE Amaro pro-
vided support with computing resources. LW Votapka and RE
Amaro provided guidance for tutorial development. SGao ex-
tensively tested the SEEKR2 installation by following the tuto-
rial and helped debug the instructions for installing, running,
and analyzing SEEKR2 simulations.

Other Contributions
For a more detailed description of contributions from the
community and others, see the GitHub issue tracking and
changelog at https://github.com/anandojha/SEEKR_tutorials.

Author Information
ORCID:
Anupam Anand Ojha: 0000-0001-6588-3092
Lane William Votapka: 0000-0002-0865-5867
Gary Alexander Huber: 0000-0002-5936-6184
Shang Gao: 0009-0002-3961-5064
Rommie Amaro: 0000-0002-9275-9553

Potentially Conflicting Interests
The authors declare no conflicting interests.

Funding Information
AAOjha acknowledges the support of theMolecular Sciences
Software Institute (MolSSI) fellowship under the National Sci-
ence Foundation (NSF) grant OAC-1547580. GA Huber ac-
knowledges support from National Institutes of Health (NIH)
GM31749 and University of California San Diego. RE Amaro
acknowledges support from NSF Extreme Science and Engi-
neering Discovery Environment (XSEDE) CHE060063 and NIH
GM132826.

Abbreviations

SEEKR: Simulation-enabled estimation of kinetic rates
SEEKR2: Simulation-enabled estimation of kinetic rates version 2
BD: Brownian dynamics
MD: Molecular dynamics
NAMD: Nanoscale molecular dynamics
VMD: Visual molecular dynamics
kon: Association rate constant
koff: Dissociation rate constant
CUDA: Compute unified device architecture
GPU: Graphics processing unit
CPU: Central processing unit
RCSB: Research collaboratory for structural bioinformatics
APBS: Adaptive Poisson-Boltzmann solver
MFPT: Mean first-passage time
MMVT: Markovian milestoning with Voronoi tessellations
PDB: Protein data bank
CV: Collective variable
COM: Center of mass
BSD: Berkeley software distribution
API: Application programming interface
SMD: Steered molecular dynamics
HIDR: Holo insertion by directed restraints
RAMD: Random acceleration molecular dynamics
HF-DFT: Hartree-Fock with density functional theory
GAMESS: General atomic & molecular electronic structure sys-tem
MP2: Møller-Plesset 2
AM1-BCC: Austin model 1 with bond charge correction
HMR: Hydrogen mass repartitioning
AMU: Atomic mass unit
frcmod: Parameter modification file
TIP3P: Transferable intermolecular potential with 3 points
TIP4Pew: Transferable intermolecular potential with 4 pointswith Ewald techniques
RAM: Random-access memory
RTX: Real-time ray tracing

References
[1] Amaro RE, Mulholland AJ. Multiscale methods in drug designbridge chemical and biological complexity in the search forcures. Nature Reviews Chemistry. 2018; 2(4):0148.
[2] Jagger BR, Ojha AA, Amaro RE. Predicting ligand binding ki-netics using aMarkovianmilestoning with voronoi tessellationsmultiscale approach. Journal of Chemical Theory and Compu-tation. 2020; 16(8):5348–5357.
[3] Ojha AA, Srivastava A, Votapka LW, Amaro RE. Selectivity andranking of tight-binding JAK-STAT inhibitors using Markovianmilestoningwith Voronoi tessellations. Journal of Chemical The-ory and Computation. 2023; 63(8):2469–2482.
[4] Zuckerman DM, Chong LT. Weighted ensemble simulation: re-view of methodology, applications, and software. Annual re-view of biophysics. 2017; 46:43–57.
[5] Miao Y, Feher VA, McCammon JA. Gaussian accelerated molec-ular dynamics: Unconstrained enhanced sampling and free en-ergy calculation. Journal of chemical theory and computation.2015; 11(8):3584–3595.

22 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://github.com/anandojha/SEEKR_tutorials
https://orcid.org/0000-0001-6588-3092
https://orcid.org/0000-0002-0865-5867
https://orcid.org/0000-0002-5936-6184
https://orcid.org/0009-0002-3961-5064
https://orcid.org/0000-0002-9275-9553
https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

[6] Kokh DB, Doser B, Richter S, Ormersbach F, Cheng X, WadeRC. A workflow for exploring ligand dissociation from a macro-molecule: Efficient random acceleration molecular dynamicssimulation and interaction fingerprint analysis of ligand trajec-tories. The Journal of chemical physics. 2020; 153(12):125102.
[7] Ojha AA, Thakur S, Ahn SH, Amaro RE. DeepWEST: Deep learn-ing of kinetic models with the Weighted Ensemble SimulationToolkit for enhanced sampling. Journal of Chemical Theory andComputation. 2023; 19(4):1342–1359.
[8] Ahn SH, Ojha AA, Amaro RE, McCammon JA. Gaussian-Accelerated molecular dynamics with the weighted ensemblemethod: A hybrid method improves thermodynamic and ki-netic sampling. Journal of chemical theory and computation.2021; 17(12):7938–7951.
[9] Lee CT, Amaro RE. Exascale computing: A new dawn for com-putational biology. Computing in Science & Engineering. 2018;20(5):18–25.
[10] Votapka LW, Jagger BR, Heyneman AL, Amaro RE. SEEKR: simu-lation enabled estimation of kinetic rates, a computational toolto estimate molecular kinetics and its application to trypsin–benzamidine binding. The Journal of Physical Chemistry B.2017; 121(15):3597–3606.
[11] Jagger BR, Votapka LW, Amaro RE. SEEKR: Simulation EnabledEstimation of Kinetic Rates, A Multiscale Approach for the Cal-culation of Protein-LigandAssociation andDissociation Kinetics.Biophysical Journal. 2018; 114(3):42a.
[12] Votapka LW, Stokely AM, Ojha AA, Amaro RE. SEEKR2: Versatilemultiscale milestoning utilizing the OpenMMmolecular dynam-ics engine. Journal of chemical information andmodeling. 2022;62(13):3253–3262.
[13] Jagger BR, Lee CT, Amaro RE. Quantitative ranking of lig-and binding kinetics with a multiscale milestoning simulationapproach. The journal of physical chemistry letters. 2018;9(17):4941–4948.
[14] Ahn SH, Jagger BR, Amaro RE. Ranking of ligand binding kinet-ics using a weighted ensemble approach and comparison witha multiscale milestoning approach. Journal of Chemical Infor-mation and Modeling. 2020; 60(11):5340–5352.
[15] Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y,Beauchamp KA, Wang LP, Simmonett AC, Harrigan MP, SternCD, et al. OpenMM 7: Rapid development of high performancealgorithms for molecular dynamics. PLoS computational biol-ogy. 2017; 13(7):e1005659.
[16] Wang J, WangW, Kollman PA, Case DA. Antechamber: an acces-sory software package for molecular mechanical calculations. JAm Chem Soc. 2001; 222(1).
[17] Salomon-Ferrer R, Case DA, Walker RC. An overview of the Am-ber biomolecular simulation package. Wiley InterdisciplinaryReviews: Computational Molecular Science. 2013; 3(2):198–210.
[18] Huber GA, McCammon JA. Browndye: a software package forBrownian dynamics. Computer Physics Communications. 2010;181(11):1896–1905.

[19] Huber GA, McCammon JA. Brownian dynamics simulations ofbiological molecules. Trends in chemistry. 2019; 1(8):727–738.
[20] Muñiz-Chicharro A, Votapka LW, Amaro RE, Wade RC. Brow-nian dynamics simulations of biomolecular diffusional associa-tion processes. Wiley Interdisciplinary Reviews: ComputationalMolecular Science. 2023; 13(3):e1649.
[21] Ermak DL, McCammon JA. Brownian dynamics with hydro-dynamic interactions. The Journal of chemical physics. 1978;69(4):1352–1360.
[22] Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE,Brookes DH,Wilson L, Chen J, Liles K, et al. Improvements to theAPBS biomolecular solvation software suite. Protein Science.2018; 27(1):112–128.
[23] Luty BA, McCammon JA, Zhou HX. Diffusive reaction rates fromBrownian dynamics simulations: Replacing the outer cutoff sur-face by an analytical treatment. The Journal of chemical physics.1992; 97(8):5682–5686.
[24] Northrup SH, Allison SA, McCammon JA. Brownian dynamicssimulation of diffusion-influenced bimolecular reactions. TheJournal of Chemical Physics. 1984; 80(4):1517–1524.
[25] Ojha AA, Votapka L, Amaro R. QMrebind: Incorporating quan-tum mechanical force field reparameterization at the ligandbinding site for improveddrug-target kinetics throughmileston-ing simulations. . 2023; .

23 of 23

https://doi.org/10.26434/chemrxiv-2023-kd1wt ORCID: https://orcid.org/0000-0001-6588-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-kd1wt
https://orcid.org/0000-0001-6588-3092
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Scope of tutorials
	Learning outcomes

	Prerequisites
	Background knowledge and experience
	Software and hardware requirements

	Background and Theory
	Brownian dynamics
	Markovian milestoning with Voronoi tessellations
	The SEEKR2 workflow

	SEEKR2 Installation
	Creating a new conda environment
	Installing SEEKR2 dependencies
	Installing Browndye
	Conda installation of SEEKR2
	Installing SEEKR2-OpenMM plugin
	Installing SEEKR2
	Installing Seekrtools

	Installing SEEKR2 from source
	Installing OpenMM from source
	Installing SEEKR2-OpenMM plugin from source
	Installing SEEKR2
	Installing Seekrtools

	SEEKR2 tutorials
	Basic Tutorial: -cyclodextrin (host)-guest complexes
	Advanced Tutorial: Trypsin-benzamidine complex

	SEEKR2 benchmarking
	Conclusion

