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Abstract: There is increasing awareness of epigenetics's importance in understanding disease etiologies 

and developing novel therapeutics. An increasing number of publications in the past few years reflect the 

renewed interest in epigenetic processes and their relationship with food chemicals. However, there needs 

to be a recent study that accounts for the most recent advances in the area associating the chemical 

structures of the food and natural product components with their biological activity. Here, we analyze the 

status of food chemicals and their intersection with natural products in epigenetic research. Using 

chemoinformatics tools, we compared quantitatively chemical contents, structural diversity, and coverage 

in the chemical space of food chemicals with reported epigenetic activity. As part of this work, we built and 

curated a compound database of food and natural product chemicals annotated with structural information, 

epigenetic target activity profile, and main source of the food chemical or natural product, among other 

relevant features. The compounds are cross-linked with identifiers from other major public databases such 

as FooDB and the COlleCtion of Open Natural ProdUcTs, COCONUT. The compound database, the “Epi 

Food Chemical Database” is accessible at https://github.com/DIFACQUIM/Epi_food_Chemical_Database  

 

Keywords: chemical space; databases; epigenetics; food chemicals; foodinformatics; natural products. 

 

1. Introduction 

The concept of epigenetics has changed since it was first introduced in the 1940s by Conrad Waddington 

to describe “the branch of biology which studies the causal interactions between genes and their products 

which bring the phenotype into being”.1 Nowadays, the meaning of epigenetics is accepted as the study of 

the heritable changes in the gene expression profile that do not entail a change in DNA sequence but 
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modifies on the accessibility of the code via DNA methylation, modifications of amino acids on the amino-

terminal tail of histones and non-coding RNAs.1–3 It has been proposed that these changes could be 

classified into three types: direct epigenetics, which occurs in the lifespan of a person; indirect epigenetics 

defines the ones that occur inside the womb due to events during gestation; and across indirect 

epigenetics, referred to those changes that affected the individual predecessors and somehow, maybe 

through changes in the gametes or intrauterine environment setting, are transmitted across generations.2 

The immense interest in the field led to many studies showing the link between epigenetic changes and 

certain diseases such as diabetes, heart failure, cancer, inflammatory bowel diseases, and 

neurodegenerative diseases.4–7
 

Certain enzymes have been described as having a key role in these epigenetic modifications: DNA 

methyltransferases (DNMTs), in charge of the covalent addition of a methyl group to the DNA leading to 

the repression of certain genes; histone acetyltransferases (HATs) with the function of the acetylation of 

histone proteins, allowing the chromatin structure to open and become more transcriptionally active,8 and 

histone deacetylases (HDACs), which regulate the deacetylation of histones, leading to a hypoacetylation 

towards heterochromatin and gene suppression.9 Thus, the search for molecules that could hit these 

targets began, and the term “epidrugs'' was coined to describe chemical compounds that alter DNA and 

chromatin structure, promoting the disruption of transcriptional and post-transcriptional modifications by 

the inhibition of DNMTs and HDACs, mainly. As of 2022, several compounds have been approved by the 

Food and Drug Administration of the USA for clinical use, while other compounds are chemical probes. 

Examples of representative epidrugs and epidrug candidates are azacytidine (DNMT1 inhibitor), 5-aza-

2’deoxycytidine (DNMTs and HDACs inhibitor), procaine (DNMTs inhibitor), hydralazine (DNMTs inhibitor), 

vorinostat (HDACs inhibitor), romidepsin (HDACs inhibitor), panobinostat (HDACs inhibitor), and belinostat 

(HDACs inhibitor). Nanaomycin A is a promising probe molecule (DNMT3b inhibitor).10-14  The chemical 

structures are shown in Figure 1. 
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Figure 1. Chemical structures of representative epi drugs and epi drug candidates. 

 

One of the most promising areas of this search is the field of nutriepigenomics, focused on the study 

of the interaction between food nutrients and genome through epigenetic mechanisms, modulating the 

overexpression or silencing of specific genes and metabolic responses.15–17 The interaction between 

nutrition, epigenetic targets, and the development of certain diseases such as type I and type II diabetes, 

inflammatory diseases, liver fibrosis, and cancer have been discussed in the last few years, leading to new 

alternatives to mitigate the damage or prevent such conditions.4,5,9,15,18–21 

Using chemoinformatics to analyze natural products22 and food chemical data sets is increasingly 

widespread. The term foodinformatics, coined in 2014,23 captures chemical information's application to 

food science. Several studies focused on the contents and diversity of food chemicals have been 

published, yielding useful information to organize and mine chemical information associated with food 

chemicals, which, ultimately, is at the core of informatics applications in chemistry.24 Similarly, 
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chemoinformatics has a growing interest in natural product research,25 giving rise to the sub-field of natural 

products informatics.22 Notable examples of the applications of chemoinformatics to food chemistry and 

natural product research are the development of large compound databases such as FooDB26 and the 

Collection of Open Natural Products (COCONUT).27 Despite the increasing evidence of the effect of food 

and natural products chemicals on epigenetic targets, there needs to be a comprehensive survey of the 

effect of food molecules on different epigenetic targets rather than focusing on a specific disease or a 

specific epigenetic target family.  

This study aimed to analyze the recent progress of research on food chemicals and food components 

acting with epigenetic targets, building a compound database that integrates the information on the 

chemical structure of food chemicals and other natural products with the epigenetic activity profile. The 

scientific papers and compound database were analyzed using chemoinformatics, data mining, and 

visualization approaches to identify the most frequent epigenetic targets and related therapeutic areas 

associated with food chemicals reported so far, the food chemicals and other natural products most 

studied, and their epigenetic activity profile. The chemical structure contents, diversity, and coverage in 

the chemical space of the compounds in the molecular database were evaluated using quantitative 

methods and data visualization techniques. Since a compound data set's chemical diversity and chemical 

space depend on the structure representation, we explored the chemical multiverse, e.g., chemical space 

generated with multiple structure representations.28 As part of the analysis, we explored the relationships 

between the chemical structures and the epigenetic activity profile using the structure-property landscapes 

concept.29 

 

2. Methods 

2.1. Literature search and analysis 

We conducted a meta-analysis of the literature of research papers published between January 2017 and 

March 2023 in peer-reviewed journals with digital object identifier (DOI) numbers, documenting the 

research of food chemicals interacting with epigenetic targets with potential therapeutic applications or 

disease prevention. The literature search was done in PubMed30 and Web of Science Core Collection31 

databases using the following search terms: (("epigenetics" AND "food chemical(s)") OR ("epigenetics" 
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AND "natural products") OR ("epigenetics" AND "therapeutic application") OR ("epigenetics" AND 

"disease") OR ("epigenetics" AND "drug discovery") OR ("epigenetics" AND "drug development") OR 

"epigenetic targets" OR "epigenetic therapy" OR "epigenetic mechanisms" OR "epigenetic regulation" OR 

"epigenetic modifiers" OR "epidrugs" OR "nutritional epigenetics" OR "nutrigenetics"). As part of the 

analysis, the dietary compounds were determined in the abstract of the selected papers. Then, the most 

common therapeutic indications associated with these compounds were selected in the related papers. 

Additional analyses were performed after assembling and annotating a compound database described in 

Section 2.2. 

 

2.2. Compound database of food and natural product chemicals annotated with epigenetic activity 

Based on the literature search and analysis described in Section 2.1, a compound database herein termed 

“Epi Food Chemical Database” was assembled using Google Sheets. The chemical structures were 

represented using the linear notation Simplified Molecular-Input Line-Entry System (SMILES).32 The 

compound database was annotated with the following information: compound name; the International 

Chemical Identifier (InChI); the hashed version of InChI (InChIKey); main food source; if available, link of 

the compound to the FooDB or COCONUT databases (using the corresponding identifiers in those public 

databases); reference to the peer-reviewed paper using the DOI number; activity profile with the epigenetic 

targets for which the given compound has reported activity. To facilitate subsequent analysis and rapidly 

identify trends in the data, the activity profile was represented as a vector of “1”s and “0”s to indicate if the 

compound has or has not reported activity with a given epigenetic target, respectively. 

 

2.3. Chemoinformatic analysis of the chemical database 

The content and diversity of the chemical structures of the 187 compounds in the Epi Food Chemical 

Database were analyzed under three main types of analysis: a) scaffolds and chemical diversity using 

structural fingerprints and chemical scaffolds, b) distribution in chemical space, and c) descriptive 

structure-activity relationships based on the concept of activity, or more general, property landscapes.33 

Each of the three types of analysis is described below. 
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2.3.1. Chemical content and diversity analysis 

The scaffold content analysis was based on the definition of Bemis and Murcko,34 which considers a 

scaffold as the rings in a molecule and the connectors of them, the analysis was performed using an in-

house code in Python with the modules MurckoScaffold of RDKit library. Also, the chemical structures of 

the compound database were analyzed using well-established protocols and broadly used to characterize 

or assess the chemical diversity, namely scaffold contents and structural diversity using four molecular 

fingerprints: Molecular ACCEs System (MACCS) Keys (166-bits); Extended Connectivity Fingerprints 

(ECFP) radius 2 and 3; and RDKit fingerprints. The similarity analysis was calculated using the Jaccard-

Tanimoto index.35 

 

2.3.2. Visualization of the chemical space  

To visualize the chemical space of the compounds in the Epi Food Chemical Database, we generated a t-

distributed stochastic neighbor embedding (t-SNE). This technique involves nonlinearly reducing 

dimensions by creating Gaussian probability distributions across high-dimensional space and then utilizing 

them to enhance a Student t-distribution within a lower-dimensional space through optimization. The lower 

dimensional space conserves pairwise similarities from the original higher dimensional space, resulting in 

clustering within the embedding space without a notable loss of the structural information.36-37 

 

2.3.3. Structure-epigenetic activity profile 

We computed all pairwise fingerprint-based and epigenetic activity profile similarities for the 187 Epi Food 

Chemical Database compounds. In both cases, we used the Jaccard-Tanimoto coefficient. The fingerprint-

based similarity was calculated with four different fingerprints: ECFP4, ECFP6, MACCS Keys, and RDKit 

fingerprints.38 In total, 17,590 pairwise comparisons were computed for each fingerprint (including self-

comparisons) and 17,430 pairwise comparisons for each fingerprint (excluding self-comparisons). The 

structure vs. epigenetic activity profile similarity was plotted in a scatter plot reminiscent of the structure-

activity similarity (SAS) maps.39-42 Figure 2 shows a prototype plot of a SAS map where the epigenetic 

activity profile similarity is plotted on the Y-axis while the fingerprint-based structural similarity is plotted on 

the X-axis. An SAS map can be roughly divided into four regions as described in Figure 2; in Region I are 
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pairs of compounds with very similar activity profiles but very different structural similarities. In Region II 

are pairs of compounds with high structural similarity as similar activity profiles. Region III identifies pairs 

of compounds with low structural similarity and very different activity profiles. In Region IV, there are pairs 

of compounds with high structure similarity but very different epigenetic activity profiles. 

 

Figure 2. Prototype plot of a structure-activity similarity (SAS) map. Pairs of compounds in regions I and III have 

low structural similarity, while those in regions II and IV have high structural similarity. Pairs of compounds in 

regions I and II have a high similarity in their epigenetic activity profiles, although the chemical compounds in 

regions III and IV hold very different epigenetic activity profiles. 

 

3. Results and discussion 

3.1. Literature analysis 

The literature search revealed that the number of peer-reviewed papers found in PubMed and Web of 

Science using the search terms described in the Methods section was 7,430 and 5,960, respectively; of 

which 4,484 were in both databases and 2,946 were unique for PubMed and 1,476 were unique for Web 

of Science. Table 1 summarizes the major twenty types of diseases associated with epigenetics, and 

chemical compounds present in the food or natural products identified in the current search are listed. 

Table S1 in the Supporting Information summarizes the complete list associated with the respective related 

genes and epigenetic targets. 
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Table 1. Top twenty types of diseases associated with food epigenetic compounds. 

Associated diseases Epigenetic target 

Breast cancer 

DNMT1, DNMT3a, DNMT3b, HDAC1, HDAC2, HDAC3, HDAC 4, HDAC6, 

SIRT1, SIRT 2, SIRT 3, SIRT 4, SIRT5, SIRT6, KDM1B, KDM2A, KDM3A, 

KDM4A, KDM4B, KDM5A, KDM6B, KDM7A, KDM8 

Lung cancer 
DNMT1, DNMT3a, HDAC4, HDAC5, HDAC6, HDAC8, HDAC9, SIRT2, 

KDM1A, KDM3B 

Prostate cancer DNMT1, HDAC, HDAC4, HDAC5, HDAC6, KDM1A, KDM2B, SIRT1 

Colorectal cancer DNMT, HDAC7, KDM6B 

Bladder cancer HDAC6, LSD1, KDM6A 

Melanoma HDAC2, HDAC5, KDM5A, KDM6A 

Oral cancer HDAC6, HDAC8, KDM1A 

Hepatocellular carcinoma DNMT3a, HDAC10, KDM1A, KDM2A 

Alzheimer's DNMT, HDAC3, SIRT1 

Endometrial cancer DNMT, DNMT1, HDAC 3, KDM4A 

Non-small cell lung cancer DNMT3a, HDAC1, HDAC2, KDM6B 

Gastric cancer DNMT1, DNMT3a, HDAC 2, KDM2A, KDM2B 

Cervical cancer DNMT1, HAT/Ep300, HAT2B/Ep300, KDM5C 

Colon cancer DNMT3b, HDAC 1, HDAC 3, HDAC 7, KDM4C, KDM5A, KDM6B 

Diabetes mellitus type 2 DNMT, HDAC, SIRT1 

Glioblastoma LSD1, KDM1A 

Obesity and metabolic diseases DNMT, HDAC1, SIRT1 

Esophageal carcinoma DNMT, HAT2B/Ep300 

Squamous cell carcinoma HDAC, HDAC5 

Atherosclerosis DNMT, HDAC7, SIRT1 

 

3.2. Compound database 

A total of 436 papers out of 8,906 unique papers from both databases (PubMed and Web of Science) were 

used as the basis to build and curate the compound data set introduced in this work. The current data set 

version contains 187 unique compounds, of which 121 compounds have reported specific activity against 
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at least one of the targets, and 66 compounds have reported general activity against at least one target 

family. The Epi Food Chemical Database contains ten columns with general information plus forty-nine 

columns that encode the epigenetic activity profile of the compounds across forty-six epigenetic targets. 

The general information is comprised of structural data in three linear notations, namely SMILES, InChi, 

and InChi keys; chemical name, source of the compound, DOI of the peer-reviewed reference reporting 

the epigenetic activity, and links to FooDB and COCONUT databases through hyperlinks using the 

corresponding ID’s on these two public databases. 

The epigenetic activity profile is encoded as bit vectors of 0 and 1, indicating the absence or presence 

of reported activity for each of the 46 targets (see the Methods section 2.2 for details). The epigenetic 

targets are ordered and arranged into three main groups: writers, erasers, and readers as follows: 8 writers 

(DNMT1, DNMT3a, DNMT3b, HAT/Ep300, HAT2B/Ep300, HAT3B/p300, EZH2, PRMT1); 37 erasers 

(HDAC1, HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, HDAC9, HDAC10, HDAC11, 

SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, SIRT7, LSD1, KDM1A, KDM1B, KDM2A, KDM2B, KDM3A, 

KDM3B, KDM4A, KDM4B, KDM4C, KDM4D, KDM5A, KDM5B, KDM5C, KDM5D, KDM6A, KDM6B, 

KDM7A, KDM8) and 1 reader (BET/BRD4). The primary sources of the food chemicals in the Epi Food 

Chemical Database are meat, legumes, whole grains, grapes, poultry, acorn, acerola, strawberries, and 

nuts. Additional food sources are listed in the full Epi Food Chemical Database. 

The 15 most frequent targets with reported activity of the compounds in the database are shown in 

Figure 3. We can see that the most frequent target is DNMT1 (63), followed by DNMT3B (35) and DNMT3A 

(34), HDAC6 (31), and HDAC1 (28). 
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Figure 3. Histogram showing the 15 most frequent epigenetic targets.  

 

There are 58 compounds with reported specific activity for only one target, being DNMT1 and HDAC6 

the most frequent epigenetic targets with 18 compounds each, followed by LSD1 with eight compounds, 

BET/BRD4 with four compounds, and DNMT3a, DNMT3b, HAT/Ep300, KDM4a, with activity vs. two 

compounds in any case. Furthermore, three epigenetic targets are associated with specific reported activity 

vs. only one compound each: HDAC1 with phenethyl isothiocyanate (PEITC), SIRT1 with pterostilbene, 

and SIRT 5 with glutamate. The five compounds identified in the search with activity vs. the largest number 

of epigenetic targets were: biotin (27 targets), berberine (15 targets), alpha-ketoglutarate (13 targets), 

trichostatin (12 targets), and butein (11 targets). These and additional compounds are shown in Figure 4, 

including the chemical structure and the number of targets in parenthesis.  
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Figure 4. Top ten chemical compounds in Epi Food Chemical Database with epigenetic activity.  

 

3.3. Chemoinformatic analysis 

3.3.1. Diversity analysis 

The total number of unique scaffolds for the 187 compounds was 90. Figure 5 shows the ten most frequent 

chemical scaffolds, along with the frequency and percent proportion, which represent 35.54% of the total 

distribution. The most frequent scaffolds were benzene (10.37%), followed by flavone (5.93%) and 

flavylium (2.96%). Other frequent scaffolds were indole (2.96%), pyridine (2.22%), hexane (2.22%), and 

isoflavone (1.48%).  

 

 

Figure 5. The ten most frequent scaffolds in the Epi Food Chemical Database. 
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Figure 6 shows the cyclic system recovery (CSR) curve for the scaffold diversity in the Epi Food 

Chemical Database. This curve illustrates the proportion of molecules within a dataset that belong to a 

specific fraction of scaffolds. In a dataset with high diversity, each molecule in the library would correspond 

to a different scaffold, resulting in a diagonal with an area under the curve (AUC) of 0.5. As the range of 

scaffold diversity diminishes, the curve will deviate from the diagonal orientation. Otherwise, the nadir of 

diversity would show in a dataset wherein all compounds share the same chemical scaffold; in such an 

instance, the CSR curve would appear as a vertical line, accompanied by an AUC of 1.0.43 The shape of 

the CSR curve in Figure 6 indicates a large scaffold diversity of the Epi Food Chemical Database, with an 

AUC of 0.75. 

 

 

Figure 6. Cyclic system recovery curve of Bemis & Murcko scaffold diversity. 

 

3.3.2. Visualization of the chemical space 

The chemical space of the Epi Food Chemical Database was visualized in a graphical t-SNE 

representation. FooDB (52,856 compounds) was included as a reference. The t-SNE was performed based 
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on the 209 descriptors in the module MoleculeDescriptors of RDKit. The descriptors include molecular 

weight, octanol/water coefficient (logP), number of hydrogen donor atoms (HBD), number of hydrogen 

acceptor atoms (HBA), topological polar surface area (TPSA), number of aromatic heterocycles, number 

of aromatic rings, number of heteroatoms, and the number of rotatable bonds. The visual representation 

of the chemical space indicates an overall diversity of the newly developed database, as compared to the 

space of the entire FooDB. 

 

 

Figure 7. Visual representation of the Epi Food Chemical Database's chemical space (deep pink) compared to 

the chemical space covered by FooDB (lilac). 

 

3.4. Structure-epigenetic target activity relationships 

Figure 8 shows the SAS maps for the 187 chemical compounds in the Epi Food Chemical Database with 

the four different fingerprints: A) ECFP4, B) ECFP6, D) MACCS Keys, and D) RDKit fingerprint. The four 

interactive plots of the SAS maps are available in the Supporting information in html format. 
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Figure 8. Structure activity-similarity (SAS) map of the Epi food Chemical Database. In pink are compound pairs in 

region II: similar structures and similar activity profiles; in green are compound pairs in IV region: similar chemical 

structures but very different epigenetic activity profiles (activity cliffs). Maps generated with A) ECFP4, B) ECFP6, C) 

MACCS Keys, D) RDKit fingerprint, E) examples of common compound pairs in region II (pink points) of all maps, F) 

examples of common compound pairs in region IV (green points) of all maps. 
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The pink data points represent the pair of chemical compounds in region II of the SAS maps, which 

correspond to compounds very similar in structure as in profile activity. An example of this compound pair 

that is common in the SAS maps of the four fingerprints is apigenin vs. luteolin (comparison 1 in Figure 

8F). These compounds have reported activity vs. HDAC1 and HDAC3, and some of the principal sources 

of both compounds are parsley, celery, onions, and pepper. Other examples of compounds in this region 

of the SAS maps are the comparisons between cyanidin vs. malvidin vs. pelargonidin (comparisons 2 and 

3, respectively, in Figure 8); in this case, the compounds have reported activity vs. DNMT1 and DNMT3b, 

and some of the principal common sources of the three compounds are blackberries, cherries, 

strawberries, and raspberries. 

In contrast, the green data points in the SAS maps represent pairs of compounds in region IV, 

corresponding to compounds with similar activity profiles but very different chemical structures. Examples 

of these pairs of compounds present in region IV of all SAS maps for all the fingerprints are linoleic acid 

with reported activity vs. DNMT1, DNMT3a, and DNMT3b and oleic acid with reported activity vs. KDM4; 

their main sources are avocado, nuts, vegetable oils, and seeds. Another pair of compounds with very 

similar chemical structure but very different epigenetic activity profile (Figure 8F) is butein with reported 

activity vs. HDAC1, HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, HDAC9, HDAC10 and 

HDAC 11 vs. isoliquiritigenin with reported activity vs. DNMT1 and BET/BRD4 in which their main sources 

are soybeans, peanuts, strawberries, and raspberries. It is important to emphasize that the pairwise 

epigenetic activity comparisons of the compounds of this work are based on the data published in the 

literature. For this reason, it is better to call them “pseudo activity cliffs” or pro-activity cliffs44 instead of 

activity cliffs to the compounds in region IV. This is because some pairs of compounds may have very 

similar activity profiles but have not been fully tested yet. Examples of these compounds are apigenin and 

luteolin vs. chrysin. With current data reported in the literature, it is concluded that apigenin and luteolin 

are compounds that have similar structures with the same activity profile with reported activity vs. HDAC1 

and HDAC3, but both compounds are pseudo activity cliffs vs. chrysin, which have activity reported vs. 

HDAC6. So it is probable that chrysin could have activity to HDAC1 and HDAC3 but also that apigenin and 

luteolin could also have activity vs. HDAC6. 

https://doi.org/10.26434/chemrxiv-2023-drxvm-v2 ORCID: https://orcid.org/0000-0003-4940-1107 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-drxvm-v2
https://orcid.org/0000-0003-4940-1107
https://creativecommons.org/licenses/by/4.0/


16 

4. Conclusions 

Herein, we report constructing and curating the Epi Food Chemical Database, which contains 187 chemical 

compounds from dietary and natural products. The database includes structural information and the 

epigenetic activity profile obtained from the literature vs. 46 epigenetic targets. Breast cancer is by far the 

disease discussed in the literature with the largest number of epigenetic targets that are dysregulated. We 

used chemoinformatic tools to compare and analyze the structural content, diversity, and chemical space. 

Scaffold analysis revealed that the most frequent scaffolds were benzene, followed by flavone and 

flavylium. Diversity analysis and coverage in chemical space showed that the compounds in the Epi Food 

Chemical Database have an overall large diversity compared to compounds in FooDB. In addition, we 

identified two main groups of compounds; the first, with continuous structure-activity relationships, aka, 

fulfill the similarity principle: compounds with similar chemical structures have similar epigenetic activity 

profiles. The second group of compounds can be considered pseudo-activity cliffs (similar structures but 

very different epigenetic activity profiles). This work serves as a justification for further experimental testing 

of the compounds that form pseudo-activity cliffs. They may have similar activity to their analogous 

compounds. This work contributes to the further advancement of a systematic analysis of food and natural 

product chemicals with epigenetic activity using chemoinformatic approaches. 

 

Supporting Information 

The supporting information is available at https://github.com/EuridiceJuarez/EpiFoodChemicalDatabase. 

It contains the annotated compound database of food chemicals reported with epigenetic activity (Epi Food 

Chemical Database) in CSV format; Table S1 with the list of diseases/genes obtained in the literature 

search; Table S2 summarizes the list of 436 research papers used to build the Epi Food Chemical 

Database, and the interactive SAS maps plots of compounds in the Epi Food Chemical Database.  
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