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AI-guided closed-loop experimentation has recently emerged as a promising method to optimize objective functions,1,2 but 
the substantial potential of this traditionally black-box approach to reveal new scientific knowledge has remained largely 
untapped. Here, we report a new AI-guided approach, dubbed Closed-Loop Transfer (CLT), that integrates closed-loop 
experiments with physics-based feature selection and supervised learning to yield new scientific knowledge in parallel with 
optimization of objective functions. CLT surprisingly revealed that high-energy regions of the triplet state manifold are 
paramount in dictating molecular photostability in solution across a diverse chemical library of light-harvesting donor-
bridge-acceptor oligomers. Remarkably, this insight emerged after automated modular synthesis and experimental 
characterization of only ~1.5% of the theoretical chemical space. Supervised learning models considering millions of 
combinations of 100+ physics-based descriptors further showed that high energy triplet states most strongly correlate with 
photostability, while excluding more commonly considered predictors such as the lowest energy triplet state. The physics-
informed model for photostability was even further confirmed and then strengthened using an explicit experimental test set, 
validating the substantial power of the CLT method. Broadly, these findings show that interfacing physics-based modeling 
with closed-loop discovery campaigns unimpeded by synthesis bottlenecks can rapidly illuminate fundamental chemical 
insights and guide more rational pursuit of frontier molecular functions.  

INTRODUCTION 

  Achieving systematic and efficient chemical design, 
discovery, and understanding across large chemical search 

spaces is a grand challenge for chemistry. With recent 
developments in automated modular synthesis,3–6 
synthetically accessible chemical space is vast,7 and 
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advanced physics-based approaches for targeted functional 
design are critically needed. But the paradigm of rational 
design and discovery has increasingly been supplanted by 
theory-driven exploration and combinatorial, high-
throughput experimentation.8–10 Recently, artificial 
intelligence (AI)-guided closed-loop platforms, where 
predictions, experiments, and analysis are automated and 
connected in a positive feedback loop, have shown great 
potential to accelerate scientific discovery in intractably 
large search spaces.11–24 Despite these recent successes, it is 
not yet possible to broadly leverage such a paradigm to 
drive knowledge-based discovery of molecular functions. A 
major challenge lies in the need to choose either objective 
optimization or knowledge generation as the driver for 
data-scarce AI-guided campaigns. New closed-loop design 
paradigms are required to reveal fundamental scientific 
understanding22 in parallel with data-driven problem 
solving. 

  The inability to rationally control photostability in organic 
light-harvesting molecules is emblematic of the limitations 
of existing discovery paradigms. Photostability is both a 
complex phenomenon and an essential property for light-
active materials in technologies including organic 
photovoltaics,25,26 electrochromic materials,27 organic light-
emitting diodes,28 organic photocatalysts,29 photoactive 
coatings,30 and fluorescent dyes.31,32  Due to the large 
number of complex physical and chemical descriptors 
potentially governing photostability in organic compounds, 
we lack a general set of design principles for controlling 
photodegradation across a broad chemical space.33–37 Prior 
work has often considered the lowest lying excited triplet 
state (T1) energy as a primary determinant of photostability 
and photodegradation across scattered chemical classes.38–

43 Although some recent studies have suggested that high 
energy triplet states (Tn, n > 1) may play a role in the 
performance and photostability of organic light-harvesting 
compounds,44–47 experimental observation and 
computational modeling of such high-energy states is 
extremely challenging.48 New experimental and 
computational approaches examining a wide range of 
chemically diverse molecules with unbiased evaluation of 
many possible physics-based features are critically 
required to understand the fundamental determinants of 
molecular photostability in the context of functional 
molecular discovery.39  

  Here we report a new AI-guided closed-loop method that 
simultaneously reveals fundamental knowledge while 
efficiently balancing exploration and exploitation across a 
broad chemical space. We hypothesized that AI-guided 
closed-loop experimentation could nucleate a physics-
informed supervised learning model capable of identifying 
highly photostable compounds while concomitantly 
elucidating the fundamental determinants of molecular 
photostability. Our results show that a single campaign 
employing Bayesian optimization (BO) guided closed-loop 
experiments leveraging automated modular small molecule 
synthesis, performed in concert with physics-based 
modeling, resulted in both high-performing photoactive 
molecules and the unexpected revelation that molecular 
photostability is most strongly correlated with the high 

energy portion of the triplet excited state manifold. These 
results were achieved using BO to intentionally balance 
exploration and exploitation of the diverse chemical space 
with no pre-existing knowledge of the determinants of 
photostability in organic molecules. Our work shows that 
interfacing physics-based modeling with the data emerging 
from BO-guided closed-loop discovery can deliver physical 
insights into frontier molecular functionality. 

RESULTS & DISCUSSION 

  We introduce a new closed-loop approach called closed-
loop transfer (CLT) (Figure 1) that consists of three phases: 
Phase I integrates BO that intentionally balances 
exploration and exploitation (GRYFFIN49) in a closed-loop 
process with automated modular small molecule 
synthesis3,50,51 and multidimensional characterization 
(here, a solution-based solar irradiation cell25), until 
saturation of the functional objective target is achieved; 
Phase II integrates comprehensive whole molecule DFT 
calculations and feature selection with physics-informed 
supervised learning models to extract physical insights and 
extrapolate broadly across chemical space; Phase III uses an 
explicit experimental test set for statistical validation of the 
physical insights and understanding across the entire 
chemical search space. To establish the CLT approach, we 
chose to first focus on molecular photostability of 
conjugated oligomers in the solution state which 
intentionally avoids additional complicating factors due to 
processing, film morphology, and interfacial effects.  

  To initialize the CLT campaign, we first defined the 
chemical space (Figure 2) for the closed-loop (Figure 3a) 
procedure. We chose the donor-bridge-acceptor (D-B-A) 
motif ubiquitous in state-of-the-art light absorbing 
conjugated materials52–54 as a molecular design scaffold that 
can be readily modularized into function-infused building 
blocks amenable to automated chemical synthesis. The 
donor and pi-bridge building blocks were inspired by 
successful motifs found in molecular electronics, whereas 
the acceptor building blocks were algorithmically chosen in 
a down-selection process (SI Section 1) maximizing 
molecular diversity within all purchasable (hetero)aryl-
halide building blocks (Extended Data Figure 1). The 
resulting modularized chemical space was thus infused 
with light-harvesting functionality while also sampling a 
diverse chemical space rich with discovery potential. In 
total, the chemical space includes three donors, seven pi-
bridges, and 100 acceptor blocks, yielding a total of 2,200 
potential oligomers when accounting for symmetry and 
molecules lacking a pi-bridge. To facilitate AI-driven BO, the 
chemical space was featurized using concatenations of 
rapidly calculable structural and electronic descriptors of 
the building blocks computed with density functional 
theory (DFT) and RDKit55 (Tables S1-S2). 

  Critical to the initialization of the CLT campaign was an 
emphasis on diversity early in the closed-loop campaign, 
followed by balanced exploration and exploitation in 
subsequent rounds (Figure 3b). To initiate the first round, 
molecular diversity sampling was utilized to decrease 
initiation bias in the closed loop (SI Section 1). The 2nd 
round contained additional diversity selected molecules 
and BO recommendations. For each subsequent closed-loop 
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iteration, a batch of six molecules was drawn to uniformly 
sample along the domain between fully exploitative and 
fully explorative within the BO algorithm.49 This strategy 
ensured that while BO was optimizing for photostability, it 
was concurrently diversifying its knowledge of the chemical 
space to maximally inform general scientific understanding. 
At the end of each round of the closed-loop cycle, 
experimental photostability data were measured and 
passed to the BO model, which then suggested synthetic 
candidates for the next round. These molecular targets and 
a list of their nearest neighbors in feature space (known as 
‘backups’ in cases where the target is not readily 
synthesizable or testable – Figure 3b) were then 
automatically populated on a custom-built digital project 
manager, a web-based database and dashboard, for 
subsequent automated synthesis (Extended Data Figure 2). 

  During the closed-loop iterations, automated modular 
small molecule synthesis was conducted using a version of 
our iterative C-C bond-forming robot optimized for reaction 
reproducibility (Figure 3c and Extended Data Figure 3).14 
Initial tests demonstrated that a fully automated two-step 
synthesis was feasible. The first step proved to be generally 
efficient, whereas the second step was initially more 
challenging and variable due to the chemical diversity in the 
100 aryl-halide acceptor blocks.  We thus opted to 
independently synthesize and scale-up the first coupling 
products (donor-bridges, SI Section 2), and separately 
optimize the second reaction step using slow-release cross-
coupling.56 We found that using both our recently reported 
general reaction conditions for heteroaryl cross-coupling 
discovered via an AI-guided closed-loop campaign14 (GC1, 
Figure 3c) and newly discovered anhydrous slow-release 
coupling conditions (GC2, Figure 3c, and SI Section 250) 
maximized the synthetic hit-rate (~60%).   

  Following synthesis, purification, and structural 
verification (SI Section 2) in each round of the closed-loop, 
the photophysical properties of donor-bridge-acceptor 
molecules were characterized via solution-based 
photodegradation in a solar irradiation cell (Figure 3d). 
The photophysical properties for all molecules were 
measured under standardized concentrations, in the same 
solvent (chlorobenzene), and under a controlled 
atmosphere using a glovebox with oxygen and humidity 
control. We measured two properties: spectral overlap 
(SO), defined as the integral of the normalized overlap of a 
molecule’s absorbance spectrum and the solar irradiance 
spectrum, and spectral decay time (T80), defined as the time 
required for the observed absorbance spectrum to decay to 
80% of its initial value under constant irradiation. Given 
that photodegradation is sensitive to the local environment, 
an internal standard was used to ensure consistency (SI 
Section 3). Based on a first-order kinetic model, we chose to 
optimize photostability, defined as the product of SO and T80 
(Extended Data Figure 4).   

  BO-driven closed-loop experimentation proceeded across 
five rounds, automatically synthesizing 30 novel donor-
bridge acceptor light-harvesting oligomers (Figure 4a and 
Extended Data Table 1), until saturation of the experimental 
photostability was observed. The first round of suggestions, 
relying on diversity-driven selection, resulted in a set of 10 

molecules with low to moderate photostabilities. 
Subsequent rounds 2-4 relying on the BO strategy probed 
existing and new regions of functional chemical space, 
discovering molecules at the extremes of T80 and SO, and 
some that maximized their product. By the conclusion of the 
5th round of the closed-loop, the average photostability of 
the top-five molecules showed an effective plateau, 
signaling the end of the BO-guided closed-loop campaign 
(Figure 4b). Importantly, a nearly 400% increase in the 
average photostability of top-5 performers was achieved by 
only sampling < 1.5% of the total space of 2,200 possible 
molecules, a result consistent with prior theoretical 
predictions but not previously verified experimentally.49  

  Following saturation of the experimental photostabilities 
within the BO campaign, we used the new CLT method to 
enable a physics-based understanding of functional 
properties. We performed whole molecule DFT 
calculations57 on all 2,200 D-B-A and D-A oligomers, and 
from these results a comprehensive set of 114 physical and 
chemical molecular descriptors were extracted (Tables S1-
S4). These descriptors were then integrated in backward 
stepwise feature selection and support vector regression 
(SVR) with the experimental T80 and SO values. SVR models 
were trained to predict SO and T80 separately due to an 
observed inverse relationship between T80 and SO, with the 
best model achieving leave-one-out-validation (LOOV) 
predictive accuracy of R2 > 0.80 on the experimental 
photostability using 6 features from the TDOS (TDOS at 2.6, 
2.8, 3.8, 3.9, 4.0, and 4.6 eV). We next explored all possible 
SVR models (12,996) using two-descriptor combinations of 
the 114-feature set and LOOV performance metric (Figure 
4c). Unexpectedly our results showed that, as opposed to 
the conventional T1 energy descriptor of photostability, 
high-energy TDOS emerged as a primary determinant of 
molecular photostability across the entire chemical space 
(high T80 LOOV R2) (Figure S4-S5). We then examined 
234,136 four-descriptor SVR models and plotted the 
distribution of performance (R2) for all models containing 
the most predictive region of the TDOS at 4.0 eV compared 
to the T1 energy (Figure 4d). Our results clearly show a 
stark difference in the predictive capabilities of supervised 
learning models employing the high-energy region of the 
TDOS as opposed to the low energy region. Importantly, this 
knowledge emerged a priori, across a broad chemical space, 
with equal weight given to all possible hypotheses 
described by 114 physical and chemical descriptors. This 
data-driven physical insight suggests a more nuanced 
understanding of the triplet state manifold’s role in 
molecular photostability is required that extends beyond 
simple T1 energetics. 

  As learning in the low-data limit can induce spurious 
correlations in supervised learning models, the final phase 
of the CLT campaign involved construction of an 
independent experimental test set to validate the 
observation that high-lying triplet states determine 
molecular photostability.  The best T80 SVR model trained 
on six values of the TDOS (Figures S6) was used to predict 
T80 across the entire set of 2,200 oligomers (Figure 5a). The 
predicted T80 value of each oligomer was then multiplied by 
its predicted SO value (a separate linear model 
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incorporating the TDDFT singlet absorption spectrum – 
Figure S1) to obtain the predicted photostabilities across 
the entire set of 2,200 oligomers (Figure S15). Using these 
predictions, we formed two batches of 7 molecules, one 
high-performing (“top 7”) and one low-performing 
(“bottom 7”), to serve as experimental validation sets 
(Figure S8). These two batches possessed the following 
statistical features (SI Section 1): i) identical average SO 
within the 5.5%-9% SO region (which emphasizes T80 
effects in the photostability), and ii) similar standard 
deviations for the predicted T80 (which samples a broad and 
chemically diverse space).  We then synthesized and 
characterized the photophysical properties of the top 7 and 
bottom 7 batches (Figure 5b). We observed a statistically 
significant photostability difference between these groups 
in the predicted direction (Figure 5b; average T80*SO = 165 
for top 7 versus average T80*SO = 97 for bottom 7, p=0.026, 
Spearman R2=0.54), validating our CLT-derived physical 
insight that the triplet manifold is a key descriptor of 
molecular photostability. Interestingly, one outlier in the 
bottom 7 showed surprisingly high observed 
photostability; subsequent analysis demonstrated that this 
quinone-based molecule exhibited a high TDOS 
approximately 1 eV above its T1 energy while maintaining a 
low structural complexity – a feature unseen relative to the 
30 molecules synthesized in the five closed-loop rounds 
(Extended Data Figure 5).  

  Using the full experimental photostability data set 
generated by the CLT campaign (44 molecules, Extended 
Data Figure 6a), we performed a final retraining of 
supervised learning models to maximally extract physics-
informed insights into photostability. Strikingly, upon re-
training all 12,996 two-feature SVR models when 
considering the full experimental dataset, the high-energy 
TDOS even more strongly emerged as a critical determinant 
of molecular photostability across the entire chemical space 
(high T80 LOOV R2) (Figures 5c) and a superior descriptor 
relative to the conventional T1 energy (Figure 5d). 2.5 
million four-feature SVR models were trained to identify the 
most common feature present in the most predictive T80 
models (R2 > 0.70) across all descriptors (Figure S9). The 
two most common features, present in ~30% of the most 
predictive models were the TDOS at 4.0 eV and the number 

of heteroatoms (Extended Data Figure 6b). Whereas the 
number of heteroatoms may be attributed to the reliably 
poor T80 of the benzodithiophene donor, the observed 
correlation between a high TDOS at 4.0 eV and a low T80 
solidifies the closed-loop-derived knowledge that the high-
lying TDOS is a critical determinant of molecular 
photostability.  

  Finally, we note that within our CLT campaign, the highest-
performing four-feature SVR model trained on all 44 
molecules of the campaign utilizes two simple structural 
features (the number of rotatable bonds and the number of 
heteroatoms) in addition to the TDOS at 3.9 eV and 2.5 eV 
(Extended Data Figure 6b, Figures S10-S11). That the data-
scarce regime can still leverage simple structural 
descriptors is likely indicative of additional chemical or 
physical complexities not fully captured by the TDOS. 
However, due to the challenges of understanding the 
properties of the triplet manifold, substantial theoretical 
and experimental advances will be required to fully 
characterize the energetics and dynamics of 
photodegradation processes mediated by high energy 
triplet states beyond T1. 

CONCLUSION 

  The closed-loop experiment reported here, augmented by 
physics-informed feature selection and supervised 
learning, elucidated fundamental knowledge regarding 
molecular photostability while simultaneously optimizing 
towards high function molecular targets. The remarkable 
efficiency with which this AI-guided campaign yielded 
physical insights (only 30 molecules) resulted from 
combining an AI-guided balance of exploration and 
exploitation with physics-based modeling and feature 
selection. This CLT paradigm may prove to be broadly 
applicable to other frontier applications and fields of 
inquiry, in particular low data regimes and 
multidimensional molecular properties which are 
challenging to predict a priori. We believe that CLT will 
serve as a valuable playbook for harnessing the strengths of 
BO and transitioning to hypothesis-driven discovery 
campaigns reinforced by physics-based insights. The CLT 
method may also provide a roadmap for AI-guided closed-
loop algorithms to achieve physics-based, hypothesis-
driven research independent of human input. 
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Figure 1. Closed-loop transfer paradigm for physics-informed functional molecular discovery.  
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Figure 2. A molecular building block set for light-harvesting small molecules. a, The modular building blocks considered in 
this work for designing new light-harvesting donor-bridge-acceptor oligomers. The full list of 100 acceptor building blocks is 
shown in Extended Data Figure 1. b, Principal component analysis (PCA) projection of the full chemical space (2,200 
molecules), shape- and color-coded according to the structure of the donor and bridge building blocks, respectively.  Gray 
coloring indicates the absence of a bridge block, i.e., molecules that are donor-acceptor.  
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Figure 3. Closed-loop experimental strategy.  An overview of the closed-loop process is shown in a, demonstrating the major 
steps under the guidance of AI-driven Bayesian optimization and images of the solution characterization process and 
automated synthesis equipment. b, A visualization of round 3 of the closed-loop campaign in which six molecules are 
recommended, balancing exploration and exploitation, along with several backup molecules for each. In round 3, the 3rd most 
explorative molecule (yellow) was unsynthesizable, requiring the use of a backup, as shown in the inset. c, The reaction 
conditions employed in the automated synthesis of ~60% of the molecules recommended by Bayesian optimization. d, 
Example data generated by the solution characterization, showing the fresh absorbance and solar simulator irradiance 
spectrum used to calculate spectral overlap, the decay of absorbance over time for a representative molecule (inset), and a 
plot of the decay of the absorption spectrum over time, which is used to calculate T80 of each molecule with measurable 
absorbance.

  
Figure 4. Results from closed-loop Bayesian optimization. a, Data generated per round of closed-loop experimentation, 
with representative highly photostable oligomers shown. b, Cumulative photostability performance per round of closed-loop 
experimentation. Top 5 corresponds to the average of the top 5 molecules.  c, All support vector regression leave-one-out 
validation (LOOV) results for predicting T80 from 2-feature combinations.  d, Comparison of the prediction strength of all 
possible 4-feature models containing either the TDOS at 4.0 eV or the T1 energy. 
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Figure 5.  Hypothesis-driven discovery model and experimental validation. a, The physics-based model for T80 using the 
triplet density of states of each molecule is plotted against four triplet density of states values relevant to the prediction task. 
These predicted T80 values, along with the SO criteria, were used to select the Top 7 and Bottom 7 molecules, shown on the 
left and right side of b, respectively. b, Photostabilities of the molecules in the experimental validation set, their average, 
standard deviation, and the associated p-value from a Mann-Whitney test, are plotted in the center. These values demonstrate 
a statistically significant difference in performance between the two sets of molecules, as well as an outlier high performer 
(Bottom #2) as described in the text. c, All support vector regression leave-one-out validation (LOOV) results for predicting 
T80 on the entire 44 molecule dataset from 2-feature combinations. d, Comparison of the prediction strength of all possible 4-
feature models containing either the TDOS at 4.0 eV or the T1 energy in predicting T80 for the entire 44 molecule dataset. 
Comparing the plots in c and d to Figure 4 c and d shows the improved predictive strength of TDOS at 4.0 eV over all other 
features, especially T1, after the validation dataset. 
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Online content  
The data and methods that support the findings of this study 
are available in the Supplementary Information: machine 
learning and Bayesian optimization methods, details of 
automated synthesis and purification, and details of solution 
photodegradation testing. 
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Extended Data Figure 1. Chemical diversity down-selected set of acceptors used in this work. 
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Extended Data Figure 2. The Streamlit web app digital project manager used in this work. 
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Extended Data Figure 3. The small molecule synthesizer used in this work. a, Picture of the hardware. b, Design schematic. 
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Extended Data Figure 4. Simplified kinetic model to describe oligomer degradation. See further discussion in SI section 1. 
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Round-ID DBA_Name SO (%) T80 (hours) SO*T80 

1-d1 DB_01_A_010 0.8 n/a n/a 

1-d2 DB_19_A_021 12.25 3 36.75 

1-d3 DB_15_A_053 2.88 5 14.4 

1-d8 DB_18_A_094 12.2 1.5 18.3 

1-d9 DB_05_A_073 0.1 n/a n/a 

1-d10 DB_20_A_017 2.35 3.5 8.23 

2-1 DB_05_A_089 0.1 n/a n/a 

2-2s11 DB_13_A_100 6.1 51.7 315.37 

2-3s3 DB_08_A_018 3.65 48 175.2 

2-4 DB_19_A_025 14.58 1.5 21.87 

2-d5s1 DB_20_A_027 4.55 15 68.25 

2-d8s13 DB_17_A_069 6.84 10.6 72.5 

2-d9 DB_12_A_022 5.55 5 27.75 

2-d10 DB_16_A_061 4.46 1.9 8.47 

3-1 DB_15_A_088 5.19 9.3 48.27 

3-2 DB_11_A_002 7.2 46.7 336.24 

3-3s1 DB_20_A_012 2.4 9.7 23.28 

3-4 DB_06_A_049 1.23 78.3 96.31 

3-6 DB_08_A_034 6.08 2.36 14.35 

4-1 DB_22_A_046 5.88 10.49 61.68 

4-3 DB_22_A_083 6.66 23.09 153.78 

4-4 DB_05_A_002 0.1 n/a n/a 

4-5 DB_01_A_002 0.33 101.13 33.37 

4-6 DB_06_A_002 1.8 103.86 186.95 

5-1 DB_10_A_007 10.76 10.48 112.76 

5-2 DB_11_A_007 13.7 8.87 121.52 

5-3s4 DB_10_A_091 7.87 19.48 153.31 

5-4s7 DB_10_A_084 8.92 15.64 139.51 

5-5 DB_10_A_002 12.37 8.64 106.88 

5-6s2 DB_09_A_002 7.89 7.86 62.02 

Top7-1 DB_04_A_046 6.36 24.91 158.43 

Top7-2 DB_04_A_070 8.23 31.94 262.87 

Top7-3 DB_13_A_009 2.42 32.17 77.85 

Top7-4 DB_13_A_031 3.95 10.8 42.66 

Top7-5 DB_13_A_044 5.45 44.96 245.03 

Top7-6 DB_13_A_071 4.82 68.37 329.54 

Top7-7 DB_13_A_080 6.1 6.67 40.69 

Bot7-1 DB_08_A_096 7.1 71.88 510.35 

Bot7-2 DB_15_A_066 5.46 5.34 29.16 

Bot7-3 DB_17_A_029 7.48 2.42 18.10 

Bot7-4 DB_22_A_007 3.4 9.15 31.11 

Bot7-5 DB_22_A_018 3.14 9.77 30.68 

Bot7-6 DB_22_A_023 4.3 4.8 20.64 
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Bot7-7 DB_22_A_063 3.67 10.88 39.93 

 Extended Data Table 1. Characterized SO, T80, and Photostability (SO*T80) of synthesized molecules from Rounds 1-5 and the 
validation set (Top7 and Bot7). Molecules are numbered by their round number and intra-round ID, where ‘s’ indicates 
substitute, and ‘d’ indicates selected via diversity. For molecules recommended by BO (e.g. Rounds 2 through 5 without a ‘d’ 
label) a lower intra-round ID corresponds to a more explorative recommendation, a higher number corresponds to more 
exploitative recommendation. 
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Extended Data Figure 5. Triplet Density of States (TDOS) for all experimentally measured molecules. DB08_A096 (the high 
performer in the predicted Bottom 15) is shown in red. All others are in gray, with the highest T80 in darker colors, and the 
lowest T80 in lighter colors. 
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Extended Data Figure 6. a, The distribution of photostabilities of the 44 molecules synthesized over the CLT campaign. b, The 
best 4 feature model for predicting T80. Note the similarities of the TDOS features to those in the original physics based T80 
model (Figure 5a and S4. c, Examples of filtering predicted photostability using structural features (donor-bridge [DB] 
combinations) and functional features (calculated properties, independent of model training). DBs are ranked according to 
average predicted photostability values across all 100 acceptors. Functional features (Abs: absorbance, Log(P): octanol water 
partition coefficient), are filtered to contain ~100 molecules each, demonstrating that functional features can be equally 
predictive as structural features. d-e, individual predicted T80 and SO plots for a structural search (DB 11) and a functional 
search (high absorbance at 477 nm). Black points correspond to donor-bridge-acceptor molecules that fulfill these criteria. 
Note that the molecule population shown in e contains six DB motifs. 
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