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Abstract

Controlling the formation and growth of ice is essential to success-
fully cryopreserve cells, tissues and biologics for research or clinical use.
Current programmes to identify materials capable of modulating ice
growth are guided solely by iterative changes and human intuition, with
a major focus on macromolecules (proteins or polymers). This process
is fundamentally constrained by a poor understanding of the mecha-
nisms and underlying structure-activity relationships. Here, we overcome
this barrier by constructing machine learning models capable of pre-
dicting the ice growth inhibition activity of small molecules. Due to
current limitations in experimental throughput, we leverage ensemble
models which combine state-of-the-art descriptors with domain-specific
features derived from molecular simulations. When applied to virtu-
ally screen a commercial compound library, these models successfully
predicted novel ice recrystallisation inhibitors that are experimentally
verified to function at low millimolar concentrations. This data-driven
approach will enable the discovery of new cryoprotectants to address
the rapidly growing clinical and biotechnological cold-chain demands.
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1 Introduction

The low-temperature storage of cells, tissues and biologics is an essential
technology for biomedical research, regenerative medicine, and vaccination
distribution [1, 2]. These materials are most effectively preserved at sub-
zero temperatures, however there are several stressors associated with these
conditions, originating from the formation (nucleation) and growth (recrys-
tallisation) of ice [3]. In nature, many organisms can mitigate the harmful
effects of ice by accumulating solutes which provide a cryoprotective effect on
a colligative basis [4]. Cold-adapted species may also produce antifreeze pro-
teins and macromolecules which can recognise and bind to nascent ice crystals
directly, inhibiting growth at the bound surface [5]. This process, known as
ice recrystallisation inhibition (IRI), has drawn significant interest due to its
potential to enhance the cryopreservation of cells and tissues ex vivo. To this
end, a variety of biomimetic materials have been explored, including synthetic
protein analogues [6], polymers [7] and self-assembling compounds [8]. More
recently, small molecules have also been found to slow the recrystallisation
of ice via an alternative mechanism that does not involve binding directly to
the crystal surface, improving the cryopreservation outcomes for human blood
and stems cells, as well as mammalian organs [9–11]. Nonetheless, these pro-
tocols still required significant quantities of cosolvent (e.g. DMSO, glycerol)
which are associated with several adverse effects, including toxicity and epi-
genetic alterations [12, 13]. Moreover, the diversity of cell characteristics and
storage requirements means that rarely does any single cryoprotectant pro-
vide optimal outcomes across different settings [3, 14]. Consequently, there is
a pressing need for novel ice recrystallisation inhibitors (IRIs) for a number of
applications, most notably cell-based therapies which require cryopreservation
throughout their supply chains. [2].

Despite significant efforts, identifying new IRIs remains a formidable task.
Guided by limited mechanistic understanding, as well as structure-activity
relationships that can be counterintuitive and contradictory, the discovery of
new materials is fundamentally trial and error. Traditionally, the synthesis
and screening of tens to hundreds of compounds has been required in order to
identify a handful of potent “hits” [15]. This process is time-intensive, com-
pounded by a lack of high-throughput techniques to quantitatively assess IRI,
and has thus become the bottleneck in the development of IRI-active molecules
as next-generation cryoprotectants. In our previous work, we introduced amino
acids as a novel class of IRIs that can be highly effective at millimolar con-
centrations [16, 17]. Benefiting from their low-cost, chemical diversity and
commercial availability, amino acids are ideally suited for wider study, and
poised for industrial application as cryoprotectants. In this article, we intro-
duce a machine learning-based approach for predicting the IRI activity of
amino acids. Our method combines a number of state-of-the-art descriptors,
as well as novel representations computed via atomistic molecular dynam-
ics (MD) simulations, targeting interactions between hydrated inhibitors and
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water. To overcome the challenges of low-throughput experimental measure-
ments of IRI, we leverage this descriptive information by using an ensemble of
models with different inputs and architectures, to obtain more robust predic-
tions and quantify prediction uncertainty. We show for the first time that these
models can be used to accurately predict IRI activity and apply this to screen
a commercial compound library. These predictions were experimentally vali-
dated, discovering non-obvious small molecule IRIs. Overall, this data-driven
approach signals a fundamental shift towards the rapid and efficient discovery
of IRI-active materials for applications in industrial and clinical sciences. We
discuss these findings and evaluate the significance of molecular hydration as
a determinant of small molecule IRI activity.

2 Results and discussion

2.1 Classifying IRI-active small molecules

To benchmark our methods against earlier work, we first developed classifica-
tion models to predict IRI activity on a categorical basis. Previously, Briard
and coworkers [15] constructed a binary classification model to predict whether
small-molecule carbohydrates were IRI-active or IRI-inactive using the train-
ing set denoted here as the Glyco dataset (Table 1, Figure 1a). IRI activity
was measured using the “splat cooling” assay, wherein the average ice crystal
(grain) size is determined from a micrograph following a period of recrystalli-
sation (Figure 1d), as described in the Methods. This assay yields data in the
form of mean grain size (MGS) values, which are typically normalised against
a negative control for inhibition, producing a relative (%) MGS metric. A
smaller % MGS value thus signifies stronger inhibition (Figure 1d).

Table 1 Datasets featured in this work. Complete datasets including compound names,
SMILES and % MGS values can be found in the GitHub repository [18]

Dataset No. compounds Compound classes

Glycoa 124 Aryl glycosides, aryl/alkyl aldonamides
Glyco2b 223 Aryl/allyl/amino glycosides, aryl/alkyl aldonamides

mono/disaccharides, lysine-based surfactants
cationic anti-INAs

Amino 63 (α/β/γ-)amino acids/alcohols/esters
Combinedc 286 All of the above

aSame dataset used in Ref. [15]. bIncludes compounds in Glyco. cIncludes
compounds in Glyco2 and Amino.

For classification, % MGS values must therefore be converted into categor-
ical (“active” and “inactive”) labels according to given threshold, chosen to be
70 % MGS by Briard and colleagues [15]. To construct classification models, we
computed six different molecular descriptors for each structure, encompassing
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low- and high-dimensional representations, as detailed in the Methods. Neu-
ral network (NN) classifiers were then trained, optimised and validated for the
Glyco dataset using the architectures and training/validation procedures given
in the Methods and Supplementary Information (Supplementary Table 3). We
note briefly here that, given the small size of the datasets, a leave-one-out
(LOO) cross validation (CV) procedure has been applied to obtain robust pre-
dictions for each molecule which are independent of training and test splits.
Model performance was evaluated using the same metrics as Briard et al. [15],
defined in the Supplementary Information. The performance of the classifica-
tion models in terms of these metrics are displayed in Table 2. These metrics
are computed on test predictions obtained via a single LOO CV run, however
we found that repeating this process generates very similar scores (Supple-
mentary Table 7), hence we report only the values for a single representative
model. Overall, these models performed reasonably well, with most achieving
an F-score of 0.64 or above, similar to the benchmark score of 0.67 previously
set. The only exception to this was the classifier trained using the hydration
indices, which had an F-score of 0.50 and poor sensitivity of 0.38. Conversely,
the best performing model based on the F-score was the molecular cliques,
however this model also had low specificity.

Given that we had a number of individual models, each showing satisfac-
tory performance having been trained using a single descriptor, we sought to
improve the predictions by aggregating the model outputs to obtain a con-
sensus, as illustrated in Figure 1e. This approach, also known as ensemble
learning, is based on a simple rationale: combining multiple models each with
intrinsic variability and weakness can result in more robust and accurate pre-
dictions. This is fundamental to certain supervised learning algorithms (e.g.
random forests [19]) and has also proved successful for chemical property
prediction [20]. With this in mind, ensemble classification predictions were
obtained using a majority-voting scheme, whereby the most frequently pre-
dicted class among a set of models is taken as the consensus. We explored all
sets of three or more different descriptor models, ranking them based on their
F-scores. The results of the top three performing ensembles, shown in Table 2,
revealed improvements across most metrics compared to any individual model.
Across these metrics, the best results were obtained predictions from all six
descriptors were combined (Ensemble 2, Table 2), despite the fact that con-
tributing models (e.g. those built using H-wACSFs, see Methods), had weak
performance individually. Although the prediction specificity (0.68) was lower
compared to other individual models, the model’s precision (0.82) represents
an improvement compared to the previous benchmark. We also emphasise that
high precision can be advantageous in applications such as this, wherein the
primary objective is to accelerate the discovery of new IRI-active materials.

Despite these encouraging results, we argue that predicting whether a given
molecule belongs to the “active” or “inactive” class is not the optimal frame-
work for this task. Typically, classification models are used when the target
property is categorical by nature. In this case, as the target is a numerical
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quantity, an activity threshold must be defined a priori. As there is no clear
definition for an “active” small molecule IRI, the modeller’s choice of thresh-
old appears arbitrary, yet in fact we show this is crucial, having a significant
impact on the results by adjusting the proportion of class labels in training
data. In Figure 1b and c, we highlight the effects of different thresholds on
the numbers of “active” and “inactive” molecules, and the performance of the
corresponding ensemble model featuring all descriptors. Across these thresh-
olds, the best scores were obtained using a value of 70 % MGS, which was also
the threshold used in the previous benchmark [15], resulting in a slight imbal-
ance where there are more active than inactive compounds (Figure 1b) in the
dataset. Although this model had good predictive power, it has limited prac-
tical utility, providing no way of distinguishing highly active structures (i.e.
% MGS < 20) from moderately active ones (% MGS > 40), bearing in mind
that only highly active are of interest with respect to use as cryoprotectants.
Instead, we suggest that this task is better formulated as a regression problem,
wherein the model is trained to predict absolute % MGS values.

Table 2 Performance metrics for test predictions obtained from classification models
using an activity threshold of 70 % MGS.

Model Sensitivity Specificity Precision F-score

Benchmarka 0.67 0.80 0.67 0.67

Standard descriptors 0.59 0.66 0.76 0.67
Molecular cliques 0.78 0.46 0.72 0.74
H-wACSFs 0.62 0.43 0.66 0.64
SOAPs 0.65 0.55 0.72 0.68
Hydration histograms 0.54 0.71 0.77 0.64
Hydration indices 0.38 0.77 0.75 0.50

Ensemble 1b 0.68 0.68 0.79 0.74
Ensemble 2c 0.62 0.75 0.82 0.71
Ensemble 3d 0.67 0.61 0.76 0.71

aData obtained from Ref.[15]. bEnsemble using all descriptors
except hydration histograms. cEnsemble using all descriptors.
dEnsemble using all descriptors except hydration histograms and
indices.

2.2 Predicting absolute IRI activity

Stepping away from the classification framework described in the previous
section, we trained and evaluated NN regressors using each descriptor inde-
pendently, as described in the Methods. At this point, we switched to using the
Glyco2 dataset, which includes the entire Glyco set, as well as 99 additional
carbohydrates tested for IRI activity under the same conditions (Table 1).
These structures are sufficiently similar to enable efficient training, while also
increasing the chemical diversity of the dataset (Supplementary Figure 1). In
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Fig. 1 a) Frequency histograms showing the distribution of % MGS values across the dif-
ferent datasets. Inset shows the distribution of error (SD) for the Amino dataset. b) The
effects of the activity threshold on the proportion of compounds labelled “active” or “inac-
tive” in the Glyco dataset. c) Performance of the ensemble classification model trained and
tested on the Glyco dataset, comprising all (six) descriptors. d) Cryomicrographs obtained
from the “splat cooling” assay performed on an IRI-inactive (top) and IRI-active (bottom)
material. e) Schematic illustrating the ensemble learning approach. Different descriptors are
computed and used to train independent models, whose outputs are combined via majority
voting scheme (classification) or mean average (regression).

addition, we have also assembled a new dataset – Amino – via our own exper-
imental measurements of 63 amino acids, shown previously to be a novel class
of IRI-active material [16, 17] (Table 1). IRI activity was evaluated using the
“splat cooling” assay, however different solution conditions were used which
can affect the magnitude of observed activity. This issue is discussed in more
detail in the Methods.

Separate regressors were trained and evaluated using the Amino and
Glyco2 datasets independently and in combination (see Combined dataset).
The results of these models, reported using mean squared error (MSE) and
Pearson’s correlation coefficient (PCC) metrics, are shown in Table 3. As with
the classification models, we report the metrics computed on a complete set
of test predictions generated via LOO CV, noting that very similar results
are produced if this process is repeated (Supplementary Table 6). Individu-
ally, most models had a relatively high predictive error, with experimental
and predicted % MGS values showing only moderate correlation. There were
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exceptions to this, namely the standard descriptors, SOAPs, and hydration
indices models, which made predictions with good correlation with the exper-
imental values for the Amino dataset (PCC ≥ 0.60). Overall, these results
were expected given the relatively high degree of uncertainty associated with
the “splat cooling” assay, which often produces significant variation between
measurements, as shown by the error distribution in Figure 1a. This uncer-
tainty limits the maximum expected correlation and minimum expected error
of the model to approximately 0.90 and 200, respectively (see Supplementary
Figure 2 and Supplementary Information). The impact of this uncertainty is
reduced in classification models, as the % MGS values are converted into cat-
egorical values. Although, as previously discussed, this also results in a loss of
information and is susceptible to bias.

Given the success of the classification ensembles, we again explored an
ensemble approach by obtaining the mean prediction across different combi-
nations of three or more individual regression models. In this case, ensemble
models also provide a means to quantify the uncertainty associated with each
prediction (e.g. as the standard deviation (SD) of all the predictions). We
ranked these models based on their PCC values, with the top three models and
their components reported in Table 3. Similar to the ensemble classifiers, this
approach improved the predictive capacity with respect to compounds in each
dataset. This was particularly significant in the case of the Amino dataset,
with the ensemble model generating test predictions with a correlation of 0.72.
Whereas the best performing classification ensembles took a consensus across
five or six models, optimal results were achieved by regressor ensembles which
took an average across three or four models. This reflects the fact that a
numerical average is more susceptible to the effects of anomalous predictions
compared to a majority-voting consensus. Similarly, taking the mean across
many models can have the effect of “smoothing out” the predicted values,
especially at the tails of the target distribution.

Figure 2 shows the predictions of our best ensemble models versus the
experimental % MGS values for the Amino, Glyco2 and Combined datasets.
These data, along with results shown in Table 3, highlight that models trained
and evaluated using the Amino dataset yielded predictions with significantly
higher correlation and lower error with respect to measured values, compared
to the Glyco2 or Combined datasets. This was surprising given that the Glyco2
dataset was significantly larger than Amino, therefore provided many more
examples to learn from during training. For the Combined dataset, the poor
performance is suggestive of structural disparity between the amino acid and
carbohydrate molecules. Indeed, Tanimoto similarities computed for these two
distinct sets of compounds revealed significant structural diversity (Supple-
mentary Figure 3), while dimensionality reduction performed on the molecular
descriptors used in this work showed that these classes of molecules span dif-
ferent regions in feature space (Supplementary Figure 4). However, it remains
unclear why Glyco2 models could not achieve scores on par with the Amino:
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Table 3 Performance metrics for test predictions obtained from individual and ensemble
regression models. For the ensemble models, tick marks indicate the descriptor models
included in the ensemble.
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MSE PCC

G
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Standard descriptors ✓ 631 0.385
Molecular cliques ✓ 699 0.387
H-wACSFs ✓ 579 0.441
SOAPs ✓ 719 0.247
Hydration histograms ✓ 682 0.326
Hydration indicesb ✓ 666 0.235

Ensemble 1 ✓ ✓ ✓ 576 0.461
Ensemble 2 ✓ ✓ ✓ ✓ 575 0.457
Ensemble 3 ✓ ✓ ✓ 576 0.456

A
m
in
o
d
a
ta
se
t

Standard descriptors ✓ 673 0.590
Molecular cliques ✓ 966 0.451
H-wACSFs ✓ 738 0.535
SOAPs ✓ 624 0.639
Hydration histograms ✓ 960 0.366
Hydration indicesb ✓ 667 0.625

Ensemble 1 ✓ ✓ ✓ 503 0.716
Ensemble 2 ✓ ✓ ✓ 509 0.713
Ensemble 3 ✓ ✓ ✓ ✓ 521 0.707

C
o
m
bi
n
ed

d
a
ta
se
t

Standard descriptors ✓ 642 0.427
Molecular cliques ✓ 691 0.447
H-wACSFs ✓ 644 0.450
SOAPs ✓ 687 0.415
Hydration histograms ✓ 760 0.366
Hydration indicesb ✓ 775 0.218

Ensemble 1 ✓ ✓ ✓ 561 0.528
Ensemble 2 ✓ ✓ ✓ ✓ 570 0.520
Ensemble 3 ✓ ✓ ✓ 581 0.520

aMultiple hydration indices with different hydration numbers used.

possible explanations include experimental inconsistencies within this liter-
ature dataset, or that the descriptors fail to capture important structural
features for this class of molecule. Overall, each descriptor performed similarly
across the different datasets, with a few exceptions such as the symmetry func-
tions and hydration histograms, which gave significantly better predictions
when used in conjunction with the Glyco2 dataset (Table 3). Interestingly, a
retrospective analysis also reveals that an ensemble approach does not offer the
same improvements in performance relative to the individual models for the
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Glyco2 dataset compared to the Amino dataset, perhaps for the same reasons
noted previously.

Fig. 2 Scatter plots showing the % MGS predictions from the best ensemble models trained
using: a) the Glyco dataset; b) the Amino dataset; and c) the Combined dataset. Descrip-
tors comprising the models are shown in Table 2. Error bars represent the ± one standard
deviation for the individual predictions comprising the ensemble. Grey shaded region rep-
resents the typical error associated with experimental % MGS measurements, taken as the
average standard deviation calculated across three measurements for all compounds in the
Amino dataset. d) Heatmap showing the correlation (PCC) between % MGS values and
hydration numbers or hydration indices calculated using different cutoffs and size metrics for
the Amino and Glyco2 datasets. Hydration indices were obtained by dividing the hydration
numbers by either the molecular volume, SASA or molecular weight (MW), as indicated.

2.3 Hydration descriptors

The most striking results for any individual descriptor or model were the hydra-
tion indices, which achieved good performance for the Amino dataset (PCC
= 0.63), despite performing poorly when used in conjunction with the Glyco
or Combined dataset. This descriptor consists of ten hydration indices, where
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each index represents a compound’s hydration number normalised against its
molecular volume. Hydration indices were first introduced by Tam and cowork-
ers to explain the hydration-dependent IRI activity observed in carbohydrates,
whereby more hydrated molecules showed greater levels of inhibition [21]. In
the original formulation, hydration numbers were derived from molar com-
pressibility coefficients according to the Passynsky equation [22], while the
molar volume was calculated from density measurements [23]. In this work,
hydration numbers were determined by finding the average number of water
molecules within a given cutoff distance from the inhibitor molecule through
a MD simulation trajectory, as described in the Methods. This quantity pro-
vides an estimate of the number of waters associated with each inhibitor, with
a cutoff distance that can be tuned to capture information about the system
at different ranges. To account for the molecule’s size, we then normalised
this value against different quantities (e.g. volume or surface area) also com-
puted from MD simulations (see Methods), instead of molar volume which
was used in the original work [21]. Hydration numbers were calculated using
a number of fixed cutoffs as well the distance corresponding to the minima of
the first and second solvation shells. These distances are determined from the
hydration histograms illustrated in Supplementary Figure 13. The latter cut-
offs are tailored to each molecule individually, giving hydration numbers which
approximate the number of water molecules in the first and second solvation
shells surrounding the solute, respectively. We also included the number of
hydrogen-bonded waters as an alternative for the hydration number.

As expected, using a greater cutoff distance produced a greater hydration
number and index for a given compound, as well as a broader distribution
of these values for each dataset collectively (Supplementary Figure 5). We
also found that the different hydration numbers and indices are correlated to
varying degrees with IRI activity (% MGS), and that these trends were not
shared between the Amino and Glyco2 datasets. This data is summarised in
Figure 2d. We observed negative correlations between the hydration numbers
and % MGS values for both datasets when a distance cutoff greater than 0.3
nm was used, which includes the distance corresponding to the second sol-
vation shell (Figure 2d). Yet, when these numbers were normalised against
different size metrics to yield hydration indices, we found positive correlations
with the Amino dataset, and few correlations for Glyco2 (Figure 2d). For the
Amino dataset, a positive correlation was observed for nearly all the differ-
ent hydration indices, producing the strongest correlation when normalised by
the molecular volume or weight. Meanwhile, only the indices calculated using
hydrogen bonding data showed any correlation for the Glyco2 dataset, follow-
ing the same positive trend. The correlations between IRI activity and size
metrics individually are provided in the Supplementary Information. We there-
fore found the opposite relationship to Tam and colleagues, who showed that
the hydration indices for a set of nine mono- and disaccharides gave a strong
negative correlation with MGS measurements [21]. This finding gave support
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to a hypothesised IRI mechanism, wherein compounds with greater hydra-
tion (indices) cause more disruption to the ordering of surrounding QLL/bulk
water, increasing the energy associated with the transfer of bulk water to a
growing ice crystal via the QLL and consequently slowing ice growth [21]. Our
computational hydration indices, both for this same set of nine sugars, as well
as the entire Glyco2 and Amino datasets, did not reproduce this correlation,
irrespective of the cutoff distance used; instead we observed a moderate posi-
tive correlation with % MGS values (PCC ≈ 0.5) for the Amino dataset, and
limited correlation for the Glyco dataset (PCC ≈ 0.3). Note that a positive
correlation indicates that more “hydrated” molecules display weaker IRI.

Although our results are not in agreement with previous findings, these
correlations do explain why the hydration indices were an effective ML descrip-
tor for the amino acids, but not the carbohydrates. Moreover, is important
to emphasise that whilst our computational hydration index is inspired by
the previous work of Tam and colleagues [21], the values obtained using our
method are not equivalent to those calculated using experimental data. Indeed,
when the computational and experimental indices were compared for the set of
mono- and disaccharides examined by Tam et al. [21], they showed only weak
correlation (Supporting Figure 6). However, in light of limited experimental
molar volume and compressibility coefficient data, a computational approach
allows a hydration index to be calculated for virtually any chemical structure.
Our analysis therefore included over 280 data points, encompassing highly
active to inactive materials, compared to nine relatively inactive carbohydrates
investigated in the aforementioned work. The size of these samples makes it
challenging to draw comparative conclusions, as it is possible the previously
reported trend may not hold for a larger set of small molecules, especially more
active inhibitors. Overall, our computational hydration numbers and indices,
derived in a different fashion but using similar intuition to the experimental
properties, suggest a different interpretation. While it is not possible draw a
causal relationship between hydration parameters and the mechanism of IRI,
these results challenge the notion that hydration is a robust correlate of IRI
for small molecules, and call for a review of this property and the hydration
hypothesis.

2.4 Discovering novel amino acid IRIs

Returning to the results of our regression models, we found that the best
predictions were obtained using an ensemble representing the mean % MGS
prediction from three models (standard descriptors, SOAPs and hydration
indices) trained and evaluated using the Amino dataset (Table 2). The %
MGS predictions obtained using this model are shown in Figure 2b, achieving
a MSE of 502 and PCC of 0.72. Encouraged by these results, we sought to use
our model to predict the IRI activity for amino acids which had not yet been
tested and thus represent novel small molecule inhibitors. This first required
a dataset of new compounds for which % MGS predictions could be obtained.
To achieve this, we assembled a prediction library consisting of around 500

11

https://doi.org/10.26434/chemrxiv-2023-gvvk0 ORCID: https://orcid.org/0000-0002-6156-7399 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-gvvk0
https://orcid.org/0000-0002-6156-7399
https://creativecommons.org/licenses/by-nc-nd/4.0/


Data-driven Discovery of Potent Small Molecule Ice Recrystallisation Inhibitors

amino acids, or amino acid-like compounds, as outlined in the Methods. These
structures were all commercially available and therefore no chemical synthesis
was required, which is a significant and deliberate advantage of using this
amino acid platform to discover new IRI-active materials.

To obtain an % MGS prediction for each compound in this set, we again
used an ensemble approach, taking the mean prediction across multiple mod-
els each trained on the entire Amino dataset. Given that the hydration indices
are calculated from an MD trajectory, we opted to use an alternative ensem-
ble model combining the standard descriptors, molecular cliques and SOAPs,
which gave predictions with similar correlation (PCC = 0.67) and error (MSE
= 570) for the test set, when evaluated using the same LOO CV approach.
As these descriptors can be computed directly from the SMILES code for
each molecule, this ensemble model can be easily deployed to screen the entire
prediction library at minimal computational cost.

To build this ensemble model, % MGS predictions were obtained for each
molecule in the prediction library using each of these descriptors, as outlined in
the Methods. The SD of the predictions from individual descriptor models was
also calculated to estimate the uncertainty associated with the ensemble pre-
dictions. Compounds with a prediction SD greater than 20 were subsequently
removed from the library. The distributions of predicted % MGS values and
associated error are shown in Supplementary Figure 7. These predictions were
then ranked based on their % MGS values, and the ten most and ten least
active molecules were designated as the prediction set, taking into account
other practical considerations such as their cost and availability. Compounds
with both low and high % MGS predictions were included in the prediction set
to assess the model’s accuracy in predicting IRI across a range of activities,
despite the primary objective being to identify highly active inhibitors.

To verify these predictions experimentally, the compounds were then dis-
solved in 10 mM NaCl and tested at an initial concentration of 20 mM using
the “splat cooling” assay. Of the 20 amino acids originally selected for the pre-
diction set, the IRI activity was determined for 17 compounds, including three
(compounds 7, 8 and 9) which were tested at 10 mM as they were insoluble at
the initial concentration. The predicted and experimental % MGS values for
the prediction set are shown in Figure 3, alongside the chemical structures for
a selection of compounds. Overall, the model achieved excellent performance,
with 13 out of 17 predictions being in close agreement with the experimen-
tal % MGS, taking into account the uncertainty associated with the ensemble
predictions and the measurement error. Altogether, the predictions achieved
a PCC of 0.61 and MSE of 483 when compared against the measured values,
which is a similar level of performance to that which was observed for the test
set during cross-validation (Table 3).

For the molecules that were predicted to be highly active (% MGS < 20),
three (1, 3 and 5) out of nine had only moderate IRI activity (% MGS ≈ 50)
when tested experimentally at 20 mM (Figure 3a). These compounds all fea-
tured an aminopyridine scaffold with an O-methylated carboxylic acid (methyl
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Fig. 3 a) Comparison of the predicted and experimental % MGS values for the 17 com-
pounds in the prediction set. Compounds were tested at 20 mM in 10 mM NaCl, with the
exception of compounds 7- 9, which were tested at 10 mM. Error bars represent ± one stan-
dard deviation across three repeats. b) Chemical structures for a selection of compounds in
the prediction set.

ester) group adjacent to the pyridine nitrogen (Figure 3a and Supplemen-
tary Figure 10). Interestingly, these same moieties are present in compound 4,
which was significantly more active than 1, 3 or 5. The position of the amino
group on the pyridine ring therefore appears crucial for IRI, with an amino
group in the para position relative to the carboxylic acid/ester (e.g. in 1 and
3) conferring only moderate activity. Other compounds correctly predicted to
be highly active were chlorinated L-tyrosine derivatives 6 and 8, nitropyridine
carboxylic acid 9, and aminooxazole esters 2 and 7 (Figure 3a and Supple-
mentary Figure 10). In the case of the chlorinated tyrosines, it is interesting to
note that IRI activity is retained with a hydroxyl group at the para position,
unlike for hydrophilic para-amino and -cyano substitutions as discussed in our
previous work [17]. It was suggested that the presence of these groups removes
the hydrophobic face of the molecule – an essential motif for IRI – however in
this case the chlorine atom(s) adjacent to the hydroxyl group in compounds 6
and 8 may have a mitigating effect. The most active hit among this set was
the aminooxazole ester 7, which was able to prevent growth almost entirely
at 10 mM. Dose-dependency experiments revealed that this compound main-
tained IRI activity at 2.5 mM when tested in NaCl, which corresponds to less
than 1 mg/mL, and was also active at 10 mM in PBS buffer (Supplementary
Figures 14 and 15). Ice shaping assays performed using a nanolitre osmometer
(see Supplementary Information) also confirmed that this compound does not
alter the growth habit of individual ice crystals, suggesting no direct binding
to the ice crystal surface (Supplementary Figure 16).

It is important to clarify that the IRI-active materials identified here do
not represent entirely novel chemical scaffolds, bearing some resemblance to
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molecules in the training set, which can be quantified by assessing their Tan-
imoto similarity (Supplementary Figure 9). We highlight that, rather than
being an intrinsic limitation of the models, this is a product of the strategy
used to compile the prediction set and library. First, the prediction library was
generated via similarity search based on the 15 most active and 5 least active
molecules among the training data. The compounds in the prediction library
were then also filtered based on the uncertainty associated with the predictions
(see Methods), which meant the prediction set was more likely to contain com-
pounds with a high degree of structural similarity to molecules that the model
has already “seen”. Applying this model to a structurally distinct set of amino
acids would make interesting work in the future. It is also worth acknowledging
that the % MGS predictions for the active molecules were consistently higher
than the experimental measurements, albeit still accurate within the associ-
ated prediction and measurement error. This is a consequence of averaging
across many individual models, including those trained on different descrip-
tors, to obtain an ensemble prediction. While individual descriptor models are
capable of making predictions at the extremes of the % MGS distribution (i.e.
close to 0 and 100 % MGS), the process of averaging means these values are
less likely to be observed for ensemble predictions. Nonetheless, the ensemble
approach increases the overall accuracy of the model, and the results presented
here for the prediction set clearly justify this approach in retrospect.

Turning to the inactive predictions, the model also performed very well,
with all predictions except two (compounds 11 and 13) being accurate
within the predicted margin of error. The chemical structures for these
compounds are shown in Supplementary Figure 11. Compound 13 was N-
methylated isoleucine (Figure 3b), which was surprisingly active given that
N-modifications (methylation and/or acetylation) resulted in a loss of IRI
activity for α-alanine and phenylalanine (Supplementary Figure 8), yet for
isoleucine lowered the % MGS from 18.8 to 6.6. Similarly, while some of the
compounds predicted to be inactive are structurally similar to molecules in
the training set, we note that the cyclobutyl moiety found in compounds 10
and 12 represents a novel structure, highlighting the ability of the model to
learn from training data and made extrapolations with good accuracy.

3 Conclusions

The discovery of materials that can inhibit ice recrystallisation is of funda-
mental importance for the development of cryoprotectants that can prevent
freezing-induced damage to biological systems. Small molecules offer several
advantages, such as biocompatibility, enhanced aqueous solubility and mem-
brane permeability, which render them suitable for off-the-shelf applications
in cryopreservation. However, the design of suitable IRI-active molecules has
been a daunting task due to a limited knowledge of the molecular mechanisms
underlying their activity, and the optimal structural features required for high
inhibition. In this work, we present the first successful application of machine
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learning to accurately predict the IRI activity of small molecules. Our approach
leverages different molecular representations that incorporate both fine-grained
3D structural information and solvent interactions derived from MD simula-
tions. These were applied to datasets compiled from literature, and a dataset
obtained via our own experimental measurements; both of which have been
made available to facilitate further research in this field. We employed this
framework to perform a virtual screening of a commercial compound library
and select novel IRI-active molecules with varying degrees of activity. Having
verified these predictions experimentally, we reported the identification of a
highly active aminooxazole ester 7 that can inhibit ice recrystallisation below
0.5 mg/mL, representing the most IRI-active amino acid discovered to date.
We also investigated the role that molecular hydration plays in ice growth inhi-
bition, revealing limited correlation between hydration numbers/indices and
inhibition activity, which was previously offered as an mechanistic explanation
for small molecule IRIs. Overall, our work highlights the power of data-driven
approaches to facilitate the discovery of new cryoprotectants that can address
the major challenge of freezing injury during cryopreservation. These molecules
are crucial for unlocking the clinical potential of gene- and cell-based therapies,
biomanufacturing, and cell and tissue banking.

4 Methods

4.1 Experimental measurements

Ice recrystallisation (inhibition) was measured using the “splat cooling” assay,
as previously described by Knight et al. [24]. A 10 µL drop of each solution
was dropped from a height of 1.4 m onto a glass coverslip placed on a thin
aluminium plate cooled to −78 °C on dry ice. Upon impact with the coverslip, a
polycrystalline ice wafer with an approximate diameter of 10 mm and thickness
of 10 µm is formed instantly. The coverslip was then transferred to a Linkam
Cryostage BCS196 pre-cooled to −8 °C and left for 30 minutes at −8 °C to
anneal. Photographs were taken after 30 minutes via a Canon DSLR 500D
digital camera using an Olympus CX 41 microscope equipped with a UIS-2
20x/0.45/∞/0-2/FN22 lens and crossed polarisers. The number of crystals in
the field of view (FOV) were then counted using ImageJ [25], and this number
was divided by the FOV area to give the mean grain size (MGS). The MGS
for each sample was then compared to a positive control for ice growth, to
obtain a percentage MGS (% MGS) relative to the control. Each experiment
was performed in triplicate, and % MGS values were reported as the mean
across the three repeats.

When performing this assay, it is essential to include saline (or other
additives) in the solution to ensure liquid channels form between ice crys-
tals. This allows for ice recrystallisation to occur and prevents false positive
results [24]. Typically, using pure water and low concentrations of solutes, no
ice growth occurs, generating a false positive. Considering this, a buffer such as
phosphate-buffered saline (PBS) is typically employed (with ≈140 mM NaCl).
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However, this concentration of saline is not essential and relevant IRI data
has been reported in lower saline concentrations for other materials and small
molecules [26, 27]. In this work, a 10 mM NaCl solution is used for all IRI
activity measurements (i.e. all compounds in the Amino dataset). Compounds
were assessed at 20 mM, unless otherwise stated.

4.2 Datasets

In this work, we have used three datasets broadly encompassing two classes
of small molecule: amino acids and carbohydrates. The size and distribu-
tion of these datasets are shown in Table 1 and Figure 1. The Glyco and
Glyco2 datasets have been compiled using experimental data reported in peer-
reviewed literature for a range of small molecule carbohydrates. The Glyco
dataset is a subset of Glyco2, and was used in previous work to classify IRI-
active small molecules [15]. In addition to the compounds in Glyco, Glyco2
includes an additional 99 structures representing greater chemical diversity.
This data was obtained from Refs [15, 21, 27–33]. The Amino dataset has
been assembled via experimental measurements, as previously described in the
Methods. Although the same experimental assay was used to obtain the data
in Glyco(2) and Amino datasets, the different solution conditions used mean
that values obtained are not always directly comparable. However, we empha-
sise that the aim of this work to predict IRI activity of molecules in saline, and
a cross-comparison of % MGS values obtained under these different conditions
(Supplementary Figure 12) suggests this approach to be valid.

To apply these models to identify novel IRI-active compounds, a set of
unseen structures was also required. To obtain this set, we first took the 15
most active and 5 least active compounds in the Amino dataset and searched a
catalogue of commercially available compounds (MolPort) for structures bear-
ing similarity to the 20 selections. Similarity was determined by a Tanimoto
coefficient [34] > 0.7, computed on based on an undefined descriptor via Mol-
Port’s web search tool. We chose to include both active and inactive structures
in our similarity search to ensure greater coverage of chemical space, whilst
providing the opportunity to validate the model’s ability to accurately pre-
dict both high and low % MGS values. We note that while including only
compounds with structural similarity to those in the training set does limit
the capacity of the model to identify truly novel IRI-active scaffolds, given
the limited number of training examples this approach ensures the predic-
tion set is within the model’s domain of applicability. The prediction set was
then filtered to remove any compounds appearing in the training set (i.e. hard
overlap), as well as compounds containing co-salts or co-additives, or with a
predicted logP > 1.8 (i.e. likely insoluble), computed via RDKit [35]. The final
prediction set comprised 497 unique structures. Consensus % MGS predic-
tions for each compounds were then obtained as outlined below. Predictions
with a high degree of uncertainty (SD > 15 % MGS) were removed, and the
10 most active and 10 least active compounds remaining were then purchased
and tested experimentally, as described below.

16

https://doi.org/10.26434/chemrxiv-2023-gvvk0 ORCID: https://orcid.org/0000-0002-6156-7399 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-gvvk0
https://orcid.org/0000-0002-6156-7399
https://creativecommons.org/licenses/by-nc-nd/4.0/


Data-driven Discovery of Potent Small Molecule Ice Recrystallisation Inhibitors

4.3 Molecular descriptors

We have used six different descriptors in this work, encompassing low (0D)
and high dimensional (4D) molecular representations. Four of these descrip-
tors have been repurposed following success in a range of tasks such as
chemical property prediction (e.g. enthalpies [36], potential energies [37],
lipophilicity [38]) and molecular generation [39]:

• “Standard” descriptors – A collection of ∼ 45 molecular properties that are
accessible via RDKit [35], e.g. molecular weight, atom/bond counts, cLogP,
topological polar surface area. A complete list of properties can be found in
the GitHub repository [18].

• Molecular cliques – Considering a molecule as a collection of nodes (atoms)
and edges (bonds), i.e. a 2D graph, a clique represents a subgraph of a
molecule. A vocabulary of cliques is constructed for a given dataset, and the
cliques for each molecule are encoded as a fingerprint. For more information,
see Ref. [38].

• Histograms of weighted atom-centred symmetry functions (H-wACSF) –
Symmetry functions describe the local (3D) chemical environment of an
atom in a molecule using radial and angular symmetry functions based on
the distance and angles between pairs and triplets of atoms, respectively.
In this formulation, element-dependent weighted symmetry functions are
computed and the values then binned to obtain a histogram-like descriptor
with the same (reduced) dimensionality for all molecules, independent of
their size and atomic composition. H-wACSF parameters used here are listed
in Supplementary Information; for more detail, see Ref. [38].

• Smooth overlap of atomic positions (SOAP) descriptor – 3D atomic environ-
ments encoded using atomic density fields composed of Gaussian functions
centred on each atom. This formalism is extended to describe molecules by
averaging the density field across the constituent atoms. SOAP parameters
were optimised using a genetic algorithm, as described in Ref. [40]. The opti-
mal parameter set is provided in Supplementary Information, and readers
are directed to Refs [37, 40] for more information.

We have also engineered two new and relatively simple descriptors bespoke
for use case via MD simulations:

• Hydration histograms – From short MD simulations, we compute a proba-
bility density histogram by calculating the pairwise distances between each
water molecule and the solute from configurations sampled from the tra-
jectory. These distances d are then binned and normalised based on the
total number of distances considered, and the interval width ∆d, resulting
in probability densities P (d) for each bin, given by P (d) = nd∑Dcut

i ni∆̇d
. His-

tograms were computed here using 100 bins, up to dcut = 0.5 nm, hence ∆d
= 0.005 nm.

• Hydration indices – First defined by Tam and colleagues [21], a hydration
index represents the number of nonexchangeble water molecules associated
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with a solute’s “hydration layer” (i.e. hydration number), divided by its par-
tial molar volume. Here, we compute the hydration index computationally
by means of MD simulations. Our hydration numbers represent the numbers
of waters hydrogen-bonded to the solute, determined via geometric criteria,
as well as the numbers of water molecules within a given cutoff distance of
the molecule. These values are normalised against the compound’s molecular
volume, computed via RDKit [35], yielding hydration indices. The hydra-
tion indices descriptor includes ten indices, where the hydration numbers
were computed using seven fixed cutoff distances in the range 0.20 - 0.50
nm, the distances corresponding to the first and second solvation shells, and
hydrogen bond numbers.

Excluding the standard descriptors and cliques, these representations were
constructed from 3D atomic coordinates. To generate corresponding 3D con-
formations, short MD simulations of each system were performed as follows.
Each compound was first solvated in water (TIP4P/Ice [41]) in a 4 nm cubic
cell and simulated for 20 ns at 273 K via GROMACS 5.1.3 [42], using the
CHARMM36 forcefield [43]. The final conformation was used to construct H-
wACSFs and SOAPs, whereas the hydration descriptors were averaged over
100 different conformations sampled from the trajectories.

Given that many amino acids can exist in multiple ionisation states, it
was important to model the correct form. To determine the predominant state
of amino acids under neutral solution conditions, putative ionisation states
between the range of pH 6.5 and 7.5 were predicted using the Diamorphite-
DL package [44] with a precision factor of 1.0. For structures with multiple
predicted states, the final state was selected manually based on pKa values
for the compound found in literature or estimated via the MolGpKa tool [45].
The ionisation states of a random sample were then checked independently to
verify the results of this procedure.

4.4 Classification models

All models were trained and evaluated using Keras (Tensorflow) [46], alongside
scikit-learn [47]. To perform classification, numerical % MGS values were first
converted via one-hot encoding using a defined threshold for activity. The
descriptor features were also scaled between 0 and 1, using Min-Max scaling.
Independent models were then trained using each of the six descriptors. A
randomised grid search was performed in combination with manual tuning to
identify the optimal hyperparameters for each model; these hyperparameters
are reported in the Supplementary Information. A leave-one-out (LOO) cross
validation (CV) procedure was to train and evaluate each model. 10 % of the
training data was randomly selected and used as a validation set in conjunction
with an early stopping criterion to prevent overfitting. Models were trained
over a maximum of 300 epochs, using the binary cross entropy loss function. A
classification threshold (probability) of 0.5 was used throughout. In cases where
classes were imbalanced, the Synthetic Minority Over-sampling TEchnique
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(SMOTE) was used to bootstrap the training set to achieve equal number of
active/inactive observations. For ensemble classification models, predictions
were combined and averaged via a majority voting scheme. In this scheme, the
class with the highest number of votes is used. In cases where each class had
an equal number of votes, predictions labels defaulted to inactive

4.5 Regression models

% MGS values and descriptor features were first scaled between 0 and 1 using
Min-Max scaling. The hyperparameters for each model were identified using
a randomised search grid followed by manual tuning, are are given in the
Supplementary Information. The same LOO CV procedure described above
for classification was also used to train and evaluate the regression models,
unless otherwise stated. Models were trained over a maximum of 300 epochs,
employing the mean squared error (MSE) as the loss function. L2 (ridge) reg-
ularisation with σ = 0.005 was also used to prevent overfitting when using
certain descriptors (e.g. SOAPs). Ensemble or consensus predictions were cal-
culated as the mean predicted value across a given set of individual descriptors,
while the standard deviation was used to estimate the associated uncertainty.

Supplementary information. Additional experimental and computational
details and methods including: nanoliter osmometry, classification metrics,
molecular descriptor parameters, neural network hyperparameters, repeated
LOO CV results, maximum expected performance estimation, Tanimoto
similarities and dimensionality reduction. Supplementary figures including:
Tanimoto coefficient distributions, dimensionality reduction biplots, hydra-
tion number and index distributions, % MGS prediction distribution, chemical
structures for the prediction set, additional IRI measurements in NaCl and
PBS, hydration descriptors schematic, and cryomicrographs from nanolitre
osmometry.
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