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Abstract 

The rapid growth of materials chemistry data, driven by advancements in large-scale radiation 

facilities as well as laboratory instruments, has outpaced conventional data analysis and modelling 

methods, which can require enormous manual effort. To address this bottleneck, we investigate the 

application of supervised and unsupervised machine learning (ML) techniques for scattering and 

spectroscopy data analysis in materials chemistry research. Our perspective focuses on ML 

applications in powder diffraction (PD), pair distribution function (PDF), small-angle scattering 

(SAS), inelastic neutron scattering (INS), and X-ray absorption spectroscopy (XAS) data, but the 

lessons that we learn are generally applicable across materials chemistry. We review the ability of 

ML to efficiently and accurately identify physical and structural models and extract information from 

experimental data. Furthermore, we discuss the challenges associated with supervised ML and 

highlight how unsupervised ML can mitigate these limitations, thus enhancing experimental materials 

chemistry data analysis. Our perspective emphasises the transformative potential of ML in materials 

chemistry characterisation and identifies promising directions for future applications. The perspective 

aims to guide newcomers to ML-based experimental data analysis, alerting them to the potential 

pitfalls and offering guidance for success. 
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Introduction  

During recent decades, materials science research has been accelerated by the rapid development of 

large-scale radiation facilities1, 2 and the advancement of laboratory instruments.3-5 It is now common 

to acquire large amounts of data from e.g. in situ or operando experiments.6-8 The combination of 

scattering and spectroscopy with computed tomography, allowing detailed position-resolved studies 

of e.g. batteries and catalysts also results in larger and larger amounts of data with the continued 

development of synchrotron and neutron sources.9-12 As illustrated in Figure 1, analysis of scattering- 

and spectroscopy data can provide invaluable structural information on e.g., lattice parameters, 

oxidation states, atomic positions, and crystallite or particle size and shape. In conventional data 

modelling approaches, data are often analysed using minimisation techniques such as least-squares 

fitting algorithms, where the difference between experimental data and simulated data is minimised 

by refining parameters in a physical model, e.g., representing the atomic structure. This process is 

known as structure refinement. Identification of the structure model to use in structure refinement can 

be a limitation in data analysis: to identify the structural model, extensive database and literature 

searches are often needed.  Automated screening of large numbers of structure models can be 

combined with structure refinement methods, and have been used for e.g., identifying a cluster13 or 

crystal structure14 from, e.g., PDF data. However, least-squares fitting algorithms are computationally 

expensive, which limits their use for structure model identification. Consequently, data analysis is 

often a major bottleneck for materials chemistry research.15, 16 With the continuing advancement of 

modern radiation facilities,17 the need for tools that can aid scientists in structural analysis is in 

increasing demand. ML has emerged as a powerful tool for automating several aspects of scattering- 

and spectroscopy data analysis.18-27 In this perspective, we describe the application of supervised and 

unsupervised ML to experimental scattering (PD, PDF, and SAS) and spectroscopy (INS and XAS) 

data. For a short introduction to supervised and unsupervised ML and the most popular ML 

algorithms, we refer to Machine Learning Algorithms - A Review, Batta Mahesh.28 
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Fig. 1 | Traditional scattering and spectroscopy modelling workflows involve an expert scientist 

manually creating a structural model using input data from a database or the literature. This model is 

refined using dedicated software to extract structural information from the dataset such as atomic 

positions, crystallite size, crystallite shape, and atomic vibrations This process is repeated for each 

new dataset measured. 

 

 

Most applications of ML in materials’ chemistry apply supervised ML methods. Supervised ML is 

broadly the task of predicting a label based on a given set of input features. As will be exemplified 

throughout the perspective, we observe three main applications of supervised ML for the analysis of 

scattering and spectroscopy data: 1) Identifying a physical model from a scattering or spectroscopy 

dataset (Figure 2A). Here, experimental datasets are the input features, and the model is supervised 

to relate the datasets to the physical models, which are the labels. 2) Predicting scattering or 

spectroscopy data from a physical model. This can be achieved by using the data as labels and the 

physical model as input features (Figure 2B). 3) Bypassing the model refinement step to directly 

obtain structural information (Figure 2C). This is done by training the supervised ML model on data 

with varying structural parameters.  

To train an ML model using supervised methods, one needs a dataset consisting of many pairs of 

labels and input features. This dataset, consisting of e.g., structure models and simulated data, is 

generally split into a training, validation, and test set, often in a 3:1:1 ratio. The model is trained on 

the training set, while being continuously evaluated on the validation set, using a user-defined 

objective function, called the loss function. Depending on the chosen class of models, the training 

will often improve on the training set until it can fit any trends in the data, including noise 

(overtraining). The validation set is used to ensure that the model training is stopped before it is 

overtrained. Once training is complete, the test set, which has not been used during training or 

validation, is employed to estimate the accuracy of the model on future unseen data (generalisation). 

The quality and size of the training set thus plays a crucial role in the model’s efficiency and accuracy, 

with larger, higher-quality datasets typically yielding better results. A model’s ability to interpolate 

and extrapolate, or make predictions within the range of the training data and beyond it, is generally 

influenced by the ML algorithm and the range and diversity of the training set. Many factors therefore 

need consideration when selecting and training an ML model. These include the choice of ML 
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algorithm (tree-based methods, neural networks (NNs), genetic algorithms, etc.),28, 29 the number of 

parameters in the ML model, and both the quality and quantity of the training set. The model’s ease 

of training and deployment can be influenced by the choice of ML algorithm. Interpretability of the 

model depends strongly on the algorithm used, for example an individual decision tree is easily 

interpretable, whereas a deep neural network with millions of parameters is not, and requires post hoc 

methods to understand its operation.30 When it comes to scalability, NNs have many more trainable 

parameters compared to tree-based methods. This makes tree-based method efficient learners in small 

data regime, however, NNs often prove more effective at handling larger datasets. NNs are today 

commonly trained on large datasets, as used in for example, chatGPT31 and AlphaFold.32 This 

superiority in scalability might explain why NNs have become the predominant ML algorithm for 

structural analysis as large databases of training data have become increasingly available. 

While training an ML model can be computationally expensive, this is a one-time cost. Subsequent 

predictions using the ML model can be computationally inexpensive and integrated into web-based 

solutions, or can be done at synchrotron or neutron facilities for real-time structure prediction while 

the experiments are going on.   
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Fig. 2 | A) Use of ML for identifying a structural model. During training, a supervised ML model is 

trained on pairs of structural models and scattering or spectroscopy simulations, here shown for PDF 

data. Afterwards, the ML model can quickly and computationally inexpensively identify the structural 

model from (experimental) scattering or spectroscopy data. B) Use of ML for predicting scattering 

or spectroscopy data from a structure model. During training, a supervised ML model is trained on 

pairs of structural models and scattering or spectroscopy simulations, here shown for PDF data. After 

training, the ML model quickly and computationally inexpensively predicts scattering or 

spectroscopy data from a structural model. C) Use of ML to predict structural parameters. During 

training, a supervised ML model is trained on pairs of scattering or spectroscopy simulations with 

varying structural parameters, here shown for SAXS data. After training, the ML model quickly and 

computationally inexpensively identifies the structural information from the (experimental) scattering 

or spectroscopy data.  

 

https://doi.org/10.26434/chemrxiv-2023-27t53 ORCID: https://orcid.org/0000-0003-0291-217X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-27t53
https://orcid.org/0000-0003-0291-217X
https://creativecommons.org/licenses/by-nc-nd/4.0/


However, supervised ML is limited by its reliance on paired input data and labels for training, which 

can be challenging to obtain for experimental data analysis. As will be discussed and exemplified 

below, we observe three common issues encountered when analysing experimental scattering and 

spectroscopy data with supervised ML. These are illustrated in Figure 3: 1) Handling data with 

contributions from multiple chemical components. 2) Handling data arising from structures not 

present in the training database and 3) accounting for experimental data that contain signals not 

included in the simulated data. In all three scenarios, the labelled data are inadequate for solving the 

problem at hand, making unsupervised ML methods a more suitable alternative, or complementary 

tool. Unsupervised ML models work without paired labels and input features, using only input 

features or intermediate input-derived labels, such as in autoencoders.33 Unsupervised ML is often 

used to present complex data in a low-dimensional space (dimensionality reduction), enabling the 

analysis of high-dimensional dataset similarities, clustering, and the extraction of underlying data 

trends that are difficult to comprehend from the input representation space.28 Unsupervised methods 

can also be applied to ’demix’ data, i.e., separating the signal from each component in a multi-phase 

scattering or spectroscopy dataset.  

 

In the following sections, we use selected examples to provide an overview of how supervised ML 

has been used to identify structural models and structural information from experimental PD, PDF, 

SAXS, INS and XAS data or predict the dataset from the structure. We also outline and exemplify 

how unsupervised ML has been applied to address the three issues presented in Figure 3, and we 

discuss the potential future impact of ML in the analysis of experimental materials chemistry data. 
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Fig. 3 | Three common issues when analysing experimental scattering and spectroscopy data. 

Supervised ML models are trained on pairs of structural models from a structural database and 

scattering or spectroscopy simulations. However, supervised ML methods are challenged by; Issue 

1: The experimental data are obtained from a system containing multiple chemical species, which is 

not taken into account in the ML model. Issue 2: The required structural model is not included in the 

structure database used for training the ML model. Issue 3: The experimental data contains 

background noise, instrumental effects or other phenomena not encountered by the simulated data. 

 

X-ray Absorption Spectroscopy: Large XAS Databases Accelerate Supervised ML Structure 

Identification  
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XAS is a powerful experimental technique for investigating the electronic and atomic structure of 

materials. In XAS, a sample is exposed to a monochromatic X-ray beam, whose energy is varied in 

a range of ca. 10–100 eV around the K-edge or L-edge of the elements in question, i.e. the energy 

needed to eject electrons from the 1s or 2s orbital. This causes the sample to absorb some of the X-

rays. By measuring and analysing the absorbed X-rays as a function of energy, it is possible to obtain 

information about the local electronic structure and chemical environment of the atoms in the sample. 

Information about oxidation state and coordination environment can be obtained through X-ray 

Absorption Near Edge Spectroscopy (XANES), while Extended X-ray Absorption Fine Structure 

(EXAFS) can provide knowledge of local atomic structure.   

Conventional analysis of XAS data requires expertise in the complex data analysis as well as manual 

work. To address this, Zheng et al. created a large XANES database, XASdb, with more than 800,000 

computed reference XANES entries from over 40,000 materials from the open-science Materials 

Project database.34 Their supervised ML model, illustrated in Figure 4, was used for the analysis of 

XANES data. Given a XANES spectrum as input, it outputs a list of the chemical compounds whose 

spectra are most similar to the target spectrum (The task is illustrated in Figure 2A). From these 

compounds, chemical information such as oxidation state and coordination environment can be 

extracted. It predicts the chemical compound with 69.2 % top-5 accuracy on a test set of 13 simulated 

XANES spectra. However, the correct oxidation state is within top-5 with 84.6 % accuracy and the 

coordination environment with 76.9 % accuracy. On six experimental XANES spectra, it predicts 

oxidation state with 83.3 % accuracy, coordination environment with 83.3 % accuracy and the 

chemical compound with 33.3 % top-5 accuracy.35 These results highlight the impact of large 

databases like the open-science Materials Project34 and JARVIS.36 As these databases grow, they will 

likely catalyse supervised ML analysis of scattering and spectroscopy data in materials chemistry. 
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Fig. 4 | Workflow schema of the Ensemble-Learned Spectra IdEntification (ELSIE) algorithm. The 

ELSIE algorithm consists of two steps. In the first step, the absorbing species is identified and used 

to narrow down the candidate computed reference spectra. In the second step, the algorithm yields a 

rank-ordered list of computational spectra according to similarity with respect to the target spectrum. 

The figure is adapted from Zheng et al.35 (Under Creative Commons Attribution 4.0 International 

License https://creativecommons.org/licenses/by/4.0/). 

 

The above example shows that large XANES databases, like XASdb, can be used to address the 

spectrum-to-structure problem, as illustrated in Figure 2A. However, it can also be used to address 

the inverse problem: structure-to-spectrum, as illustrated in Figure 2B. Calculating a XANES 

spectrum from a structure can be computationally demanding but by using a supervised ML model 

to predict the spectrum, this process can be done in milliseconds to seconds.37-39 Supervised ML can 

also be used to directly predict chemical information such as average size, shape, morphology and 
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oxidation states of first metallic nanoparticles40, 41 and metallic oxides,42 Bader charge,43 mean nearest 

neighbour distances,43 and local chemical environment,44 from an XANES spectrum or predict the 

radial distribution function from the experimental EXAFS data.45-49  

 

Analysing XAS data from samples containing more than one chemical species remains a challenge, 

as supervised ML models trained on data simulated from a single chemical species are constrained to 

be used on experimental data from individual chemical species, and attempting to account for all 

possible chemistries, e.g. by training on simulated data from mixed samples, leads to a combinatorial 

explosion. Instead, linear unsupervised ML techniques like principal component analysis (PCA) and 

non-negative matrix factorisation (NMF) have been used to discover trends in large XAS datasets 

and separate them into signals from their respective chemical components.50-55 For example, 

Tanimoto et al. used NMF to identify and map spatial domains from absorption spectra in 2D-XAS 

images of lithium ion batteries. Using NMF for this was successful despite the small differences in 

the spectra between the various compounds present in the sample.53 The authors recognised that NMF 

can be challenged by background effects as these can be predominant in some of the NMF-extracted 

components. Therefore, they subtracted a reference X-ray absorption spectrum obtained on 

Li0.5CoO2, which also includes that background signal. This trick enables the NMF method to 

distinguish small differences in the spectra. 

 

Small-angle scattering: Supervised ML for Dataset and Parameter Prediction 

SAS is a strong technique to obtain information about the morphology, orientation and size 

distribution of e.g., nanoparticles in solution and solids.56 In a SAS experiment, X-ray or neutron 

scattering data are measured at small scattering vectors, e.g., the Q-range from ca. 0.001 Å-1 to 1 Å-1. 

This region of the scattering signal contains structural information about the species in the sample on 

the nanometer scale. 

Traditional SAS data fitting is done by refining a model against the data. The model must describe 

the particle shape, size, and size distribution as well as possible agglomerations of e.g. nanoparticles 

or large molecules in the sample, and much work is often needed in deciding on a suitable model. 

This step can be time-consuming and prone to errors.57 Here, ML can assist by providing a more 

efficient approach to fitting experimental data to theoretical models. The Computational Reverse-

Engineering Analysis for Scattering Experiments Genetic Algorithm (CREASE-GA) tool, developed 

by members of Prof. A. Jayaraman’s research group, can reconstruct 3D structures from SAS patterns 
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using a genetic algorithm.58-65 CREASE-GA compares the goodness-of-fit between the experimental 

SAXS pattern and a population of 3D structures. A genetic algorithm29 is then used to update the 3D 

structure population to better describe the experimental SAS pattern. This process continues until 

convergence, determining the 3D structure of the sample in question. Originally, the SAS patterns 

from the 3D structure population were calculated using the Debye scattering equation. This posed a 

computational bottleneck for CREASE-GA.58 However, the authors have recently managed to 

accelerate CREASE by over 95 % by employing NNs to estimate the SAS patterns.60, 63 

 

Supervised ML has also proved to be an efficient tool for direct parameter extraction from SAS data, 

which might be difficult or time-consuming for humans to detect, such as orientation,66 shape,67-69 or 

the model for SAS form factor fitting.70-72 Thereby, the ML model can bypass the cumbersome step 

of identifying the structural model for structure refinement. For example, the Scattering Ai aNalysis 

(SCAN) tool can predict the model for SAS form factor fitting from a SAXS pattern obtained from a 

nanoparticle. With the SCAN tool, the user can choose from a range of ML algorithms including tree-

based algorithms and NNs. These algorithms individually achieve accuracies between 27.4 % and 

95.9 % based on a test set of simulated SAXS data. However, when combined, they achieve an 

accuracy of 97.3 %. We are grateful to the authors for making SCAN open source, which has made 

it possible to implement it as a Hugging Face app.73 This makes it easily useable, also for users 

without programming experience, as illustrated in Figure 6.  

 

 

 
Figure 6 | A) The SCAN72 tool directly predicts structural information such as particle shape from a 

SAXS pattern. B) Overview of the SCAN72 tool's ease of use for predicting structural information 

from a SAS pattern. Simply click “Browse files”, wait for the model to predict the structural 

information, and, if needed, download the detailed information in an Excel sheet. All of this is 

possible through the Hugging Face app.73 
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Powder Diffraction: Structure Identification  

PD is a fundamental technique in materials chemistry that is used to analyse the crystal structure of a 

powdered sample. In PD, a powder of crystalline particles is exposed to an X-ray or neutron beam, 

causing Bragg diffraction due to the periodic atomic arrangement in the sample. By analysing the 

Bragg peak position, intensity and shape, information about the crystalline structure of the material 

can be obtained.  

Recent advances in ML techniques offer promising new opportunities in PD data analysis. For 

example, it has been demonstrated that a sample’s crystal system and space group can be predicted 

from X-ray PD data using NNs26, 74-76 and tree-based techniques.77 Suzuki et al. demonstrated that an 

advantage of the tree-based ML approaches is that they are interpretable.77 Interpretability enables us 

to understand the ML model’s prediction mechanism and thus analyse when it predicts differently 

from a human expert. This can either show when the ML model is wrong and need to be corrected or 

reveal when it uncovers unexpected correlations that may lead to scientific insights. In contrast, Park 

et al. used an NN which is easier to train on possible larger future datasets containing millions or 

billions of PD patterns.75  

However, these methods can only be used to determine the crystal system or the space group from 

PD data. To identify the full structural model for e.g., structure refinement, the unit cell, and unit cell 

content is also needed. Garcia-Cardona et al.78 made progress towards this for neutron diffraction 

data, where the crystal system (cubic, tetragonal, trigonal, monoclinic, and triclinic) could be 

predicted with an accuracy of 92.65 % (Figure 2A) using convolutional NNs, which are a type of 

NNs that capture the relationship between neighbouring data points e.g. neighbouring intensities in 

the diffraction pattern. Subsequently, another supervised tree-based ML model was used to predict 

unit cell parameters (unit cell length and angles) from the data.78 The authors note that the ML models 

possess good performance on simulated data but more sophisticated models are required before it is 

applicable on experimental data. Furthermore, an ML model that is capable of precisely predicting a 

full structural model, including unit cell content, as required for e.g., Rietveld refinement of 

experimental PD data, is yet to be developed. 

 

If working in a more restricted chemical space with well-defined components, it is possible to use 

supervised ML models for direct prediction of structural parameters for the phases included in the 

space. Dong et al. demonstrated that it is possible to directly predict structural information such as 

scale factor, lattice parameter and crystallite size (Figure 2C) from PD patterns from a system of 5 
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different metal oxides using a convolutional NN that they call Parameter Quantification Network 

(PQ-Net).2 They obtained an experimental X-ray diffraction computed tomography dataset of a multi-

phase Ni-Pd/CeO2-ZrO2/Al2O3 containing about 20,000 diffraction patterns, each pixel containing a 

multiphase pattern. Treating such a large quantity of Rietveld refinements takes significant computer 

time. To overcome this limitation, PQ-Net was trained on simulated PD data with varying scale 

factors, lattice parameters and crystallite size for NiO, PdO, CeO2, ZrO2 and theta-Al2O. A 2nd degree 

Chebyshev polynomial background and Poisson noise were also added to the training data. After 

training, PQ-Net can identify the crystalline phase, scale factor, lattice parameter and crystallite size 

for each experimental PD pattern in the dataset, orders of magnitudes faster than done using 

conventional Rietveld refinement. As seen in Figure 7, the results of using PQ-Net are comparable to 

those determined through Rietveld methods on experimental data.  

 

 
 

Figure 7 | Crystallite size (colourbar axis corresponding to nm) and lattice parameter a (colourbar axis 

corresponding to Å) maps for CeO2 and ZrO2 obtained with the Rietveld method, results obtained 
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with the PQ-Net, their absolute difference for the experimental multi-phase NiO-PdO-CeO2-ZrO2-

Al2O3 system and the uncertainty maps of the deep ensemble PQ-Net.2 (Under Creative Commons 

Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/). 

 

Dong et al. required 100,000 datasets for training to achieve good results predicting structural 

information on experimental data from a chemical system with five components. For larger and 

complex systems with more possible components, the supervised ML model must be trained on even 

more data of both individual structural models and combinations of these. An example of this 

approach is the work by Lee et al., who used a supervised ML model for phase identification in a 

quaternary chemical system consisting of Sr, Al, Li, and O. This system thus spans simple to ternary 

oxides and multiple different polymorphs, and in total 170 inorganic compounds appear in the 

chemical space.79 Here, the ML model was trained on 1,785,405 synthetic combinatorically mixed 

PD patterns. After training, the model was able to phase identify and give rough estimates of phase 

fractions of multicomponent systems from XRD data. 

 

Instead of training the supervised ML model on large databases of combinations of phases, 

unsupervised ML methods, such as PCA and NMF, can demix multiphase PD patterns into individual 

phase patterns, as also addressed for XAS data above.80, 81 Here, a set of experimental diffraction 

patterns are given as input to the unsupervised ML algorithm, which decomposes it into its constituent 

parts. However, the PCA and NMF algorithms may encounter difficulties if the PD pattern of a 

chemical phase changes during the reaction, for example, through peak shifting from a unit cell 

change, variations in peak intensity from a change in thermal vibrations, or a change in the crystalline 

size, leading to different peak widths. Stanev et al. addressed the peak shifting problem by combining 

NMF with cross-correlation analysis of the demixed PD patterns. They were hence able to cluster the 

demixed PD patterns originating from the same chemical phase.82 

Chen et al. employed deep reasoning networks (an unsupervised method) to map the crystal-structure 

phase diagram of Bi–Cu–V oxide using experimental PD data.83 Based on PD data from Bi–Cu–V 

oxides prepared in various compositions, the ML model was trained to demix the phases in the PD 

patterns, and subsequently map the crystal-structure phase diagram of Bi–Cu–V oxide.83 Once 

trained, the deep reasoning network can take a PD pattern from a sample in the composition space as 

input, and demix signals from multiple phases into their constituent components. Using a linear 

combination of the components, the PD pattern can be reconstructed, and the phase diagram can be 
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constructed with phase concentrations. The authors demonstrated this process on X-ray PD patterns 

from a phase diagram of Bi–Cu–V containing 19 chemical phases.  

 

Total Scattering with Pair Distribution Function: Nanoparticle structure determination  

Total scattering experiments are similar to PD, as the scattering of X-rays or neutrons from a sample 

is measured. However, for total scattering, it is not only the Bragg diffraction peaks that are analysed 

but also the diffuse scattering arising from local structural order. This enables structural analysis of 

both crystalline and non-crystalline samples. Total scattering data are often analysed in real space 

through PDF analysis. A PDF is generated by normalising, correcting, and Fourier-transforming the 

total scattering signal, and the PDF represents a histogram of interatomic distances. Like PD, PDF 

can be used to characterise crystalline materials, but has especially emerged as a powerful technique 

to characterise the atomic arrangement in non- or poorly crystalline materials such as clusters in 

solution and disordered, amorphous, and nanomaterials.84, 85  As for XAS, SAS and PD discussed 

above, ML models can help accelerate the PDF modelling process. For example, supervised ML 

models have been developed to predict space groups from PDF data of crystalline materials.86 We 

have furthermore shown that supervised ML can be used to identify the structure of polyoxometalate 

clusters.87, 88  

In a slightly different application of supervised methods, we have recently demonstrated how 

explainable supervised ML can be used to extract information on the local atomic arrangement 

present in a sample.89 The aim of PDF analysis of e.g. nanostructured materials is often to identify 

models for the main structural motifs in a material. Our algorithm, ML-MotEx provides this 

information by using SHAP (SHapley Additive exPlanation)90, 91 values to identify which atoms in a 

given starting model are important for the fit quality. The starting model should be chosen to contain 

the main atomic arrangements expected to be found in the sample. If analysing the structure of e.g. 

an amorphous materials, the starting model may be a related crystalline structure. Based on the model, 

thousands of structure fragments are generated by iteratively removing atoms from the starting model, 

and a PDF fit is done for each of the fragments. A supervised ML model is then trained on the 

thousands of PDF fits, and ultimately, each atom can be assigned an atom contribution value which 

describes how much it contributes to the goodness-of-fit. By analysing the SHAP values, it is thus 

possible to identify which motifs in the starting model are important in the material to describe the 

data. ML-MotEx has so far been used to identify the structure of ionic clusters in solution,89 extract 
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structural motifs in amorphous metal oxides,92 and identify stacking faulted domains on MnO2 from 

both X-ray PD and PDF data.93  

 

The supervised ML methods used for structure identification for both PD and PDF data discussed so 

far are limited to identifying structural models that are part of the structural database on which they 

have been trained. Ultimately, the aim of a PDF experiment may be to solve the structure of new 

nanomaterials. To explore structural models beyond any existing structural database (issue 2 in Figure 

3), some classes of unsupervised ML could be useful. We have recently used a graph-based 

conditional variational autoencoder,33 DeepStruc (Figure 8A) to determine the atomic structure of 

metallic nanoparticles up to 200 atoms in size from PDF data.94, 95 Given a PDF, DeepStruc can output 

a particle structure, and we obtained mean absolute errors of 0.093 ±	0.058 Å on the atomic positions 

in metallic nanoparticles from simulated PDFs. Figure 8B shows the results of applying DeepStruc 

to experimental PDFs obtained from three chemical systems, consisting of two magic-sized clusters 

I) Au144(p-MBA)6096 and II) Au144(PET)60,96 and III) a 1.8 nm Pt nanoparticle.97 All three structures 

match the structures found in the literature and provide good data fits. Although DeepStruc is 

supervised in the sense that it is trained on structure and PDF pairs, it also has abilities from 

unsupervised ML as it learns to probabilistically map cluster structures and PDFs into a two-

dimensional chemically meaningful space, which we refer to as the latent space. By inspecting the 

latent space, it is possible to find relations between different types of cluster models. DeepStruc places 

decahedral (orange) structures in the latent space between face-centered cubic (fcc) (light blue) and 

hexagonal closed packed (hcp) (pink) structures. This spatial arrangement can be explained by 

considering that decahedral structures are constructed from five tetrahedrally shaped fcc crystals, 

separated by {111} twin boundaries.13, 98, 99 The twin boundaries, resembling stacking faulted regions 

of fcc, justify their location in the latent space between fcc and hcp.48, 95, 96 The capability of 

DeepStruc to interpolate between cluster structures arises from each structure in the latent space being 

probabilistically rather than deterministically predicted. This has been demonstrated in Anker & Kjær 

et al.,94 where we show that generative models28 are necessary to go beyond the structural database 

used for training the ML model. Specifically, we showed that a generative model, like DeepStruc, 

can interpolate between structural models, as shown in Figure 8C, while still yielding sensible results. 

More traditional deterministic models, which are not probabilistic, could not interpolate between 

structures and thereby not go beyond the structural database when predicting a structural model from 

a PDF. 
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DeepStruc is integrated with the Hugging Face platform, enabling users to rapidly determine the 

structure of small metallic nanoparticles from PDFs using a simple two-click process.100 The Hugging 

Face integration provides a user-friendly experience, without requiring data storage or complex 

software installations.  

 

 
Figure 8 | DeepStruc is a Conditional Variational Autoencoder that can solve the structure of a small 

mono-metallic nanoparticle from a PDF. A) DeepStruc predicts the xyz-coordinates of the mono-
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metallic nanoparticle structure with a PDF provided as the conditional input. The encoder uses the 

structure and PDF as input, while the prior only takes the PDF as input. A latent space embedding is 

given as input to the decoder to obtain the structural output, which produces the corresponding mono-

metallic nanoparticle xyz-coordinates. During the training of DeepStruc, both the blue and green 

regions are used, while only the green region is used for structure prediction during the inference 

process. B) PDF fit of the reconstructed structure from three different nanoparticle systems: I) 

Au144(p-MBA)60 PDF,96 the II) Au144(PET)60 PDF96 using a reconstructed structure icosahedral 

structure and III) a 1.8 nm Pt nanoparticle PDF from Quinson et al.97 Figure 8A and B are adapted 

from Kjær & Anker et al.95 (Under Creative Commons Attribution 3.0 Unreported License 

https://creativecommons.org/licenses/by/3.0/). C) Structures generated by decoding different extents 

of interpolation of the latent variables obtained for PDF-A and PDF-B. The generated structures start 

from Structure-A and progressively evolve towards Structure-B. This work uses a Conditional 

Variational Autoencoder similar to DeepStruc and we compare it with a Deterministic Autoencoder. 

Figure 8C is from Anker & Kjær et al.94 (Under Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/). 

 

Unsupervised ML algorithms have also been employed to either uncover trends in PDFs obtained 

from multiple samples or to separate the signal from different phases in a PDF.101-103 NMF has proven 

to be especially useful, and has been used to analyse PDFs obtained from various materials and 

conditions, including battery materials, amorphous solid dispersions, or data collected under high-

pressure. It has also been used to extract the interface PDF between a Fe and a Fe3O4 phase.104-108 

Recently, efforts have also been made to develop an efficient and accurate NMF algorithm that can 

be used during data measurement.109, 110 This NMF algorithm is available at PDF-in-the-cloud.111, 112 

 

Inelastic Neutron Scattering: Extraction of a Materials Hamiltonians 

INS is an inelastic experimental technique for investigating the vibrational and magnetic properties 

of atoms in materials. During an INS experiment, a neutron beam interacts with the atomic nuclei and 

the magnetic moment of the electrons in the material. By measuring the initial and final neutron 

energy, one can determine the energy of the interaction or excitation, which allows to study of both 

the atomic and magnetic structure. Analysing the inelastically scattered neutrons thus provides 

information about the Hamiltonian, which governs atomic and magnetic interactions. However, 

interpreting experimental INS data or extracting the Hamiltonian can be challenging due to a large 
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amount of measured data and the complexity of simulating accurate INS data that resembles the 

scattering process.  

For example, determining the appropriate spin wave model of the half-doped bilayer manganite, 

Pr(Ca, Sr)2Mn2O7 (abbreviated as PCSMO) has been debated, with a Goodenough spin wave model 

(Figure 9A),113, 114 or a Dimer spin wave model (Figure 9A) being considered.115 Due to the subtle 

differences between the two models, determining which model the INS spectra correspond to has 

been challenging, as it requires a meticulous manual fitting process. After extensive experimentation 

and careful data treatment, it was ultimately determined that the Goodenough spin wave model best 

describes the experimental data (Figure 9B).116 

To ease this task, a supervised ML model has been developed to assist in analysing INS data. By 

training supervised ML models on simulated INS spectra calculated using physics-driven equations, 

Hamiltonians can be predicted from INS data. Specifically, Butler et al. demonstrated that NNs can 

predict magnetic Hamiltonians or classify the spin wave model from simulated INS data of PCSMO, 

saving significant time compared to manual data analysis.27 They first used a logistic regression117 

model, illustrated in Figure 9C, which makes a simple binary classification, either Goodenough or 

Dimer, but gives no indication of the reliability of the prediction. It was thereby challenging to judge 

when to trust the model. To resolve this problem, they used a deterministic uncertainty quantification 

(DUQ) classifier (Figure 9C),27, 116 to perform uncertainty classification instead. The DUQ classifier 

outputs a weight vector associated with the input that is correlated to the class predictions. If all the 

weights in the weight vector are close to a class, the prediction has a large certainty, while the 

certainty is larger with a larger spread of weight vectors.  

To reliably predict the spin wave model from experimental INS data (Figure 9D), the DUQ classifier 

was trained on computationally expensive resolution convoluted INS spectra. Physics-driven 

simulations may not always capture the experimental noise, instrumental effects or other artefacts 

from phenomena not described by the underlying theory (issue 3 in Figure 3). In this example, the 

computationally inexpensive resolution unconvolved INS simulations did not capture any 

instrumental effects. To address this issue, we introduced an unsupervised image-to-image algorithm, 

Exp2SimGAN, which is a generative adversarial network118 (GAN) capable of learning the simulated 

and experimental data distributions and transforming between them, e.g. transforming a simulated 

dataset into one that resembles an experimental dataset, or vice versa.119 By using Exp2SimGAN to 

convert experimental INS spectra into simulated-like data, the DUQ classifier, trained on 

computationally inexpensive resolution unconvolved INS spectra, can be applied to the experimental 
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INS data (Figure 9E).119 This approach helps bridge the gap between simulations and experimental 

data, allowing for more accurate and efficient analysis. 

 

 
Fig. 9 | Determining the spin wave model from experimental INS data using ML. A-B) Two magnetic 

exchange models in a single sheet of Mn ions in a half-doped manganite. (Left) Goodenough model 

(Right) Dimer model.27 C) Schematic representation of the DUQ method. The input initially passes 

through a series of convolutional NNs (orange block) to extract features. In standard logistic 

regression, the outputs from the convolutional NNs are classified by summing the weights connecting 

each filter, fi, to the class C of interest. This is a simple binary classification. The DUQ classifier 

instead outputs a weight vector associated with the input that is correlated to the class predictions. If 

all the weights in the weight vector are close to a class (based on distances, Kc, from the weight vector 

to the centre, ec, of clusters of training examples), the prediction has a large certainty, while the 

certainty is larger with a larger spread of weight vectors. Figure 9C is from Butler et al.27 (Under 
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Creative Commons Attribution 4.0 International License 

https://creativecommons.org/licenses/by/4.0/). D) 2D representation of experimental data of PCSMO 

measured at 4 K using the MAPS spectrometer.116 The INS spectra are arranged in terms of incident 

neutron energy (Ei) and bins of energy transfer ω = 0.10–0.16Ei, etc. 119 E) The DUQ classifier cannot 

identify the spin wave model of an experimental dataset with high certainty. However, Exp2SimGAN 

matches the experimental dataset to the simulated training set of the DUQ classifier enabling the 

classification of the spin wave model with high certainty. Figure 9A+B+D are from Anker et al.119 

(Under Creative Commons Attribution 3.0 Unreported License 

https://creativecommons.org/licenses/by/3.0/). 

 

Samarakoon et al. demonstrated an alternative approach for the analysis of INS data using 

autoencoders.120-122 They showed that autoencoders can eliminate background signals and artefacts 

from the experimental INS spectrum by compressing them into a latent space. Once in the latent 

space, the magnetic behaviour can be categorised, and the autoencoder can solve the inverse problem 

by extracting the Hamiltonians from the experimental INS spectrum. This is achieved by decoding 

the INS spectrum from the latent space positions. As a result, the autoencoder works as a fast 

surrogate model for INS simulations accelerating the fitting procedure of the experimental INS 

spectrum. Later work integrates ML modelling approaches into the INS experiments enabling real-

time analysis of INS data.123  

 

Remaining challenges and future outlook 

In this perspective, we have shown how analysis of scattering and spectroscopy data is becoming 

increasingly feasible using supervised and unsupervised ML approaches. Especially, the progress of 

large open-source databases has catalysed the use of supervised ML.  

Supervised ML is now widely used to identify structural models (Figure 2A) from data, to predict 

data from structural models (Figure 2B), or to directly provide structural information from data 

(Figure 2C). However, we have highlighted three issues that supervised ML faces in automating the 

analysis of scattering and spectroscopy data (Figure 3). Issue 1: handling datasets originating from a 

mix of chemical phases. Here, unsupervised ML, especially NMF, has successfully been used to 

demix datasets into constituent components. We anticipate the emergence of combination methods, 

where unsupervised ML firstly demixes complex datasets whereafter they are independently 

analysised using supervised ML. Issue 2: handling data from a structural model that is not part of a 
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database. Here, generative modelling appears promising for interpolating between structural models 

in a database. Issue 3: handling experimental data. For the ML models to significantly impact the data 

analysis of scattering and spectroscopy data, they must perform well on experimental data and not 

only on simulated data. Often in materials chemistry, supervised ML models are trained on physics-

driven simulations which do not include instrumental artefacts, noise or other phenomena not directly 

described by the underlying physics. Here, new methods are needed to make simulated data resemble 

experimental data. Unsupervised image-to-image algorithms could potentially address this 

challenge.119 

However, using ML to resolve more complicated challenges in materials chemistry is still challenged 

by limited sizes of datasets connecting structure and spectroscopy/scattering signal. One way to 

handle limited data is to constrain the ML model with chemical knowledge. Here, physics-informed 

NNs serve as an inspiration, as they embed partial differential equations as constraints into the NN 

optimisation problem, for example, when using an NN as a surrogate model for the Schrödinger 

equation.124 As a result, the range of potential solutions is limited to a manageable size for ML to 

handle with the available information. However, not all chemistry can be expressed as differentiable 

equations, necessitating the development of similar approaches that can incorporate chemical 

knowledge into the ML architecture as ’chemistry-driven ML’. Equivariant graph-based NNs show 

promise, as they leverage group representation theory to design architectures that are equivariant to 

specified symmetry groups, making them well-suited for analysing chemical systems with underlying 

symmetries.125 We expect another impact to come from interpretable and explainable ML which 

enables researchers to understand the underlying mechanisms behind predictions, build trust in ML 

model outcomes, and uncover unexpected correlations that may lead to scientific insights. For those 

interested, we refer to a recent review paper by Oviedo et al.30 for more about interpretable and 

explainable ML in materials chemistry.   

Currently, it is not mandatory to publish data, code, and software requirements alongside research 

papers, making it difficult for other researchers to apply trained ML models to their own experimental 

data. A paradigm shift from publishing papers with code to publishing code with papers may thus be 

needed. For the ML developer, we refer to N. Artrith et al.126 for best practices in ML for chemistry. 

We suggest that publishing code with papers would greatly benefit the field, allowing materials 

chemists to analyse data easily or automatically without domain expertise.  

If we unceasingly share ML models, expand open-source databases, and bridge the gap between 

simulated and experimental data, the next decade holds promise to integrate analysis of scattering 
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and spectroscopy data with ML into self-driving laboratories. Self-driving laboratories are currently 

receiving much attention for e.g. identifying new, improved photocatalysts for hydrogen production 

from water,131 synthesising pharmaceutical compounds,132 and optimising nanostructure synthesis 

based on their optical properties.133, 134 As illustrated in Figure 10, the self-driving laboratory will 

synthesise a material, perform a scattering or spectroscopy experiment, and the data can be 

automatically analysed with ML. The findings will then be fed into an active learning framework that 

suggests the next experiment based on structural insight.  

 
Fig. 10 | The proposed self-driving laboratory to integrate analysis of scattering and spectroscopy 

data with ML into self-driving laboratories. The automated experiment platform synthesises a 

material and performs one or multiple structure characterisation experiments. The data from these 

experiments will be analysed using ML. The analysed data will be automatically fed into an active 

learning framework that will suggest the next experiment enabling a directed synthesis of functional 

materials via insight at the atomic level.  
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