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Abstract  

Designing nanoparticles with desired properties is a challenging endeavor, due to the large combinatorial space 
and complex structure-function relationships. High throughput methodologies and machine learning 
approaches are attractive and emergent strategies to accelerate nanoparticle composition design. To date, how 
to combine nanoparticle formulation, screening, and computational decision-making into a single effective 
workflow is underexplored. In this study, we showcase the integration of three key technologies, namely 
microfluidic-based formulation, high content imaging, and active machine learning. As a case study, we apply 
our approach for designing PLGA-PEG nanoparticles with high uptake in human breast cancer cells. Starting 
from a small set of nanoparticles for model training, our approach led to an increase in uptake from ~5-fold to 
~15-fold in only two machine learning guided iterations, taking one week each. To the best of our knowledge, 
this is the first time that these three technologies have been successfully integrated to optimize a biological 
response through nanoparticle composition. Our results underscore the potential of the proposed platform for 
rapid and unbiased nanoparticle optimization. 
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Introduction 
Nanomedicines are relevant for a variety of 
biomedical applications1, from diagnosis2 and disease 
prevention3 to novel therapeutic approaches4. 
Nanomedicine platforms with a wide range of 
physicochemical properties can be engineered using 
a variety of materials5,6, by tuning nanoparticle 
composition and formulation variables7,8. These 
properties, in turn, influence nanoparticle fate and 
their ability to cross biological barriers5,9,10. This 
versatility opens opportunities to build tailored carriers 
for a specific application and patient populations5 but 
also poses a great challenge towards the design of 
optimal materials.  The resulting enormous 
combinatorial design space – realistically consisting of 
thousands of formulations for a single nanoparticle 
type – makes formulation exploration a daunting task. 
Thus, we need efficient ways to navigate this vast 
space, in a time- and cost-effective manner. Novel 
tools for high-throughput formulation and screening, 
as well as data-driven computational methods for 
nanoparticle design hold a great promise to 
revolutionize the current landscape of material 
discovery.  

However, integrating these tools into a single robust, 
rapid, and effective workflow is still an open question. 
In this study, we combined three key technologies: 
microfluidic formulation, high content imaging, and 
active machine learning into an iterative workflow to 
accelerate nanoparticle design (Figure 1). 
 
Microfluidics offers a versatile platform for rapid and 
reproducible production of highly monodispersed 
nanoparticles11,12 compared to standard bulk 
formulation. Control over formulation parameters, 
such as the solvent mixing rate, is achieved by 
handling small volumes of liquids in highly controlled 
environments. The solvent mixing rate drives the 
formulation of several self-assembling nanoparticles 
including amphiphilic lipids and polymers13 and 
controls physical properties like size.  

In parallel, the spread of fluorescence-based 
microscopy together with the rapid development of 
bio-image analysis tools14 and automation has 
enabled the high throughput screening of nanocarriers 
using high content imaging (HCI). HCI combines 
automated fluorescence imaging and analysis, 
providing quantitative multiparametric data from 
images15,16. 
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Figure 1. Conceptual overview of the proposed iterative nanoparticle design pipeline. (a) the three key integrated 
technologies: (1) nanoparticles are formulated using microfluidics-assisted nanoprecipitation by controlling different formulation 
variables xi, (2) the formulations are screened with high content imaging (HCI) to determine their properties yi (e.g., their uptake 
in MDA-MB-468 cells, as in this proof of concept), and (3) a machine learning model learns the relationship between nanoparticle 
formulations (x) and their corresponding property (y), and is used to guide the next cycle. (b) Overview of the experimental cycle: 
from microfluidic formulation to formulation selection for the following cycle in five days. 

 

HCI-based assays can then be used to understand 
the impact of the nanoparticle on the cell, including 
uptake17,18, endosomal escape19 or cytotoxicity20, 
assisting the rational design of nanoparticles. 

Finally, machine learning can be used to guide 
nanoparticle development21,22 with the aim of reducing 
the number of nanoparticle formulations needed to 
optimize a response. Active machine learning is 
particularly suited for this task23–25. By operating in an 
iterative fashion, active machine learning uses model 

predictions to decide which samples should be 
screened and added to the training data to update the 
model in the next cycle26,27, to reach the desired 
response faster. This iterative nature makes it fitting 
for integration with automated (robotic) design 
platforms. 
 
Although these techniques have been widely explored 
on their own, combining their respective advantages 
bears potential to accelerate nanoparticle design. 
Here, we demonstrate an integrated and semi-

https://doi.org/10.26434/chemrxiv-2023-sqb5c ORCID: https://orcid.org/0000-0003-0023-9444 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-sqb5c
https://orcid.org/0000-0003-0023-9444
https://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

automated workflow for rapid nanoparticle design 
(Figure 1a), combining the strengths of (1) 
microfluidic formulation, (2) high content imaging, and 
(3) active machine learning in a complementary 
manner. As a case study, we apply this iterative 
approach to design poly(lactic-co-glycolic acid)-
polyethylene glycol (PLGA-PEG) compositions with 
high uptake in MDA-MB-468 human breast cancer 
cells. Owing to its modular character, the approach 
can be adapted to explore other responses of interest 
for nanoparticle formulation.  
 

Results & Discussion 
 
Platform for nanoparticle design. 
Our proposed workflow is constituted of three 
components (microfluidics formulation, HCI and 
machine learning), each of which contributes to the 
‘experimental cycle’ represented in Figure 1a. Each 
cycle can be performed in a week (Figure 1b), 
allowing for rapid design iterations. The three 
components of our platform are the following: 
 
1. Microfluidics device. We use a microfluidics device 
with a Y-junction geometry and hydrodynamic flow 
focusing (HFF). The device achieves fluidic control via 
two syringe pumps connected to the middle and side 
inlets of the junction, for solvent (S) and anti-solvent 
(AS) streams, respectively (Figure 2a). Mixtures of 
different nanoparticle building blocks are prepared 
automatically using a syringe pump connected to the 
sample reservoirs, and then injected into the middle 
channel of the microfluidic chip at a constant flow rate. 
The kinetics of the nanoprecipitation process can be 
controlled via the S/AS flow rate ratio, by adapting the 
antisolvent flow rate with a second pump. During this 
formulation process, the nanoparticles are labelled 
with a fluorescent dye. This formulation set-up is 
compatible with different self-assembling 
nanomaterials, including polymeric and lipid 
nanoparticles. The current port configuration (10-port 
valve, see Supplementary) enables mixing up to 6 
building blocks or components. Each formulation 
takes less than 20 min, for 1 mg of material (with 
variable concentration depending on S/AS).  

2. High content imaging (HCI). High-content imaging 
is used to acquire and process widefield fluorescence 

images in an automated way (Figure 2b) in 96-well 
plates. After acquisition, a three-step bio-image 
analysis pipeline is used, based on CellProfiler28, and 
consists of (1) nuclear segmentation, (2) membrane 
segmentation, and (3) intensity quantification (Figure 
2c). In this assay, we measure the nanoparticle 
intensity per cell per area, which fits an expected 
gamma distribution, in accordance with theoretical 
and experimental reports17. As highlighted earlier, 
many fluorescent-based assays can be adapted to 
this format, expanding the assay capabilities to 
interrogate cell state29, cytotoxicity20, or nanoparticle 
fate19. 

3. Active machine learning. Active learning is based 
on the principle that a machine learning model can 
achieve better performance with less data if it is 
allowed to choose the data from which it can learn in 
the next cycles30. The two main strategies for 
selecting the next samples to screen are known as 
exploration and exploitation26,27. In exploration, the 
samples that are the most interesting to learn from are 
selected, with the aim of getting a better model. Here, 
we assumed that screening samples with high 
prediction uncertainty will add the most information to 
the model. Exploitation, on the other hand, aims to 
identify nanoparticles with desired experimental 
properties. This is often done by selecting 
nanoparticles from the areas in the design space that 
can be predicted with high certainty. In our workflow, 
we use a Bayesian neural network31 (BNN) to predict 
nanoparticle response. A BNN is a probabilistic model 
that outputs a distribution of predictions for any input, 
enabling a robust estimation of prediction uncertainty. 

  
At each cycle, the three technologies work 
complementary as follows: (a) microfluidics 
technology is used for nanoparticle production, (b) the 
obtained nanoparticles are analyzed using HCI for 
property determination, and (c) the experimental 
results are used to train the machine learning model, 
which is then used to suggest what to formulate next. 
The optimal learning strategy (exploration vs 
exploitation) over cycles is not predetermined and can 
be adjusted upon learned insights. Choosing between 
exploration and exploitation is case-dependent and it 
is ultimately decided by the scientist.   
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Figure 2. Microfluidic set-up and high content screening. (a) Formulation of PLGA-PEG nanoparticles varying four different 
components (1-4, PLGA polymers) and one process variable (5, Solvent/Antisolvent S/AS flow rate ratio). Polymer mixtures and 
their injection into the middle channel of the hydrodynamic flow focusing (HFF) device is achieved with the LSPOne pump and 
different levels of S/AS are accomplished by changing the antisolvent (water) flow rate with a syringe pump. (b) For imaging of 
nanoparticle uptake in MDA-468, the raw data is composed of three channels (Nuclei, Membrane, nanoparticle (NP)), with each 
field of view of 804x804 px, 1.123 µm/px. Examples qualitatively illustrating three levels of uptake (negative, medium, high). Scale 
bars 150 μm. (c) Image analysis by segmentation of the nuclei, followed by membrane segmentation and quantification of mean 
intensity on the nanoparticle channel per cell per area. Distribution of cell intensities shows a gamma distribution. 

Case study: Designing PLGA-PEG nanoparticles. 
As a case study, we focused on PLGA-PEG 
nanoparticles consisting of four polymer components 
(PLGA, PLGA-PEG, PLGA-PEG-COOH, PLGA-PEG-
NH2) and one process variable (S/AS flow rate ratio). 
By varying building components that directly influence 
physicochemical properties, we aim to maximize their 
uptake in MDA-MB-468 human breast cancer cells. 

The proposed design platform was used to perform 
three cycles. Per each cycle, nanoparticles were 
produced in the microfluidics platform with the chosen 
formulation. Hydrophobic fluorescent dyes (DiD) were 
incorporated into the polymer mixture to allow for 
estimation of cell accumulation. Cell uptake was 
determined via HCI and expressed as fold-increase 
accumulation (compared to the uptake control, a 
100% PLGA-PEG nanoparticle formulated by bulk 
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Figure 3. Optimizing PLGA-PEG nanoparticle uptake in MDA 468 cells with machine learning guided formulation. (a) 
Principal component analysis (PCA) of the nanoparticle (NP) design space, projecting the range of all five formulation variables 
into two dimensions. Each point represents a nanoparticle formulation, with grey representing all formulations of the in-silico 
screening library (n=100,000), and blue representing formulated nanoparticles in cycle 0 (DoE, n=28). (b) PCA illustrating the 
selection of nanoparticle formulations for cycle 1 (exploration, n=10). (c) PCA illustrating the selection of nanoparticle formulations 
for cycle 2 (exploitation, n=10). (d) Boxplots of the measured uptake of formulated nanoparticles over cycles. (e) Measured uptake 
over screening cycles. Error bars represent standard deviation. Nanoparticles are sorted by uptake for illustrative purposes. (f) 
Composition of the formulated nanoparticles. Circle size represents the percentage of each nanoparticle formulation component. 
Components used are: 1; pure PLGA, 2; PLGA-PEG, 3; PLGA-PEG-COOH, 4; PLGA-PEG-NH2, and 5; solvent/antisolvent ratio. 

nanoprecipitation). The measured response per 
nanoparticle was used to train the BNN model for 
uptake prediction. The trained BNN was then used to 
select the next cycle formulations from a virtual library 
of 100,000 nanoparticles spanning the entire design 
space. Formulations were considered only if their 
predicted polydispersity index (PDI) passed a 
predetermined threshold (PDI > 0.2, predicted with a 
different machine learning model, see Materials and 
Methods). As a learning strategy, we started by 
exploring the uncertain areas of the design space 
(exploration), after which we aimed to find high 
response nanoparticles (exploitation). As a result, the 
study was executed in three cycles, as described 
below (Figure 3). 

Cycle 0 (dataset generation). Machine learning needs 
training data to start from. When the dataset is limited 
by size, it has been shown that machine learning 
algorithms can benefit from starting with a diverse 
dataset32. Thus, we selected 29 formulations (cycle 0) 
using a Design of Experiments (DoE) methodology. A 
mixture-process variable design allowed us to pick 
formulations that were distributed homogeneously 

within the design space (Figure 3a). These 
formulations were produced and characterized for 
their cell uptake. The nanoparticle uptake ranged from 
0.40 to 4.77-fold with respect to the uptake standard, 
with an average uptake of 2.03 ± 1.28-fold (Figure 3d, 
e, dark blue color). Polymer composition is visually 
represented in Figure 3f, and corresponding 
characterization of physicochemical properties are 
available in the Supplementary. Experimentally 
determined uptake values were used to train the BNN 
model. 

Cycle 1 (exploration). The BNN model trained with 
cycle 0 data was used to inform the next cycle. Here, 
we primarily aimed at exploring the regions of the 
design space where the model is most uncertain 
about to increase overall model performance. 
Therefore, we used the prediction uncertainty to guide 
the formulation selection. We selected 10 formulations 
that were: (a) as diverse from each other as possible 
(via clustering, see Materials and Methods), (b) with a 
high prediction uncertainty and moderately high 
uptake (Figure 3b). The resulting nanoparticles were 
experimentally assessed and had an uptake ranging 
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Figure 4. PLGA-PEG nanoparticle uptake in MDA 468 cells for nanoparticles with low predicted uptake and high predicted 
uptake. (a) Principal component analysis (PCA) representing all nanoparticle (NP) formulations of the in-silico screening library 
(grey, n=100,000), the selected low-uptake formulations (light blue triangles, n=5), and the selected high-uptake formulations 
(dark blue circles, n=5). (b) Comparison between predicted (grey) and measured uptake for nanoparticles with low- and high 
predicted uptake. Error bars represent standard deviation. (c) Composition of the formulated nanoparticles. Circle size represents 
the percentage of each nanoparticle formulation component. Components used are: 1; pure PLGA, 2; PLGA-PEG, 3; PLGA-PEG-
COOH, 4; PLGA-PEG-NH2, and 5; solvent/antisolvent ratio. 

from 5.72 to 14.40-fold, with an average of 9.72 ± 
2.70-fold: a considerable leap in uptake compared to 
cycle 0 (where the best nanoparticle resulted in 4.77-
fold uptake, Figure 3d, e). This newly obtained data 
was combined with the data from cycle 1 and used to 
re-train the model, to inform cycle 2. 

Cycle 2 (exploitation). Having explored the uncertain 
areas of the design space, we aimed at obtaining high 
uptake in MDA-MB-468 cells by selecting 
nanoparticles in an exploitative manner. Instead of 
acquiring more knowledge about the uncertain areas 
in the design space, we selected 10 nanoparticle 
formulations with a high predicted uptake and a low 
uncertainty (Figure 3c) for formulation and HCI 
screening. These nanoparticles were found to have an 
uptake between 8.60 and 14.50-fold, with an average 
of 12.30 ± 2.02-fold (Figure 3d, e). This cycle yielded 
a remarkable improvement in the average uptake over 
all ten nanoparticles, and to a slightly higher maximum 
uptake.  

With only three full cycles we were able to move from 
a mean uptake of 2.03 ± 1.28-fold in the initial set to 
12.30 ± 2.02-fold in the last cycle. The maximal uptake 
improved from 4.77-fold in the first cycle to 14.50-fold 
in the last cycle. 

Model interpretation. To fully leverage what the 
machine learning model learned from the data, we 
applied it to interrogate nanoparticle composition-
function relationships. We retrained the model with all 
the data generated from all cycles and used it to select 
five nanoparticles with low predicted uptake and five 
with high predicted uptake from the virtual library for 
further formulation and screening (Figure 4a). 
Although the model was better attuned to high-uptake 
formulations, it was able to identify both high-uptake 
(10.54 ± 0.66-fold) and low-uptake nanoparticles (2.74 
± 0.99-fold), with statistically significant differences (p 

< 0.001, two-tailed t-test, Figure 4b). This shows that 
the model has learnt relevant formulation-uptake 
relationships. 

Low- and high-uptake nanoparticles showed 
statistically significant differences (p < 0.001, two-
tailed t-test) in the content of three polymers (Figure 
4c): (1) PLGA (low-uptake: 53 ± 9%, high-uptake: 5 ± 
5%), (2) PLGA-PEG-COOH (low-uptake: 3 ± 5%, 
high-uptake: 24.4 ± 4.8%), and (3) PLGA-PEG-NH2 
(low-uptake: 10 ± 6%, high-uptake: 25 ± 5%). This is 
also reflected in the predictions over the whole design 
space (Supplementary). Furthermore, low-uptake 
nanoparticles were found to be more monodisperse 
(PDI = 0.059 ± 0.013) and bigger (size = 154.5 ± 21.4 
nm) than high-uptake nanoparticles (PDI = 0.122 ± 
0.015, size = 114.0 ± 5.2 nm). Polydispersity or 
nanoparticle heterogeneity was traditionally seen as 
an undesired property. However, this intrinsic 
heterogeneity can be considered a structural 
parameter contributing to nanoparticle fate and 
biological function33.  

 

Conclusions and outlook 

In this work, we demonstrate a nanoparticle design 
platform combining three complementary 
technologies, namely microfluidics-assisted 
formulation, high content imaging, and machine 
learning. These three technologies have been tuned 
to work synergistically, and to be used within an active 
learning framework, whereby the results of each cycle 
are used to inform the following experimental cycle.  

As a proof-of-concept, we applied our approach for 
designing PLGA-PEG nanoparticles with high uptake 
in MDA-MB-468 human breast cancer cells. With only 
two experimental cycles, we were able to triple the 
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measured uptake from ~5-fold to ~15-fold. Each 
experimental cycle lasted five days. These results 
demonstrate the approach’s potential to efficiently 
navigate complex design spaces of multicomponent 
nanoparticles.  

Owing to its modularity, this approach can be 
further expanded to tackle virtually any nanoparticle 
formulation needs. In the future, we will apply this 
approach for designing nanoparticles with relevant 
translational properties, such as selective 
cytotoxicity in cancer cells, or the capability to 
deliver functional cargo to target cells. Moreover, 
the approach is generalizable to a range of 
nanomaterials and can be expanded to models with 
different biological complexities, e.g., cell lines or 
patient-derived organs-on-a-chip.  The proposed 
approach demonstrates the potential of closed-loop 
platforms for rapid and iterative nanoparticle 
optimization driven by machine learning.  
 

Materials and Methods 

Nanoparticle formulation 
 
Chemicals. All Poly Lactic-co-Glycol Acid (PLGA)-
Polyethylene Glycol (-PEG) based polymers were 
purchased from Akina Inc. division PolySciTech (West 
Lafayette, USA): PLGA (#AP082), PLGA-PEG 
(#AK102), PLGA-PEG-COOH (#AI078), PLGA-PEG-
NH2 (#CAI189). The encapsulated dye was a DiD 
solution from InvitrogenTM VibrantTM Multicolor Cell-
Labelling kit (Cat no. V22889), purchased from Fisher 
Scientific (Landsmeer, Netherlands). High-grade 
acetonitrile (>99%) was used as organic solvent.   
 
Microfluidic chip manufacturing. The microfluidic chips 
were manufactured in polydimethylsiloxane (PDMS) 
from a SU-8 patterned Silicon wafer master mold. The 
design of the corresponding microstructures (a Y-
junction, with 200 µm of channel width and 60 µm 
height) and their manufacturing process are described 
in detail in our previous work, by Glinkowska et al.34. 
Each chip (or PDMS replica) was prepared from the 
master mold by standard soft lithography. First, a 
PDMS base polymer and elastomer from a two-
component kit (Sylgard 184, Dow Corning) were 
thoroughly mixed in 10:1 wt:wt ratio. The mixture was 
degassed in a desiccator, poured over the master 
mold, degassed once more and baked overnight at 
60°C. After elastomer curation, the PMDS chips were 
peeled off from the master mold, the inlets and outlets 
were punched with a 1.2 mm biopsy puncher and 
stored in a dust-free environment.  On the same day 
of formulation, to keep surface hydrophilicity, the 
PDMS replica was freshly bonded to a clean 25x75 
mm glass slide using oxygen plasma (at 20 W for 30s), 

achieved with an Emitech K1050X Plasma Asher from 
Quorum (East Sussex, UK).   
 
Microfluidic-assisted nanoparticle formulation. 
Nanoparticles were formulated by microfluidic-
assisted nanoprecipitation, in which an acetonitrile 
stream (solvent, S) containing all polymer 
components is hydrodynamically focused by an 
aqueous phase (anti-solvent, AS) in a Y-junction. The 
AS phase was ultra-pure water pumped into the lateral 
inlets of the chip by a Fusion 200 Two-channel 
Chemyx Syringe Pump (Stafford, USA), while the 
acetonitrile was pumped inside the central channel by 
a LSPOnePump with a 10-port valve and a 250-μl 
syringe from Advanced MicroFluidics SA (Ecublens, 
Switzerland). This last pump was also used to make 
mixtures of polymer components prior injection of the 
organic phase into the device. This was achieved by 
using the following port configuration: 1 waste, 2 
output, 3 mixing, 4 buffer, and the remaining ports (5-
9) for dye and polymer components reservoirs. 
Schematics and port configuration shown in Sup. 
Figure 4. All solvents used were filtered with a 
Whatman's polyvinylidene fluoride (PVDF) 0.2 μm 
membrane filter. Filtered acetonitrile was used to 
make the polymer stocks (reservoirs) at a 
concentration of 15 mg/ml and to dilute the 
commercial DiD dye from 1 mM to 500 μM. The 
polymer component mix was injected at a total 
polymer concentration of 10 mg/ml, with an S flow rate 
of 15 μl/min, and a variable AS flow rate, depending 
on the desired S/AS ratio (S/AS values ranging from 
0.1 to 0.25). DiD was added into the polymer mix at a 
concentration of 50 μM, to label the particles 
fluorescently, by in situ encapsulation of the 
hydrophobic dye into the core of the nanoparticles 
during the process of nanoprecipitation. For each 
formulation, 0.5 mg of material was collected (for 
example, for 0.1 S/AS: 0.5 ml of 1 mg/ml 
nanoparticle). The nanoparticle solutions were diluted 
to a concentration of 1 mg/ml and the nanoparticle 
solutions were left on the shaker at room temperature 
overnight to allow evaporation of acetonitrile.  All 
tubing (REF: BL-1815-04 & BL-PTFE-1602-20), fluidic 
connections (REF: CIL_XP-245X) and PDMS 
couplers (REF: PN-STN-20G-20) were purchased 
from Darwin Microfluidics (Paris, France). The 
Chemyx pump was actuated manually, using the 
touch screen, while the LSPOne pump was actuated 
using a custom-made MATLAB script.  
  
Bulk formulation of uptake standard. Nanoparticle 
uptake standard was formulated by bulk 
nanoprecipitation. A polymer mixture of 10 mg/ml 
containing PLGA-PEG and 50 μM of DiD in pure 
acetonitrile was added dropwise to ultra-pure water, in 
a ratio of 1:10, at room temperature under stirring (700 
rpm). The resulting nanoparticle solution (1 mg/ml) 
was left under stirring (400 rpm) on the plate overnight 
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at room temperature, protected from light, to let the 
acetonitrile evaporate.   
 
Nanoparticle characterization 
 
Bulk Physicochemical characterization. Hydro-
dynamic diameter and polydispersity index (PDI) were 
determined by Dynamic Light Scattering (DLS) using 
a Zetasizer Nano-ZS (Malvern Panalytical), with a 633 
nm laser and 173° Backscatter detector. Bulk 
fluorescence spectrum (Ex. 605 nm, Em. 646-700nm, 
5 nm step) was recorded for each nanoparticle batch 
using a BioTek Synergy H1 microplate reader 
(Agilent), in a black-well 96-well plate. nanoparticle 
solutions were diluted in ultra-pure water (1:10) before 
measurement. Nanoparticle uptake standard was 
always included on the plate. Fluorescence 
coefficients to correct for differences in fluorescence 
intensity were calculated for each batch in comparison 
to the uptake standard.   
 
Cell culturing and nanoparticle in vitro screening. 
Breast cancer epithelial cells MDA-MB-468 (HTB-132) 
were obtained from American Tissue Culture 
Collection (ATCC) and cultured under standard 
conditions (37°C, 5% CO2) in Dulbecco's Modified 
Eagle Medium (DMEM) supplemented with 10% FBS 
(Fetal Bovine Serum) and 1% penicillin-streptavidin. 
Standard culture reagents (DMEM, FBS, pen-strep, 
DPBS 1x, EDTA-trypsin), nuclear (Hoechst 33342, 
Cat no. 62249) and membrane (Alexa FluorTM 488 -
Wheat germ agglutinin (WGA) Conjugate, Cat no. 
W11261) stains, 16% methanol-free 
paraformaldehyde (PFA) (Cat no. 043368.9M) and 
human serum (MP BiomedicalsTM Serum, Type AB, 
Cat no. 11425055) were purchased from Fisher 
Scientific.  
  
Cells were seeded at a density of 25,000 cells/cm2 in 
an “ibiTreat” μ-Plate 96 well back (Cat no. 89626) from 
IBIDI (Gräfelfing, Germany), cultured for 38-48h 
before nanoparticle treatment. Half an hour before 
starting the treatment, nanoparticle stock solutions 
were pre-incubated with human serum (1:1, v:v) for 30 
min at 37°C. Cells were washed three times with 
serum-free phenol-free DMEM media, and each 
nanoparticle condition (pre-incubated with serum) was 
added to each well at a working concentration of 50 
µg/ml. The resulting “incubation media” contained 5% 
human serum. After 23.5h, the cells were 
counterstained with Hoechst and Alexa FluorTM 488 
WGA at 37°C. After 24h, cells were washed with 
serum-free media 3 times, fixed with FFA 2% (diluted 
in DPBS 1x), for 10 min, at room temperature. After 
fixation, cells were washed three times with DPBS 1x 
and stored at 4°C protected from light until imaging.   
 

High content imaging (HCI). Widefield fluorescence 
imaging was performed using a Nikon Eclipse Ti2 
microscope, equipped with and automated focus 
system, an automated piezo stage, a 25-mm primΣ 
95B sMOS camera from Teledyne photometrics 
(Arizona, USA) and a Spectra X light engine from 
Lumencor (Oregon, USA). The microscope was 
operated using Nikon Instrument Software (NIS) 
elements (v. 5.21.03). Pipeline for automated imaging 
of well-plates were set using Nikon's High-content 
dedicated macro (JOBS). For each condition, 10 Field 
of view (FOV), 16-bit images of 804x804 px (1.123 
µm/px) in three channels (nuclei, membrane, 
nanoparticle), were recorded, using a 20x objective. 
The optical configuration was as follows: (1) for nuclei, 
laser excitation at 387 nm, DAPI filter cube (Ex: 379-
450, Em: 414-480), 5% laser power, 10 ms; (2) for 
membrane, laser excitation at 470 nm, with a FITC 
filter cube (Ex: 461-488 – Em: 503-548), 20% laser 
power, 75 ms; (3) for nanoparticle, laser excitation at 
628 nm, with Cy5 filter cube (Ex: 509-645, Em: 659-
736), 40% laser power, 200 ms. To account for 
variability between days (including possible small 
variations on laser intensity), the same particle 
(uptake standard) was always included in the plate. 
Measurements were taken at room temperature.   
 
HCI Post-processing. Microscopy images (16-bit 
greyscale, 3 channels, .tiff) were batch processed 
using CellProfiler28(CP), version 4.2.1. The CP 
pipeline included segmentation of the cells and 
quantification of fluorescence signal from the 
nanoparticle channel. For this, nuclei segmentation 
(‘IdentifyPrimaryObjects’ module), followed by 
membrane segmentation (‘IdentifySecondaryObjects’ 
module) and cell identification 
(‘IdentifyTertiaryObjects’ module) was performed. 
Following segmentation, the ‘MeasureObjectIntensity’ 
module was used to compute the mean fluorescent 
signal per cell per unit of area; and the 
‘MeasureImageQuality’ module was also used for 
quality control checks (illustrated in supplementary). 
The data was exported in .csv files, per single object 
(nuclei, cytoplasm, cell) and per image. MATLAB was 
used to calculate means and standard deviations of 
the features of interest.   
 
Machine learning and computation 
 
Design of experiments (DoE). The starting dataset 
(initial formulation runs, cycle 0) of PLGA-PEG 
nanoparticles was proposed using design of 
experiments (DoE), with Statgraphics Centurion 19. 
An augmented simplex lattice mixture design was 
created with one response variable (Uptake in MDA-
468 cells), one process variable (S/AS with two 
levels), and 4 components (PLGA, PLGA-PEG, 
PLGA-PEG-COOH, PLGA-PEG-NH2). In mixture 
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designs, all components need to sum up to one (100% 
of the mixture) and can take up values from zero to 
one, unless stated otherwise. Process variables are 
discrete values. A linear model was selected for the 
process variable and a special cubic model for the 
mixtures, resulting in a design with 28 coefficients. 
Using the backward selection exchange algorithm 
implemented in the software, the number of runs was 
then set to 31. Two runs were manually removed from 
the resulting dataset (100% PLGA, at 0.1 and 0.25 
S/AS) since pure PLGA nanoparticles cannot form 
without the addition of any surfactant, and one run 
(F15) was manually added. The resulting list initial 
formulations, including their physicochemical 
characterization is available in Sup. Table 1.  
 
Nanoparticle uptake prediction. A Bayesian neural 
network (BNN) was used, denoted as 𝑝!(𝑦|𝑥), to 
predict nanoparticle uptake (𝑦) from nanoparticle 
formulation (𝑥). The model parameters 𝜃 were 
initiated as probability distributions with Gaussian 
priors. To approximate the posterior distribution, 
stochastic variational inference (SVI) was used. 
Following the standard SVI approach35, a simpler 
guide model 𝑞!(𝑥) was deployed that uses a 
multivariate normal distribution to approximate the 
true posterior distribution of 𝑝!. The model consisted 
of three hidden layers with ReLU activation functions. 
The model was trained with the ADAM optimizer36, to 
maximize the evidence lower bound (ELBO). The 
ELBO is calculated as follows (Eq. 1):  
 
ELBO = 	𝔼!!(#|%) [log 𝑝( (𝑦|𝑥, 𝑧)] − 𝐾𝐿(𝑞((𝑥)||𝑝() (1) 

 
where 𝑧 represents the latent variables that aim to 
capture the data’s structure, and 𝐾𝐿 is the Kullback-
Leibler divergence37 between the guide distribution 
and the true posterior distribution. To estimate the 
prediction uncertainty, the predictive distribution was 
constructed by taking 500 Monte Carlo samples for 
each data point. Nanoparticles with a PDI greater than 
0.2 were excluded for training the uptake prediction 
models.  

Size and PDI prediction. Nanoparticle polydispersity 
index (PDI) and size (hydrodynamic diameter) 
predictions were performed with an Extreme Gradient 
Boosting38 (XGBoost) model, which is based on 
decision trees. These models were trained on all 
available data for each design cycle. PDI and size 
values were log-transformed.  
 
Model evaluation. Due to the low data setting, all 
available data was used to train the models in each 
cycle. Five-fold cross-validation32 was applied to 
ensure model robustness and stability. The model 
performance with cross-validation was computed via 

the root mean squared error (RMSE), calculated as 
follows (Eq. 2): 
 

𝑅𝑀𝑆𝐸 = =∑ (𝑦?) − 𝑦))*+
),-

𝑛  
(2) 

 
where 𝑦",  is the predicted value for the i-th nanoparticle 
(when it is not used to train the model) and 𝑦# is its 
‘true’ experimentally measured value (uptake, PDI, or 
size). To reduce the stochastic influence of random 
splitting, five-fold cross-validation is performed a total 
of three times with different random splits. Finally, the 
estimated model performance was calculated by 
taking the average RMSE over all splits. 
 
Model training and optimization. Model hyper-
parameters were optimized with cross-validation at 
each screening cycle, by choosing those leading to 
the lowest RMSE (Eq. 2). For BNN models, we 
optimized the learning rate (values: 1x10-3, 1x10-4, 
1x10-5) and the number of neurons per hidden layer 
(16, 32, 64) using a grid search. For XGBoost models, 
Bayesian optimization was used to choose among 
500 sets of hyperparameters. The specific sets of 
hyperparameters to try were selected by maximizing 
the expected improvement of a Gaussian Process 
estimator. The following hyperparameters were 
optimized: learning rate/eta = [0 – 1], maximal tree 
depth = [2 – 20], minimal child weight = [1 – 20], 
minimal loss split 𝛾 = [0 – 20], number of trees = [50 – 
500], subsample ratio = [0.1 – 1], column subsample 
ratio by tree = [0.1 – 1], L2 regularization 𝜆 = [0 – 10], 
L1 regularization 𝛼 = [1 – 10]. 
 
Experimental error calculation. The experimental error 
of the nanoparticle formulation was computed by 
considering the balance error (± 0.01 mg), the volume-
dependent systematic and random pipetting error (see 
Sup. Table 5), and a pump maximum dispensing error 
(1%). These values were taken from their 
corresponding manuals. The errors were considered 
as additive and independent and were calculated as 
the quadrature of the individual errors. The estimated 
errors were: 1.25% (PLGA), 1.21% (PP-L), 1.24% 
(PP-COOH), and 1.24% (PP-NH2). Possible errors or 
variations in the flow rates of the solvent or antisolvent 
were not considered for this calculation, neither were 
errors introduced by dead volumes or by the carryover 
volume of the valve in the LSPOne pump.  

Data augmentation based on experimental error. To 
artificially inflate the training data and simultaneously 
incorporate a notion of measurement error into the 
model, all training data was augmented 5 times (1x 
the original data + 4x augmented data), resulting in a 
slight increase in performance in preliminary 
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experiments. Data augmentation was applied 
throughout cross-validation and model fitting. For 
each nanoparticle, PLGA, PLGA-PEG, PLGA-PEG-
COOH, and PLGA-PEG-NH2 values were multiplied 
with random samples from a normal distribution 
parameterized by their corresponding experimental 
error, as determined above. Similarly, nanoparticle 
uptake, PDI, and size were augmented using the 
standard deviation of the respective measurements. 

Virtual screening library. A virtual library of 
nanoparticle formulations was generated to span the 
design space, by sampling PLGA, PLGA-PEG, PLGA-
PEG-COOH, and PLGA-PEG-NH2 composition ratios 
from a Dirichlet distribution (all variables range from 
zero to one, adding up to one). We considered 
sampled variables with values lower than 6% as 0%, 
taking the carryover error of the pump into account. 
These discarded values were added to another non-
zero variable at random to enforce that all ratios still 
add up to one. Nanoparticle formulations that 
overlapped in experimental error or had a PLGA ratio 
higher than 0.7 were discarded. Finally, 
solvent/antisolvent ratios of [0.10, 0.15, 0.20, and 
0.25] were sampled from a uniform distribution for 
each virtual nanoparticle. 100,000 virtual formulations 
were generated in total.    
 
Formulation selection. At each screening cycle, 
uptake, PDI, and size were predicted for every 
formulation in the virtual screening library. To select 
cycle 1 formulations (exploration phase), we enforced 
diversity via clustering39. For a batch of k=10 
formulations, the subset of the 10% most uncertain 
predictions was selected. On this subset, K-means 
clustering with Euclidean distance was performed for 
k clusters. The closest formulation to each cluster 
centroid was then selected as the formulations to 
produce. In cycle 2 (exploitation phase), for a batch of 
𝑘 = 10 formulations, the formulations from the virtual 
screening library with the top 10% highest predicted 
uptake were selected. From this subset, the	k most 
certain samples were selected. The same strategy 
was employed for both high-uptake and low-uptake 
predictions for formulation-function elucidation. 
However, for the low-uptake predictions, the 10% 
lowest predicted uptake particles were selected 
instead. 
 
Software and code 
 
All code was implemented in Python (v. 3.9.15).  The 
BNN model was implemented using the Python 
packages PyTorch (v. 1.12.1)40 and Pyro (v. 1.8.4)41. 
XGBoost models were implemented using sklearn (v. 
1.2.1)42 and xgboost (v. 1.7.3)38 Python libraries. 
Graphs and figures were made in R (v. 4.3.0)43 using 

ggplot2 (v. 3.4.2)44, Adobe Illustrator, and 
Biorender.com (academic license). Comparisons 
between means were performed using a standard 
two-tailed t-test in R and the resulting p-values are 
reported in text.  

 
Code and data availability 
 
All code, trained models, and results are available on 
GitHub:  
https://github.com/molML/Nano_Particles_Active_Le
arning 
 
All raw screening data are available on: 
https://10.5281/zenodo.8289605 
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