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Abstract

We present a new quasi-direct quantum molecular dynamics computational method

which offer a compromise between quantum dynamics using a pre-computed poten-

tial energy surface (PES) and fully direct quantum dynamics. This method is termed

the time-dependent adaptive density-guided approach (TD-ADGA) and is a method

for constructing a PES on the fly during a dynamics simulation. This is achieved by

acquisition of new single point (SP) calculations and refitting of the PES depending

on the need of the dynamics. The TD-ADGA is a further development of the adap-

tive density-guided approach (ADGA) for PES construction where the placement of

SPs is guided by the density of the nuclear wave function. In TD-ADGA, the ADGA

framework has been integrated into the time-propagation of the time-dependent nuclear

wave function and we use the reduced one-mode density of this wave function to guide

when and where new SPs are placed. The PES is thus extended or updated if the

wave function moves into new areas or if a certain area becomes more important. We
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here derive equations for the reduced one-mode density for the time-dependent Hartree

(TDH) method and for multi configuration time-dependent Hartree (MCTDH) meth-

ods, but the TD-ADGA can be used with any time-dependent wave function method

as long as a density is available. The TD-ADGA method has been investigated on

molecular systems containing single- and double-minimum potentials and on single-

and multi-mode systems. We explore different approaches to handle the fact that the

TD-ADGA involves a PES that changes during the computation and show how results

can be obtained that are in very good agreement with results obtained by using an ac-

curate reference PES. Dynamics with TD-ADGA is essentially a black box procedure,

where only the initialization of the system and how to compute SPs must be provided.

The TD-ADGA thus makes it easier to carry out quantum molecular dynamics and

the quasi-direct framework opens up the possibility to compute quantum dynamics

accurately for larger molecular systems.

1 Introduction

Simulating the dynamics of molecular systems is key to understanding many processes of

nature, as such simulations can give insights into the fundamental molecular motions and

chemical reactions involved. Full quantum mechanical simulations of molecules have the

promise of accurately revealing molecular dynamics from first principles, but high compu-

tational costs and complex workflows often make such computations prohibitive to apply

in practice. There are two major challenges inherent to any quantum molecular dynamics

computation i) how to represent and compute the potential energy surface (PES) that the

dynamics takes place on and ii) how to represent and propagate accurate in time, the wave

function for nuclear motion on the PES. These two problems are tightly connected as on one

hand, the PES dictates how the wave function for nuclear motion evolves over time while

on the other hand, it is difficult to know quantitatively which domains of the PES the wave

function visits before carrying out an accurate dynamics simulation. Two opposite strategies
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have been prevailing for dealing with the PES issue in time-dependent simulations.

In the first approach, the PES is constructed prior to the dynamics computation. This

PES is then used to propagate the dynamics and no further electronic structure calculations

need to be carried out. In this strategy the PES is often fitted to a set of electronic structure

single points (SPs) for different molecular geometries of the system under investigation. The

problem then becomes to determine which domains of the PES are relevant for the dynamics,

in order to ensure sufficient accuracy of the PES representation for computing the dynamics

at all necessary times. The computational cost of an electronic structure SP for a molecular

system is non-trivial and in a fitted PES approach, the goal is thus to obtain a PES that is

sufficiently accurate while requesting a minimal number of SPs. The strength of the fitted

PES approach is that one obtains an analytical expression for the potential energy operator

that can be expediently used in quantum simulations. Further, by fitting (or refitting) the

PES it can be cast as a sum-over-products form which is optimal for the integral evaluations

of the potential that is often required in quantum dynamics.1–3 The drawback of this method

is that one might end up spending a lot of time computing expensive electronic structure

SPs for domains of the PES that are not relevant for the dynamics or that the dynamics

turn out to run outside the domains properly covered by the SPs and the fitted PES. In the

latter case the results of the dynamics will be non-physical or at least inaccurate. Also, to

obtain an actual high quality fit representation is by no means trivial.

In the other approach, the required potential energy evaluations are carried out by calls

to electronic structure calculations during the dynamics, thereby completely removing the

need for a fitted PES. The big advantage of this direct dynamics approach, is that one

is not limited by the availability of a fitted PES and the limitations in form of accuracy

and domain it comes with. In classical molecular dynamics (MD) simulations, such an ab

initio MD approach has long existed but is also known to be comparatively much more

expensive than MD computations using fitted PESs or classical force fields. In the quantum

dynamical context the problem is even more severe. In many quantum dynamical wave
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function computations integrals of the potential energy times the wave function or the basis

set are needed. The numerical computation of such integrals would in a naive implementation

lead to an extreme amount of SP evaluations and be intractable. This can be somewhat

mitigated by using a wave function with basis sets consisting of evolving Gaussians that

uses either classical-like equations of motion and/or approximations for integral evaluations,

requiring only low-order derivative computations. This allows the individual Gaussians to

be propagated forward in time using only local PES information obtained from single point

calculations Variants of direct quantum dynamical methods has been developed and applied

in different contexts.4–12 Still, the direct approach is inherently expensive.

In this work we follow an intermediate strategy which we may denote as quasi-direct. In

this approach we construct a fitted PES, but this is done during the dynamics computation

instead of before. The approach is direct in the sense that the PES is extended on the fly

during the dynamics simulation with calls for new electronic structure SPs when required by

the dynamics. We will utilize a PES fitted to SPs but we will only request new SPs and do

refittings of the PES according to need. Compared to the approach with a pre-fitted PES,

this will circumvent the unnecessary computation of SPs in domains that the wave function

do not actually visit and if the molecular wave function moves towards domains not covered

by the fitted PES, new SPs will be acquired so the dynamics can continue in a reliable man-

ner. This will lead to a PES that is constructed for the specific problem and propagation of

consideration. The PES is a product of the whole computation and can be reused in other

computations, but the core idea is that the PES is constructed for the purpose of the dy-

namics computation. The quasi-direct framework is similar in spirit to some direct dynamics

works on growing a PES or employing interpolation or machine learning (ML) methods such

as Gaussian process regression (GPR) during the direct dynamics.13,14 In future work we re-

turn to acceleration of the present methodology with ML. In this work we wish, however, to

build up a physical motivated algorithm for constructing and updating the PES during time-

dependent molecular quantum dynamics computations without noise and errors from ML.
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The concrete realization of the general idea pursued here is what we term the time-dependent

adaptive density-guided approach (TD-ADGA) for PES construction. The TD-ADGA is a

time-dependent generalization of the adaptive density-guided approach (ADGA)15–18 that

has been applied for more than a decade for constructing PESs for anharmonic vibrational

computations. Essential to the ADGA approach is the concept of adaptively constructing

the PES. In ADGA SPs are added to a grid until certain convergence criteria are satisfied.

These criteria involve the PES itself, but also involve the density of the wave function and

targets the PES domains that are critical for the accuracy of the final predictions. The

grid domains and grid mesh for the SPs are in the ADGA iteratively determined based on

convergence of energy-like integrals over the PES and wave function densities. Furthermore,

the time-independent ADGA method (denoted here TI-ADGA to spell out the difference to

TD-ADGA) has been based on the mode-coupling expansion of the potential,2 where the

PES is expanded in a set mode-combinations (MCs) and by truncating the set of included

MCs an approximate PES is obtained with potential for significant reductions in computa-

tional time. Truncation to include only terms coupling less than a given number n of modes

gives rise to a standard approach known under many names, including the n-mode repre-

sentation,19–23 high-dimensional model representations (HDMR),24 many-body expansion25

and pair approximation.26 It is the sub-PES for the different MCs that in the TI-ADGA

PES are adaptively constructed using reduced one-mode densities from a vibrational self

consistent field (VSCF) wave function27–30 to guide the placement of SP calculations. These

sub-PES are typically of sufficient low dimensionality to be comparatively easy to fit, and

methods for using arbitrary one-mode fit functions in a sum of products approach are avail-

able.16 In this manner the TI-ADGA PES is constructed in accordance with the need of the

time-independent wave function, and the computational cost and accuracy can be controlled

by a few logical variables and convergence thresholds.

In the TD-ADGA developed in the present work, the main idea is to grow the PES accord-

ing to the needs of a wavefunction evolving in time. This means that the PES obtained using
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the TD-ADGA method must be updated during the dynamics simulation to ensure similar

accuracy at all times. We use similar convergence criteria as in the original TI-ADGA method

but generalized and augmented with new convergence conditions tailored the time-dependent

context. To generalize the TI-ADGA to the time-dependent case, a time-dependent wave

function density is used in order to obtain the ADGA integrals involved in identifying needed

SPs. We thus define the reduced one-mode densities for a general time-dependent nuclear

wave function. We then use densities obtained with the time-dependent Hartree (TDH)31

and multi configuration time-dependent Hartree (MCTDH) wave functions.32,33 The TD-

ADGA procedure can in general be used with any time-dependent wave function method as

long as a wave function density can be formulated. In future woork, we expect to combine

the methods with time-dependent vibrational coupled cluster methods.34–36 In this work we

exclusively consider single surface computations. The wave function may be initiated from

a wave function obtained on another surface but the simulated time-dependent dynamics

and PES construction is restricted to a single surface. Extension to multiple adiabatic or

diabatic surfaces and non-adiabatic events are anticipated to be possible along similar lines

but require significant extensions and are subjects of future research.

In Section 2 we will first introduce the mode-coupling expansion and define the reduced

one-mode density for time-dependent wave function. We will then introduce the ADGA

method and generalize this to the TD-ADGA method. In Section 3 the implementation of

the TD-ADGA method in the Molecular Interactions, Dynamics And Simulations Chemistry

Program Package (MidasCpp)37 will be discussed in detail and in Section 4, we will present

and discuss test results obtained using the TD-ADGA method. Finally, we will in Section 5

summarize our findings.
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2 Theory

In quantum molecular dynamics we seek to solve the time-dependent Schrödinger equation

for the nuclear wave function. Under the assumption of the Born-Oppenheimer approxima-

tion, the Hamiltonian describing the nuclear motion for a single electronic state is described

by the kinetic energy of the nuclei and the potential in which they move

H = T + V. (1)

Here T is the kinetic energy operator for the nuclei and V is the potential energy surface

which is dependent on the nuclear geometry. The form of the kinetic energy operator depends

on the choice of coordinates and is not the focus of this work. We will assume some set of

coordinates has been chosen and the kinetic energy operator can be obtained exactly or at

least sufficiently accurate within these coordinates. We will instead focus on the construction

of the PES by fitting to electronic structure single point calculations.

In the following subsections, we will describe the theoretical background for the TD-

ADGA. First, we will set up some preliminaries on the form of the PES representation

and on the description of the time-dependent wave functions for nuclear motion and their

reduced one-mode densities. We will then describe the time-independent ADGA method and

generalize this to the time-dependent ADGA method, including how automatic decisions for

PES updates are made and different options for updating the dynamics with an updated

PES.

2.1 Representing the potential energy surface

2.1.1 Mode-coupling expansion of the potential energy surface

In order to reduce the prohibitive dimensionality of the PES, the PES is described using

an expansion in mode-couplings including the by now standard n-mode expansion. In the
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n-mode expansion, V (q) is approximated by a series of potential energy terms of increasing

dimensionality

V (1)(q), V (2)(q), . . . , V (M)(q), (2)

where the V (1)(q) potential is the sum of all one-mode uncoupled potentials in the system,

while the V (2)(q) potential includes also the pairwise coupling of the modes. For the higher

order potentials V (k)(q) up to k modes are coupled.2 Each potential to a given order k

consist of potential energy terms coupling a subset of the M modes in the system, where k

coordinates are different from the reference value which we here set to zero

V m1(qm1) =V (0, . . . , 0, qm1 , 0, . . . , 0), (3)

V m1,m2(qm1 , qm2) =V (0, . . . , 0, qm1 , 0, . . . , 0, qm2 , 0, . . . , 0), (4)

and so on for higher order potentials. We denote a set of modes in a potential term a mode

combination (MC) and the n-mode set of n unique modes are identified with the mode

indexing vector mn = (m1,m2, . . . ,mn). The potential terms of a MC is symmetric under

permutation of the mode indexing vector38,39 so that V m1,m2(qm1 , qm2) = V m2,m1(qm2 , qm1).

The complete potential surface is regained in the limit where all mode couplings are included

V (q) = V mM (q).

If all potential terms of different dimensionality were summed, the final potential energy

would contain over-counting as terms of higher dimensionality, by construction, contain the

potential energy terms of lower dimensionality. To avoid this over-counting, we introduce

the bar-potentials2 as the relevant sub-potentials

V̄ mn(qmn) = Smn

n∑
n′=1

(−1)(n−n′)

(
n

n′

)
V mn′ (qmn′ ). (5)

Here
(
n
n′

)
is a binomial coefficient and Smn is an operator that symmetrizes with respect to
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the n indices in the mode indexing vector, for example

Sm1,m2V m1,m2(qm1 , qm2) =
1

2
(V m1,m2(qm1 , qm2) + V m2,m1(qm2 , qm1)). (6)

Furthermore, the notation qmn denotes simply the set of coordinates given by the mode

indices in the MC mn, i.e. (qmn) = (qm1 , qm2 , · · · , qmn).

The bar-potentials are constructed such that if any of the coordinates are equal to the

reference value qref
m , the function vanishes

V̄ mn(. . . , qm = qref
m , . . . ) = 0. (7)

This feature of Eq. 7 becomes apparent if we as an example use Eq. 5 to determine the

V̄ m1,m2(qm1 , qm2) potential

V̄ m1,m2(qm1 , qm2) = V m1,m2(qm1 , qm2)− V m1(qm1)− V m2(qm2). (8)

From Eq. 8 it is easily seen that the V̄ m1,m2(qm1 , qm2) potential is simply the V m1,m2(qm1 , qm2)

potential with the uncoupled one-mode potentials V m1(qm1) and V m2(qm2) subtracted.

The complete potential is now obtained as a sum of all bar-potentials in the mode com-

bination range (MCR)

V (q) =
∑

mn∈MCR[V (q)]

V̄ mn(qmn). (9)

The MCR is the set of MCs that are included in the potential surface and the complete

potential can systematically be approximated by restricting how many MCs are included in

the MCR.2 The particular approximation may follow the logic of the n-mode representation

but can also deviate from it by selecting the MCR in other ways. For example, one can

in the PES follow the logic of the excitation spaces used in MR-MCTDH[n]40 and define a
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vector of weights wm for each mode and include MCs in the MCR if

∑
m

wm ≤ n. (10)

The case where one particular wm = 0 while wm′ = 1 for the remaining modes, define for

n = 2 a set of MCs where all one- and two-mode couplings are included, as well as all

three-mode couplings including mode m but excluding all other three-mode couplings.

2.1.2 Sum-over-product representation

In general, the analytical form of the PES is unknown and we must resort to a numerical

fitting. It is from a computational point of view highly desirable to obtain the Hamiltonian

in a sum-over-product form. This is not directly the case in the n-mode expansion, but a

sum-over-product form can be obtained by fitting all the individual bar-potentials of the

PES to a direct product of one-mode functions. This will give a PES of the general form

V (q) =
T∑
t=1

ct

M∏
m=1

hm,t, (11)

where each term t is a simple product of one-mode operators hm,t with an associated coeffi-

cient ct. Using this representation of the PES, the Hamiltonian in Eq. 1 can be written in a

sum-over-products form. The computational advantage of this representation is that instead

of performing multi-dimensional integrals and large contractions, we do an intermediate fit

to obtain a sum-over-products form with one-dimensional integrals and simple contractions.

The fits are carried out for the individual MCs and are thus in practical cases of limited

dimensionality.

The notation hm,t suggest that there is a unique one-mode operator for each mode in each

term, but we can make a mode specific notation that match the situation in practice better.

The one-mode operators, hm
om , for the potential come from a set of one-mode functions,
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f̄m
k (qm), that constitute the fit basis used,

hm
om ∈ {f̄m

1 (qm), f̄
m
2 (qm), . . . , f̄

m
Nfunc

(qm)}. (12)

The fit basis can be any general one-mode functions16 with polynomials and Morse functions

as common choices. The bar denotes, as before, that f̄m
k (qm = 0) = 0 for example achieved by

using f̄m
k (qm) = fm

k (qm)− fm
k (0) for a desired function f̄m

k . The sum-over-product potential

in Eq. 11 can be thereby be rewritten into

V (q) =
∑

mn∈MCR[V (q)]

∑
omn
n

cmn

omn
n

∏
m∈mn

hm
om , (13)

where the sum over terms has been divided into the outer sum of MCs, i.e. all MCs in

the MCR following Eq. (9), and the inner sum over terms coming from the fit of V̄ mn for

each MC included . The summation over omn
n means an n-fold summation over the different

indexes in omn
n = (om1 , om2 , · · · omn). Thus, for each mode there is only a very limited set of

one-mode operators. The full Hamiltonian is thus represented using a limited set of one-mode

integrals together with the fitting coefficients cmn

omn
n

.

2.2 One-mode densities of time-dependent wave functions

We want to use our knowledge of the time-dependent wave function to guide the dynamic

construction of the PES. From the Born interpretation, the wave function density is an

excellent measure of which parts of the PES are important to describe. In case of a one-

mode system the density can be the obtained directly from the norm square of the wave

function. Generally, we will for multi-dimensional PESs use the reduced one-mode densities

of the wave function, ρm(qm, t), which describes the density of a mode m in the coordinate

representation. The one-mode density is a function of the coordinate of the mth mode,

qm, and of the time, t, and is obtained as an expectation value of the operator probing the
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presence of a certain mode at a point in space, δmqm . In first quantization this operator is

defined from the Dirac-delta function41,42

δmqm = δm(q′m − qm) (14)

and the one-mode density then becomes

ρm(qm, t) = ⟨Ψ(t)| δmqm |Ψ(t)⟩ . (15)

We will consider wave functions that are constructed as Hartree products of one-mode basis

functions. These one-mode basis functions are denoted modals in analogy to orbitals of

electronic structure theory. The modals can be either time-dependent or time-independent

in the present context, and we will write it up in the time-dependent case with the time-

independent case following trivially. Typically, the time-dependent modals are constructed

as a linear combination of primitive time-independent modals

ϕ̃m
rm(qm, t) =

∑
αm

ϕm
αm(qm)U

m
αmrm(t), (16)

where the α index belongs to the primitive basis and Um
αmrm(t) is an entry in the time-

dependent coefficient matrix Um(t). We use tilde to denote the time-dependent basis.

In a second quantization formulation,43 the one-mode density operator, when expressed

in the time-dependent basis, becomes

δmqm =
∑
rmsm

[δ̃mqm ]rmsmẼ
m
rmsm =

∑
rmsm

(
ϕ̃m
rm(qm, t)

)∗
ϕ̃m
sm(qm, t)Ẽ

m
rmsm , (17)

since the integrals of the δmqm operator simplify as

[δ̃mqm ]rmsm =

∫ (
ϕ̃m
rm(q

′
m, t)

)∗
δm(q′m − qm)ϕ̃

m
sm(q

′
m, t)dq

′
m =

(
ϕ̃m
rm(qm, t)

)∗
ϕ̃m
sm(qm, t). (18)
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The operator Ẽm
rmsm is the usual second quantization one-mode shift-operator given in terms

of creation and annihilation operators as Ẽm
rmsm = ãm,†

rm ãmsm .

Evaluating the expectation value of the one-mode density operator in Eq. 17 for a general

many-mode time-dependent state Ψ(t) yields

ρm(qm, t) = ⟨Ψ(t)|δmqm|Ψ(t)⟩ =
∑
smrm

D̃m
rmsm(t)

(
ϕ̃m
rm(qm, t)

)∗
ϕ̃m
sm(qm, t), (19)

where the one-mode density matrix has been introduced

D̃m
rmsm(t) = ⟨Ψ(t)|Ẽm

rmsm|Ψ(t)⟩ . (20)

Since we compute this one-mode density matrix during the solution of the equations of

motion for many wave functions anyway, it is simple to use this to compute the one-mode

densities. If the one-mode density matrix has been diagonalized, the one-mode density of

mode m is simply obtained as the norm square of each modal, weighted by the occupation

number ωm
rm(t) = Dm

rmrm(t). However, the density matrix is in general not diagonal and the

modal density is obtained by squaring all combinations of modals in m and weighing them

with the corresponding entry of the density matrix.

When multi-dimensional densities are required we approximate these as products of one-

mode densities

ρmn(q, t) =
∏

m∈mn

ρm(qm, t). (21)

It is in principle possible to compute the actual multi-dimensional densities. However, these

would be time- and space-consuming to compute, store, and use. On the other hand, the

densities obtained from a direct product need not be stored as they are implicitly defined

from the one-mode densities. A further advantage of using this approximation to obtain

multi-dimensional densities, is that multi-dimensional integrals of such densities with a sum-
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of-product potential representations can be easily factorized.

2.2.1 One-mode densities of the TDH and MCTDH wave functions

In the TDH31 method, each mode in the system is represented by a single time-dependent

modal function and the total wave function is a simple Hartree product of these time-

dependent modals and a phase factor containing the real phase F

∣∣Ψ̄TDH
〉
= exp(iF )

M∏
m=1

∣∣∣ϕ̃m
〉
= exp(iF )

∣∣∣Φ̃TDH

〉
. (22)

During the time-evolution of the system, the time-dependent modals of the Hartree product

are changed, carrying the time-dependency of the TDH wave function. The one-mode density

matrix in Eq. 20 reduces to unity, meaning that the TDH one-mode densities for each mode

are equivalent to the norm square of the time-dependent modal function

ρmTDH(qm, t) = |ϕ̃m(qm)|2. (23)

Obtaining the TDH one-mode density during a calculation is thus very simple.

In the MCTDH method,32,33 the wave function is parametrized by using a set of time-

dependent Hartree products

∣∣∣Ψ̃MCTDH

〉
=
∑
u

Cu(t)
∣∣∣Φ̃u

〉
. (24)

In each mode a number of active modals (indexed um, vm, ...) are used and all possible

Hartree products using combinations of active modals of different modes are used in the

wave function. The index vector u, indexes the specific Hartree product
∣∣∣Φ̃u(t)

〉
and the

corresponding coefficient Cu(t) in the wave function. When the time-evolution is carried

out, both the Hartree products and their coefficients change opening for using a much more

compact wave function than if it was simply expanded in time-independent modal functions.
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Thus, the summation limits for the active modal index um can be kept much smaller than

what would be the case for the general index rm.

The MCTDH one-mode density is defined from its expectation value

ρ̃mMCTDH(qm, t) =
〈
Ψ̃(t)

∣∣∣δ̃mqm∣∣∣Ψ̃(t)
〉
=
∑
umvm

(
ϕ̃m
um(qm, t)

)∗
D̃m

umvm(t)ϕ̃
m
vm(qm, t), (25)

where we note that only the active one-mode density matrix in the time-dependent modals

basis contributes

D̃m
umvm(t) =

〈
Ψ̃MCTDH(t)

∣∣∣Ẽm
umvm

∣∣∣Ψ̃MCTDH(t)
〉
. (26)

In MCTDH theory the one-mode density matrix is used in the propagation of the equations

of motion and is thus readily available during the calculation and evaluating the one-mode

densities adds only the cost of the contraction in Eq. 25 for each mode.

The above definition of the MCTDH density also applies for the truncated multi configu-

ration time-dependent Hartree (MCTDH[n])44 and multi-reference truncated multi configu-

ration time-dependent Hartree (MR-MCTDH[n])40 wave functions, as these wave functions

are parametrized equivalently to the MCTDH wave function but differ in the amount of

mode couplings which are included.

2.2.2 Using wave function densities

The one-mode density of individual modes can vary strongly both along the coordinate

and over time. For the purpose of our PES construction algorithms it is anticipated that

smoothened densities will be much more useful. We will thus employ both a space- and a

time-smoothening in order to get a more uniform density over space and time.

Consider mode m with coordinate qm and assume it has the one-mode density ρm(qm, t)
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at time t. The space-smoothened one-mode density is obtained as

ssρm(qm, t) =
1

2∆q

∫ +∆q

−∆q

ρm(qm + s, t)ds, (27)

where the space-smoothening parameter ∆q determine the half-width of space that we aver-

age over. The time-smoothened one-mode density is similarly obtained as

tsρm(qm, t) =
1

∆t

∫ 0

−∆t

ρm(qm, t+ s)ds, (28)

where the time-smoothening parameter ∆t is used. We also note that we do not do smoothing

forward in time as this would be rather inconvenient. Combining these into a space- and

time-smoothened density gives the averaged probability distribution over a past interval of

time up to the current time t and with spatial smoothing to remove strong oscillations in

the distribution

stsρm(qm, t) =
1

∆t

∫ 0

−∆t

ssρm(qm, t+ s)ds. (29)

In practice, we may discretize in time over past Nt densities obtained at time t and indexing

these times as ti with i = 0,−1, · · · ,−(Nt − 1), and t0 being t at the current time

stsρm(qm, t) =
1

Nt

∑
i

ssρm(qm, ti). (30)

The densities back in time may be any that are convenient from solving the equations of

motion but does require storing past one-mode densities. Similarly, if we discretize ρm(qm, t)

we may for each point qm,j perform the average over 2Nq + 1 density values

ssρm(qm,j, t) =
1

2Nq + 1

j+Nq∑
i=j−Nq

ρm(qm,i, t), (31)

where it is to be understood that ρm(qm,i, t) is zero by definition for any i that fall outside
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the domain of the wave function computation and therefore will not be used in the averaging

of the density.

We note that the space smoothening extend the density artificially to a slightly wider

interval than the actual wave function, but of course only for meaningful values of the

coordinates. As will be discussed in Section 2.3.1, mildly expanding the density with low

weight into the area where it "might go" soon is actually an advantage as it improves safety

and stability. A hard limit for coordinate minimum and maximum may be relevant in some

coordinates and can easily be introduced. The smoothening of densities backwards in time

may be only over a small previous time interval or all the way from the beginning of the

computation. This can be used to tune the PES construction for what is important right

now at time t for small Nt values or being focused on the full domain of where the wave

function has propagated in its history for large Nt values.

The above smoothenings are directly carried over to the multi-dimensional densities ob-

tained as direct products. Thus the multi-dimensional densities still do not need to be

constructed, but instead computed when needed. Altogether, all required densities can in

this manner be very efficiently evaluated from the one-mode density matrix which is in almost

all cases anyway needed during the time-propagation of the wave function.

2.3 The adaptive density-guided approach for potential energy sur-

face construction

The adaptive density-guided approach (ADGA)15–18 for constructing PESs is an iterative

method where a wave function density is used to guide the placement of SPs on a grid

of molecular displacements until a convergence is reached. The overall goal of ADGA is to

automatically map out an accurate PES with as few SPs as possible. This is done by creating

an initial grid for each mode and then iteratively subdivide and extend these grids until

all one-dimensional grids have obtained convergence. When the one-dimensional grids are

converged higher-dimensional grids for the MCs included are created from the boundaries of
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the one-dimensional grids. These MCs are then also iteratively subdivided until convergence

is achieved.

The procedure for generating, subdividing, and extending grids have been described in

detail previously and we thus refer to the previous work in our group for more in-depth

details.15,16 In this subsection we will describe only the basic elements of the ADGA as it

has been developed so far as a background for a time-dependent analogous method.

At the heart of the ADGA is the ability to rigorously define a set of convergence criteria

for the molecular grid. This is obtained by letting SPs define the boundaries of a set of

integration boxes and then for each box determine the energy-like ADGA-integral

Tmn

Imn
ℓmn

=

∫
I
m1
ℓm1

∫
I
m2
ℓm2

· · ·
∫
Imn
ℓmn

ρmn
ave (q)V

mn(q)dqm1dqm2 · · · dqmn , (32)

where the label on the integration bounds, Imk
ℓmk , is the integration bounds of interval ℓmk of

mode mk. The ADGA integral is in general a multidimensional integral over all dimensions

included in a MC. Tmn

Imn
ℓmn

is obtained from the PES fitted to the calculated SPs in the MC

in the current iteration, V mn(q), and the multi-dimensional wave function density of the

MC obtained by using the potential in the current iteration, ρmn
ave (q). The ADGA integral

is used by the ADGA to determine whether an integration box is converged and the size of

the integral can also be interpreted as how "important" an area of the PES is, which will be

discussed further below.

In previous works on ADGA, the wave function density has been obtained from interme-

diate vibrational self-consistent field (VSCF)27–30 calculations. The VSCF method provides

an approximate solution to the time-independent Schrödinger equation where the ansatz is

a single Hartree product of modals

ΦVSCF
s (q) =

M∏
m=1

ϕm
sm(qm), (33)

where s is a M -dimensional index vector indexing which modal, ϕm
sm , to use for each mode.
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The VSCF modals are functions of a single coordinate and the density for a mode m is

simply obtained as the norm square of the modal function, |ϕm
sm(qm)|2.

The densities of the VSCF states vary over space and the eigenstates of higher energy

have a wider distribution of the wave function as a function of the coordinate. In the ADGA

algorithm, the default is to use an average density determined as an average over the Nmodals

lowest-energy eigenstates

ρmave(qm) =
1

Nmodals

Nmodals∑
sm=1

|ϕm
sm(qm)|2. (34)

By increasing the number of eigenstates used in the average, a larger domain of the PES

is explored as the higher energy of the higher lying states leads to a wider distribution of

the wavefunction. The averaging with the lower energy states ensures that the averaged

density does not contain any nodes within the potential boundaries. Similar to Eq. 21,

multi-dimensional averaged densities, ρmn
ave (q), are approximated as a simple product of the

VSCF densities for the individual modes.

When the one-dimensional grids are constructed in the ADGA procedure, a VSCF calcu-

lation is carried out in each ADGA iteration using the current fitted potential in the Hamilto-

nian. From this VSCF calculation the averaged densities for each mode are created and used

to calculate the ADGA integrals. For the higher dimensional grids the multi-dimensional

averaged density is supplied as a product of the one-dimensional average densities obtained

in the final iteration of the one-dimensional grids.

In the following, we term this formulation of ADGA as the time-independent adaptive

density-guided approach (TI-ADGA) to make it distinct from the time-dependent method

introduced later.

To determine whether an integration box is converged, and thus not sub-divide it by

adding a SP, the relative and absolute difference in the integral in the current (Tmn

Imn
ℓmn

(curr. it.))

and previous (Tmn

Imn
ℓmn

(prev. it.)) iteration is compared to a set of thresholds. A TI-ADGA
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box is thus considered converged and not updated if

(∣∣∣∣∣T
mn

Imn
ℓmn

(curr. it.)− Tmn

Imn
ℓmn

(prev. it.)

Tmn

Imn
ℓmn

(curr. it.)

∣∣∣∣∣ < ϵrel

)

∨
(∣∣∣Tmn

Imn
ℓmn

(curr. it.)− Tmn

Imn
ℓmn

(prev. it.)
∣∣∣ < ϵabs ∧

∣∣∣Tmn

Imn
ℓmn

(curr. it.)
∣∣∣ < ϵabs

)
, (35)

where ϵrel and ϵabs are suitably chosen threshold parameters. Eq. 35 shows how the TI-

ADGA algorithm interprets the value of the TI-ADGA integral. The relative condition

compares the relative change in Tmn

Imn
ℓmn

between two iterations and if this change is larger

than the relative threshold, ϵrel, the integration box should be sub-divided. In this way areas

of the PES where the density times the energy varies a lot between iterations are subdivided

until a convergence is obtained. The TI-ADGA integral can be viewed as a measure for how

much a given integration box contributes to the energy and thus if the current value of Tmn

Imn
ℓmn

is very small it can be considered unimportant. This is enforced by the absolute condition,

where an integration box is considered converged if both the absolute difference between two

iterations and the absolute size of Tmn

Imn
ℓmn

(curr. it.) are smaller than ϵabs.

To determine whether a one-dimensional grid should be extended, it is used that the

density should integrate to one if integrated over the entire space. The grid boundaries of

a one-dimensional cut are thus extended if the integrated one-mode density is smaller than

one within a specified threshold. That is, no extension of the grid is needed if

∑
i

∫
i

ρmave(qm)dqm > 1− ϵρ, (36)

where i defines the ith one-dimensional integration box and ϵρ is the amount of density that

is allowed to be outside the domain of the grid. In order to determine the amount of the

density that is outside the grid boundaries, the basis set used in the VSCF calculation is

expanded a small amount outside the grid bounds.

The TI-ADGA algorithm continues to add SPs to subdivide and extend the one-mode
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grids until convergences is obtained. Afterwards higher order MCs are converged until all

MC in the MCR are converged and a n-mode PES have been obtained.

2.3.1 Time-dependent adaptive density-guided approach

We now generalize the ADGA procedure for use in quasi-direct quantum dynamics simula-

tions, where the goal is to construct the PES during the integration of the time-dependent

Schrödinger equation. As this formulation of ADGA is based on the time-dependent wave

function and the corresponding evolving densities, we will term it the time-dependent adap-

tive density-guided approach (TD-ADGA). The construction of the TD-ADGA grid is similar

to the TI-ADGA grid, where independent grids for each MC are iteratively refined by auto-

matic placement of new SPs. However, we introduce some extra convergence criteria, since

there is a fundamental difference between the TI-ADGA and TD-ADGA algorithms. In

TI-ADGA, the iterations were purely algorithmic iterations until convergence (requiring of

order 1-15 iterations). In the TD-ADGA, the iterations continues for the entire dynamics

simulation due to the evolving wave function density. I.e. convergence criteria will be re-

visited many times and it is therefore important each visit does not lead to addition of SPs

unless really needed.

In TD-ADGA we consider an energy-like quantity very similar to the one in Eq. 32,

but we replace the VSCF densities with the time-dependent densities described in Section

2.2 and instead of using the average density from a number of states for each mode, we use

the space- and time-smoothened one-mode densities in Eq. 29. This gives the TD-ADGA

integral

Tmn

Imn
ℓmn

(t) =

∫
I
m1
ℓm1

∫
I
m2
ℓm2

· · ·
∫
Imn
ℓmn

stsρmn(q, t)V mn(q)dqm1dqm2 · · · dqmn , (37)

where the multi-dimensional averaged densities are obtained according to Eq. 21.

The space- and time-smoothening of the one-mode density serve similar purposes as the
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average density of TI-ADGA. The smoothening over time and space ensures that fast oscil-

lations and changes that might occur in the one-mode density are smoothened out, so that

the TD-ADGA integral does not change wildly between iterations. The space-smoothening

further expands the density to a slightly wider interval than what the wavefunction itself

suggests. This forces the TD-ADGA algorithm to take into account a slightly wider interval

of the PES and this may precisely be the domains where the wave function propagates within

the next short time.

Similar to the TI-ADGA, we define a set of convergence thresholds for determining when

the TD-ADGA grid is converged. When the convergence is checked in TD-ADGA we com-

pare the TD-ADGA integral at the current time Tmn

Imn
ℓmn

(tcurr), with the TD-ADGA integrals

obtained at a previous time Tmn

Imn
ℓmn

(tprev). Thus, an integration box in the TD-ADGA grid is

considered converged and should not be sub-divided if

(∣∣∣∣∣T
mn

Imn
ℓmn

(tcurr)− Tmn

Imn
ℓmn

(tprev)

Tmn

Imn
ℓmn

(tcurr)

∣∣∣∣∣ < ϵrel

)

∨
(∣∣∣Tmn

Imn
ℓmn

(tcurr)− Tmn

Imn
ℓmn

(tprev)
∣∣∣ < ϵabs ∧

∣∣∣Tmn

Imn
ℓmn

(tcurr.)
∣∣∣ < ϵabs

)
∨
(∣∣∣Tmn

Imn
ℓmn

(tcurr)− Tmn

Imn
ℓmn

(lin.)
∣∣∣ < ϵlin

)
∨
(∣∣∣Tmn

Imn
ℓmn

(tcurr)
∣∣∣ < ∣∣∣Tmn

Imn
ℓmn

(max.)
∣∣∣). (38)

As is apparent from Eq. 38, we have kept the relative and absolute conditions from the

TI-ADGA algorithm but we have also added two new conditions which can be fulfilled in

order for an integration box to be converged.

The first new condition for the integration box under consideration is the linear condi-

tion. This condition tests whether the current TD-ADGA integral is well approximated by

assuming that the PES is well described by a multi-linear interpolation between the SPs that

constitute the integration box boundaries. For the one-dimensional grids, this multi-linear

interpolation of the PES is simply a linear interpolation between the two grid points consti-

tuting the box boundaries. For a two-mode grid with m = (m1,m2) and a two-dimensional
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box consisting of the four grid points {(qm1,1, qm2,1), (qm1,2, qm2,1), (qm1,1, qm2,2), (qm1,2, qm2,2)},

the multi-linear interpolation function inside the integration box is

V m1,m2

lin (qm1 , qm2) = a00 + a01qm1 + a10qm2 + a11qm1qm2 (39)

and the coefficients are determined from the linear system of equations



1 qm1,1 qm2,1 qm1,1qm2,1

1 qm1,2 qm2,1 qm1,2qm2,1

1 qm1,1 qm2,2 qm1,1qm2,2

1 qm1,2 qm2,2 qm1,2qm2,2





a00

a01

a10

a11


=



V m1,m2(qm1,1, qm2,1)

V m1,m2(qm1,2, qm2,1)

V m1,m2(qm1,1, qm2,2)

V m1,m2(qm1,2, qm2,2)


. (40)

This approach is easily generalized to higher dimensions. The linearized TD-ADGA inte-

gral Tmn

Imn
ℓmn

(lin.) is then calculated similar to Eq. 37 but where the multi-linear interpolation

of the PES in the integration box is used instead of the global fitted PES for the MC. To test

whether the linear approximation is good, the absolute difference between the TD-ADGA

integral of the current iteration and the linearized TD-ADGA integral is compared to the

linear threshold value ϵlin. In effect, this condition ensures a minimum distance between the

SPs that the TD-ADGA algorithm can place, because a linear approximation will be good

for any potential PES if the grid becomes fine enough. We emphasize that the multi-linear

interpolation is never used in the final PES representation and is solely used to identify do-

mains of the PES where the representation is already good as interpolation between interval

end points appears to be trivial.

The second new condition we denote as the maximum condition, which state that an

integration box is converged if the current value of the TD-ADGA integral is smaller than

the maximum historic value of the TD-ADGA integral. This condition is applied because

we do not want to add new single points on parts of the PES that have previously been

considered converged unless the importance of it is actually increasing. In particular, we
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do not want to add SPs in domains of the PES where the wave function density is leaving

(which changes the TD-ADGA integral to smaller values) or if the density is re-entering to

these parts but with smaller magnitude than before. Note, that if the density is increased

the TD-ADGA integral can increase and SPs can still be added to the grid.

We also want the TD-ADGA procedure to be able to expand the one-mode grids so

that the wave function is always contained within the grid boundaries even as the wave

function moves around on the PES. We use an equivalent condition as in the TI-ADGA

for when a one-mode grid should be expanded dependent on the integral of the space- and

time-smoothened one-mode density. The grid is not extended if

∑
i

∫
i

stsρm(qm, t)dqm > 1− ϵρ. (41)

Similar to the TI-ADGA, this condition arises from the fact that the density must integrate

to one.

The TD-ADGA iterations are carried out at given times in the dynamics. In a TD-ADGA

iteration the convergence of the one-mode grids are initially checked and if one or more one-

mode grids are not converged, they are extended or subdivided iteratively until convergence

is obtained. The TD-ADGA thus contains sub-iterations for each TD-ADGA iteration. After

the one-mode grids are converged the two-modes grids are checked for convergence and this

continues until all MCs are converged.

2.4 Updating the potential energy surface during the dynamics

We now assume we have reached a point in time tupd during the dynamics, where the TD-

ADGA analysis finds that an update of the set of SPs are required. The question is then

how to update the PES. Even though the change in the PES should primarily be significant

in regions where the density has not yet grown large, simply replacing the old PES with the

new PES at tupd can lead to non-physical behaviour as the propagation of the density will
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have been on account on the old PES. Furthermore, changing the PES will result in loss

of the exact conservation of energy. To mitigate these challenges we propose two different

schemes for updating the PES in a dynamics simulation.

The first scheme is the full restart scheme, where we simply restart the dynamics from

the beginning each time an update is carried out and in each restart we use the newest

PES. This scheme is the safest option as a constant PES is used in the propagation of the

dynamics meaning that the dynamics are solely dependent on the most accurate PES and we

have no issues with the conservation of energy. However, this scheme will also be costly as a

lot of time will be used in the wave function propagation. We therefore also propose a partial

restart scheme. In the partial restart scheme we restart the calculation at a previous time

before the PES was updated, tbef. The PES is then continuously updated from the old PES

at tbef to the new PES at tupd. The procedure for this will be described below. This partial

restart scheme will be more efficient than the full restart as much less time will be spent in

the wave function propagation and if tbef is sufficiently long back in time the simulation of

the dynamics is expected to be largely unaffected. We note that the partial restart scheme

formally does not solve the problem of losing exact energy conservation but is expected to

strongly reduce the numerical consequence.

A composite strategy can be suggested, where the partial restart method is used to

map out the relevant domain of the PES and then when this propagation is finished a final

wave function propagation, with the final PES, is carried out and analysed as the result of

the simulation. We suspect that this strategy will be the most attractive with regards to

balancing accuracy, computational cost, and avoiding artefacts.

When the PES is updated in the partial restart scheme we want to continuously update

the potential from before the update to the potential after the update in the time interval

tbef to tupd. This is achieved by formulating the potential in this interval as

V (q, t) = fbef(t)Vbef(q) + fupd(t)Vupd(q), (42)

25

https://doi.org/10.26434/chemrxiv-2023-5s80n ORCID: https://orcid.org/0000-0003-0568-0095 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5s80n
https://orcid.org/0000-0003-0568-0095
https://creativecommons.org/licenses/by/4.0/


where Vbef(q) and Vupd(q) are the potentials before and after the update, respectively. The

weight functions fbef(t) and fupd(t) must satisfy that

fbef(t) = 1 ∧ fupd(t) = 0, t ≤ tbef, (43)

fbef(t) = 0 ∧ fupd(t) = 1, t ≥ tupd, (44)

and

fbef(t) + fupd(t) = 1. (45)

This can be realized in numerous ways, but we shall here explore only one simple choice by

defining fupd(t) as the following C1 function

fupd(t) =


0 t < tbef(
cos
( tupd−t

tupd−tbef
π
)
+ 1
)
/2 tbef ≤ t ≤ tupd

1 tupd < t

. (46)

and define fbef(t) = 1−fupd(t). Any quantity yH that is linear in the Hamiltonian H = T+V

will then be subject to a similar transformation

yH = yT + fbef(t)y
Vbef + fupd(t)y

Vupd . (47)

Explicitly using this formulation, means that the y quantity must be evaluated for two

different potentials and this could increase the computational cost for the equations of motion

in a specific time-domain significantly. However, in the case where the two PESs are fitted

to the same fit basis, and no non-linear optimization of fit functions are required, the update

of the potential is obtained at essentially no cost by a continuous update of the sum-over-
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products coefficients in Eq. 13

cmn

omn
n

(t)←− fbef(t)c
mn,bef
omn
n

+ fupd(t)c
mn,upd
omn
n

. (48)

How the times tbef and tupd are chosen will be discussed in detail in Section 3.2.

3 Implementation

In this section we will describe the implementation of the TD-ADGA algorithm as it has

been implemented in the Molecular Interactions, Dynamics And Simulations Chemistry Pro-

gram Package (MidasCpp).37 The implementation relies on the previous implementations in

MidasCpp for the integration and propagation of ordinary differential equations for time-

dependent nuclear wave functions as well as the ADGA framework for handling SP calcula-

tions, grid placement, and evaluation of integrals.15–18

A high level description of how the TD-ADGA procedure is implemented as a part the

ordinary differential equation integrator is shown in Algorithm 1. The ordinary differential

equation integrator is on input given the initial and end times (t0 and tend), the initial

wave funtion parameters (y0), and the initial PES (V0). Further TD-ADGA inputs are

also given, these include a boolean indicating if a full restarts should be utilized, the time

interval between running TD-ADGA convergence checks (tTD-ADGA), the time interval at

which the one-mode densities are calculated (tdens), and the time interval between reset

points (treset). These intervals will be explained further below. In the initial 5 lines of

Algorithm 1 the integration is prepared and in the while loop from line 6 to line 38 the

actual time-propagation takes place until the dynamics have been propagated to the end

time.

The first if block in the while loop (line 7) is only executed if the TD-ADGA algorithm

has found that the PES was no longer converged after the previous time-step. If this is the

case the current time (t), wave function (y), wave function derivatives (dy
dt ), and PES (V )
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Input : t0, tend, y0, V0

TD-ADGA input: full_replay, tTD-ADGA, tdens, treset
1 Calculate

(dy
dt

)
t=0

;
2 Save t0, y0,

(dy
dt

)
t=0

, and V0;
3 Set t = t0, y = y0,

dy
dt =

(dy
dt

)
t=0

, and V = V0;
4 Set tcheck = t0 + tTD-ADGA, tcalc_dens = t0 + tdens, tsave = t0 + treset, and tupd = t0;
5 Set reset_dynamics = false and update_potential = false;
6 while (t ≤ tend) do
7 if (reset_dynamics) then
8 tupd = tsave − treset;
9 Set tbef, ybef,

(dy
dt

)
t=tbef

, and Vbef to values saved at tupd − treset;
10 if (full_replay || tbef ≤ t0) then
11 Set t = t0, y = y0,

dy
dt =

(dy
dt

)
t=0

, and V = Vupd;
12 tcheck = t0 + tTD-ADGA;
13 else
14 Set t = tbef, y = ybef,

dy
dt =

(dy
dt

)
t=tbef

, and V = Vbef;
15 tcheck = tbef + tTD-ADGA;
16 update_potential = true;
17 end
18 Clear all saved data for times greater than t; // Also resets densities
19 Recalculate TD-ADGA integrals; // Using Vupd fit
20 reset_dynamics = false;
21 end
22 Take time-step; // Updates t, y, and dy

dt
23 if (t ≥ tcalc_dens) then
24 Calculate and update one-mode densities;
25 tcalc_dens = tcalc_dens + tdens

26 end
27 if (t ≥ tcheck) then
28 Do TD-ADGA iteration;

// If new SPs were added, fits new Vupd, set reset_dynamics true,
// and continue to next iteration in while loop

29 tcheck = tcheck + tTD-ADGA;
30 end
31 if (update_potential) then
32 Update PES; // Sets update_potential false if t ≥ tupd
33 end
34 if (t ≥ tsave && !full_replay ) then
35 Save t, y, dy

dt , and V ;
36 tsave = tsave + treset;
37 end
38 end
Algorithm 1: The overall scheme for how the TD-ADGA method is implemented
as part of the ordinary differential equation integrator.
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is reset to a previous time. If the full restart scheme is used, the wave function parameters

are all set to their initial values at t0 but the PES is set to the updated potential (Vupd).

If the partial restart scheme is used, an update interval of length treset is determined where

the two times tbef and tupd are the start and end times of this interval. The wave function

parameters and the PES are then reset to the values at tbef, which have been saved in

a previous integration step. If tbef is smaller than or equal to t0 then the wave function

parameters and PES are reset as if we were in a full restart run. After the parameters have

been reset, all saved data for times that are larger than t are cleared. This includes the

one-mode densities, so the newest densities are from the new t. The TD-ADGA integrals are

then recalculated with the "new" one-mode densities without checking for grid convergence.

As the final part of this if block the reset_dynamics boolean is set to false.

In line 22 the actual integration step is taken. The integration is done using the Dormand-

Prince 8(5,3) explicit Runge-Kutta method45 as implemented in MidasCpp. After the in-

tegration step is completed, the current time has been updated and the wave function pa-

rameters and the time-derivative of these have also been updated. In line 24 the one-mode

densities for the specific wave function method are calculated using the updated wave func-

tion parameters and the relevant space- and time-smoothening is carried out. In order to

not evaluate the wave function densities on a grid in each time step, the one-mode densities

are only calculated at intervals spaced by tdens. Note that tdens should be chosen smaller

than or equal to tTD-ADGA since it makes no sense to check the TD-ADGA convergence if

the one-mode densities have not been updated.

If the current time exceeds the TD-ADGA check time (tcheck) a TD-ADGA iteration

is carried out in line 28. This iteration checks the convergence of the TD-ADGA grid

and if the grid is not converged additional SP calculations are requested and the boolean

reset_dynamics is set to true. When the TD-ADGA grid is again converged, the algorithm

continues to the next iteration in the while loop. If instead the grid is still converged after

the TD-ADGA iteration, the reset_dynamics boolean remains false and tcheck is updated to
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the next check time.

If the update_potential boolean is true, then the PES of the dynamics currently being

continuously updated and this is done in line 32, using the continuous update discussed in

Subsection 2.4. If t is greater than or equal to the end of the current update interval (tupd),

update_potential is set false since V = Vupd and the PES now is fully updated.

The final part of the while loop saves the current wave function parameters, the PES,

and updates the save time (tsave) if t ≥ tsave and we are not in the full restart scheme.

In the following two subsections we will describe in more detail two of the steps in

Algorithm 1 that are directly related to the TD-ADGA implementation. In Section 3.1 we

will discuss the how the TD-ADGA iterations are carried out at different time-steps and in

Section 3.2 the update of the PES is considered in more detail with a specific example to

illustrate the procedure.

3.1 The TD-ADGA iterations

We will now describe how the TD-ADGA algorithm is implemented as a part of the ordinary

differential equation integrator in MidasCpp. Before the time-propagation is initialized, an

initial iteration of the TD-ADGA procedure is carried out to create a PES to start both

the dynamics and TD-ADGA procedure from. In this zeroth iteration of the TD-ADGA

algorithm, the initial PES V0 is created using the TI-ADGA procedure using a density either

provided by a VSCF calculation on some other potential or by the user on input. The

placement of the initial SPs are determined by the initial density. A SP is always placed at

the reference structure and two further SPs are placed such that the entire density (within

the residual threshold determined by Eq. 41) is contained within the SP boundaries. A

further SP is also placed at the maximum density value if this is not close to the reference

structure. Using these initial SPs and the fixed initial density, a TI-ADGA calculation is

carried out. This creates the grids for all MCs with initial values for all the TD-ADGA

integrals and it provides a PES to the ordinary differential equation integrator which then
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initialize the time-dependent wave function y0.

After the wavefunction has been initialized, the first TD-ADGA iteration is carried out

before the time-propagation starts. This "extra" iteration is carried out since the density used

to converge the zeroth iteration might vary from the density of y0. This is because the initial

density of the zeroth iteration can be any density supplied by the user or an average density

obtained from a VSCF calculation, while the current density has been calculated using the

space-smoothened one-mode densities of the initial state (there is no time-smoothening since

no time has passed at which the one-mode density can be smoothened over). Using the new

density, new TD-ADGA integrals are calculated and then each integration box is checked

for convergence by checking against the conditions in Eq. 38 and Eq. 41. If one or more

integration boxes are no longer converged or if the one-mode grids should be extended,

new SPs are requested by the TD-ADGA algorithm and after these have been calculated a

new PES is fitted. The TD-ADGA integrals are then re-calculated and convergence of the

integration boxes checked again. This procedure is repeated until all integration boxes are

converged at which point the time-integration can begin.

After the zeroth and first iterations have been carried out Algorithm 1 can be started.

As briefly discussed above, the next TD-ADGA iteration is carried out after the integrator

has taken a time step so that the current time exceeds the check time tcheck. The TD-ADGA

iteration check times are evenly distributed in time with the time interval tTD-ADGA. When

the current time is larger than the TD-ADGA check time, we enter step 28 of Algorithm 1.

The TD-ADGA integrals at the current time t are calculated (Tmn

Imn
ℓmn

(tcurr)) using the current

space- and time-smoothened density and the convergence criteria for each box are checked.

We note here that we choose the time interval of the calculation of the one-mode densities

tdens such that new one-mode densities are always calculated after the same time-step as the

TD-ADGA iterations are also carried out. This is not a necessity for the algorithm but it

makes the most sense to use information from the wave function at the current time in the

TD-ADGA iterations.
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If all boxes are converged and no extension of the one-mode grids are required, the time-

propagation simply continues until the next check time is reached. If, on the other hand,

the TD-ADGA grid is no longer converged, the same procedure as for obtaining convergence

for the first iteration is carried out until the TD-ADGA grid is converged. If new SPs have

been calculated a new PES have also been obtained and the time-propagation is reset to a

previous time-step in order for the PES of the dynamics to be continuously updated. How

we handle the update of the potential will be described in the following subsection.

3.2 Update of the potential energy surface

In this subsection we will describe the specific approach for updating the PES and resetting

the dynamics after a TD-ADGA iteration has calculated new SPs.

We now assume we have reached a time where the TD-ADGA grid is no longer converged

and thus the TD-ADGA procedure will calculate a number of SPs to obtain convergence of

the grid. After these SPs have been calculated and a new PES have been fitted, we need

to determine how we want to continue the dynamics simulation. As discussed in Section

2.4, we suggest a partial restart scheme and a full restart scheme for introducing the new

PES. In the partial restart scheme we want the PES of the dynamics to be slowly and

continuously updated from the previous PES (Vbef) to the updated PES (Vupd) in order to

avoid non-physical behavior in the wave function propagation. In the full restart scheme,

we simply restart the dynamics from scratch using the new PES. To update the PES during

the wave function propagation in the partial restart scheme, the wave function is reset to

a time before the PES was updated (tbef) by overwriting the current wave function and its

derivatives with the wave function and its derivatives at time tbef. In order not to save all

wave function data during the propagation, the update of the potential is done between set

time-intervals. These reset intervals are spaced with the time treset and when the current time

t of the simulation enters a new reset interval, t and all wave function information relevant

for the time-propagation are saved. When new SPs have been placed by the TD-ADGA
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routine tbef is thus chosen to be the beginning of the previous reset interval and the time

where the PES is fully updated (tupd), is set to be the end of the previous update interval

(tupd = tbef + treset). With tbef and tupd defined, the PES is then continuously updated in the

time-interval tbef to tupd as the integrator propagates through time, updating the PES used

in the dynamics after each time-step by using Eq. 42 to update from Vbef to Vupd.

To illustrate this procedure, we have in Fig. 1 shown two examples for how the updating

of the PES in the TD-ADGA is handled. Fig. 1a shows the general case for the partial restart

scheme where the TD-ADGA procedure at some point determines that the TD-ADGA grid

is no longer converged and the PES must be updated in order to re-obtain convergence. In

Fig. 1a the top horizontal line represents the time-propagation where the integrator takes

small time-steps propagate the wave function. The propagation starts at t0 and with time-

intervals of tTD-ADGA (marked with crosses) the TD-ADGA convergence is checked. When the

integration time exceeds t1 = treset the current wave function parameters y and dy
dt

are saved

for resetting purposes before the propagation continues. The time-propagation continues

through the second reset interval and enters the third, where the wave function information

is again saved. In this example the third TD-ADGA iteration of the third update interval

(marked by a red cross) finds that now the wave function density has changed so much that

the TD-ADGA grid is no longer converged. The TD-ADGA algorithm places new SPs until

a new convergence have been reached, as discussed in Subsection 3.1.

After the new SPs have been calculated, the PES is refitted and the propagation is reset

to the beginning of the second update interval at t1. This is illustrated as the bottom

horizontal line in Fig. 1a starting from t1. From the wave function information and the

potential saved at t1, the time-propagation is restarted. In each integrator step between t1

and t2, the PES is incrementally updated from Vbef to Vupd until the PES is equal to Vupd

at tupd = t2. When the integrator has passed the time t2 the current wave function is again

saved and from this point the time-propagation continues using the updated potential.

If the TD-ADGA procedure asks for new SPs early in the time-propagation, tbef will be
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t0 t1 t2 t3

a)

New SPs added
Fit new V upd

Reset to t = t1

Save WF
and V at t1

Save WF
and V at t2

Restart dynamics
from t1 using

V bef=V (t1)

Continous update of V
from V bef to V upd

Save WF
and V at t2

tTD-ADGA

treset

Time propagation
continues using V upd

t0 t1 t2 t3

b)

New SPs added
Fit new V upd

Reset to t = t0

Save WF
and V at t1

Restart dynamics
from t0 using V upd

Save WF
and V at t1

Save WF
and V at t2

Figure 1: Sketch of the procedure for updating the PES in the TD-ADGA algorithm. The
horizontal lines represents the time-evolution of the integrator, the vertical lines indicate the
boundaries of the reset intervals, and the crosses indicate the times where the TD-ADGA
convergence is checked. a) The wave function is propagated through time and in the third
update interval new SPs are requested by the TD-ADGA routine (marked by a red cross).
The propagation is reset to the time t1 which is indicated by the horizontal line below.
Initially the PES saved at time t1 (Vbef) is used to propagate the wave function but during
the propagation the PES is continuously updated until tupd = t2 is reached at which point
the PES is equal to Vupd. b) The wave function is propagated through time and in the second
update interval new SPs are requested by the TD-ADGA routine. The propagation is then
reset to the initial time t0. Since we reset to the initial time the PES is updated directly to
Vupd and the propagation continues from the initial wave function.
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equal to the initial time of the propagation. This is illustrated in Fig. 1b where new SPs are

requested in the second update interval. In this case the dynamics are reset to the initial

wave function and a new dynamics simulation is started where Vupd is used as the PES from

the beginning without doing a continuous update. If the TD-ADGA is run with the full

restart setting, then each time new SPs are added the dynamics will be reset to the initial

time, similar to the case showed in Fig. 1b.

We note that at all times when the TD-ADGA integrals are computed, we use the fitted

PES obtained by fitting to all calculated SPs. This means that the potential term in the

TD-ADGA integrals (Eq. 37) are not continuously updated but instead the most accurate

potential is used. This is done because a continuous update of the potential in the evaluation

of the TD-ADGA integrals will lead to changes in the calculated integrals that are artificial

in the sense that the change does not depend on the physical state of the system but only on

how we chose to update the PES during the dynamics. Further, the extra change induced in

the integrals by the change in the potential might lead to the TD-ADGA algorithm requesting

more SPs than is actually required for converging the PES for the dynamics.

4 Results

We will in this section present a series of TD-ADGA calculations carried out to test and

benchmark our TD-ADGA implementation. We have carried out calculations on a series

of molecular systems with different complexity in both the nature of the PES, dynamics,

and size of the system. These systems include the dynamics induced in the bromine dimer

when moving the wave function from one excited state to another, the exploration of the

double well potential in the inflection mode of ammonia, the small amplitude motion in

water induced by a time-dependent perturbation, and finally the keto- enol tautomerization

of salicylaldimine in a reduced dimensionality.
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4.1 Computational Details

In our dynamics simulations we have used the TDH31 and MCTDH32,33 methods as imple-

mented in MidasCpp in conjunction with the newly implemented TD-ADGA method. The

dynamics obtained with the TD-ADGA method will be compared to reference calculations

obtained with a pre-calculated PES obtained by using the TI-ADGA method. On that ac-

count the accuracy of the dynamics and the number of SPs used in obtaining the PES will

be compared. We will denote the PES that is used in a reference calculation as the reference

PES.

In all dynamics calculations a primitive B-spline basis has been employed using B-spline

functions of order 10 and a basis density of 0.8.46 The boundaries of the basis sets used

were determined by the reference PESs for each system and used in all computations for

consistency in comparisons. These boundaries can be found in the supporting information

(SI).

The TD-ADGA settings and thresholds used in the simulations are listed in Tab. 1 and

they have been described in Section 2. Unless otherwise stated, the epsilon thresholds used

in the TD-ADGA calculations are the same as those which have been used in the TI-ADGA

calculations to obtain the reference PESs, with the exception of the linear threshold which

is not used in the TI-ADGA. The number of grid points which the density is smoothened

over (Nq) is given as a fraction of the grid size (cq) such that the number of grid points to

smoothen over is given as Nq = cqNpts, where Npts is the total number of grid points in a

one-mode cut.

4.2 Exploring excited states of molecular bromine

In this subsection we will study the dynamics of the excited states of the bromine dimer.

We want to study how well the TD-ADGA method can explore an unknown PES and the

excited states. The bromine dimer provides a simple one-mode system, where a nuclear

wave function is initialized on the PES of one electronic state and then moved to another
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Table 1: TD-ADGA settings used in the calculations for each system.

Bromine Ammonia Water Salicylaldiminea

treset 100.0 100.0 100.0 100.0
tTD-ADGA 100.0 100.0 100.0 100.0
tdens 10.0 10.0 10.0 10.0
cq 0.10 0.10 0.10 0.10
Nt 20 20 20 20
ϵrel 1.0 · 10−2 1.0 · 10−2 1.0 · 10−2 1.0 · 10−4

ϵabs 1.0 · 10−6 1.0 · 10−6 1.0 · 10−6 1.0 · 10−6

ϵρ 1.0 · 10−3 1.0 · 10−3 1.0 · 10−3 1.0 · 10−4

ϵlin 1.0 · 10−4 1.0 · 10−4 1.0 · 10−4 1.0 · 10−4

aFor the salicylaldimine system the convergence thresholds used in the TI-ADGA are not
the same as for the TD-ADGA.

electronic state, which must be explored during the dynamics. This change of PES is a

very simple simulation of a photo-excitation of bromine where we assume the excitation to

be instantaneous and that the wave-function is simply moved to an excited state of higher

energy.

Bromine has two isotopes of nearly equal abundance, 79Br and 81Br, but for simplicity

we have chosen to use only the 79Br isotope in our studies. The electronic structure of

molecular bromine is very complicated since both relativistic effects and the crossings of

multiple surfaces must be considered. We will use a set of potential energy curves for the

lowest 23 covalent states of bromine that have been calculated by Gomes et al.47 In the work

by Gomes et al. a set of SPs, calclated at 47 different internuclear distances, have been

fitted to an extended Ryberg function in order to obtain relevant spectroscopic constants

for molecular bromine. The 47 SPs have been calculated by using complete open shell

configuration interaction in a four-component relativistic framework using the aug-cc-pVTZ

basis set.48 However, the fits that they obtain are not satisfactory in the range of internuclear

distances that we want to use and we have thus chosen to use the SPs provided by Gomes

et al. and fit them to an extended Rydberg function ourselves. The Extended Rydberg
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function takes the form49

V (R) = −De(1 +
n∑

k=1

Ck(R−Re)
k)eC1(R−Re), (49)

where Re is the equilibrium distance, and De is the dissociation energy, and Ck is a set of n

fitting coefficients. One can choose the order n to fit the potential function. We have chosen

n=10 similar to Gomes et al. as we found that at higher orders the function were prone to

overfitting. Using the extended Rydberg function we fitted the ground state (X: 0+g ) and the

two lowest lying excited states (A′: 2u and A: 1u), which are all bounded. Details on the

fitting procedure as well as the obtained fitting coefficients can be found in the SI.

For the time-evolution we will use the TDH method to propagate the dynamics. The TDH

state is initialized from a VSCF state obtained on an initial PES supplied beforehand and the

dynamics are then propagated in time on a different PES. In order to test the accuracy of the

simulation when using the TD-ADGA method to obtain the potential during the simulation,

we will also carry out an identical TDH simulation but where the potential of the second

curve has been supplied beforehand by a TI-ADGA calculation. We will use the Extended

Rydberg fits to calculate SPs in both the TI-ADGA and TD-ADGA calculations and the

PESs that we use in the TDH simulations will be all fitted using 12th order polynomial fits.

In all calculations the dynamics were simulated for at total of 2.0 · 105 a.u. (4.838 ps).

In both the TD-ADGA calculation and the reference calculation, the initial TDH state

is prepared as the VSCF ground state on the PES for the A′ state. The TDH time-evolution

is then subsequently carried out on the PES for the A state. Since we change the PES, the

TDH initial state is no longer a stationary state and the TDH wave function will start to

move on the A state PES. We have chosen to use the A′ → A transition, since the transition

from the ground state to either the A or A′ state dissociates the bromine dimer.

In both the TD-ADGA and the two TI-ADGA calculations the equilibrium geometry

for the A′ state was used as the reference geometry for the PES fits. In the TI-ADGA
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calculations to obtain the reference A′ and A states, a mean VSCF density consisting of the

lowest eight eigenstates were used. This high number of eigenstates was used to ensure a

good description of the PES in a broad domain of the PES. The settings were also modified

to place the initial SPs at a displacement of ± 1.1180 Bohr from the used reference distance

of 5.1386 Bohr. This was done in to reduce the number of SPs required by the TI-ADGA

algorithm as many SPs were placed when extending the potential boundaries using the

default initialization. In total 18 SPs were used to fit the A′ surface and 26 SPs were used

to fit the A surface.
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d) TD-ADGA iter: 21

Number of SPs: 19
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Figure 2: Construction of the PES for the A state in the bromine dimer using the TD-ADGA
method. See text for a detailed description.

In Fig. 2, we show how the TD-ADGA algorithm constructs a PES for the A state

during the dynamics. Figs. 2a, 2b, and 2c shows the zeroth, first, and fifth sub-iteration

of the zeroth TD-ADGA iteration, respectively. In Fig. 2a, the zeroth sub-iteration of the

zeroth TD-ADGA iteration is started by inputting the initial density. The initial density

is space-smoothened (dashed green line) and then inputted to the TD-ADGA algorithm
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(full green line). The TD-ADGA then places SPs at the reference geometry and at two

displacements, such that the initial density is contained. A PES is then fitted to the initial

SPs and the integration boxes defined by the initial SPs are evaluated. In Fig. 2b, the

integration boxes are all sub-divided by adding new SPs and the convergence of each box is

evaluated. Integration boxes that are not converged are further sub-divided in the subsequent

sub-iterations until convergence is obtained. Fig. 2c shows the PES and SPs obtained after

the fifth sub-iteration of the zeroth TD-ADGA iteration. After this sub-iteration, the PES

is converged and the TD-ADGA algorithm continues. The values of the integration boxes

at this step is saved and used to evaluate the change in all the subsequent TD-ADGA

iterations until new SPs are evaluated. The time propagation is now started and the TD-

ADGA convergence is checked at intervals of 100 a.u. (2.42 fs). Fig. 2d shows the 21st

TD-ADGA iteration, where the density has moved enough for the TD-ADGA to request a

new SP. After the new SP has been evaluated the integration boxes are again evaluated and

checked for convergence compared to the boxes evaluated just before the SP was added. It

is found in this iteration that the PES is converged after only adding a single SP and the

TD-ADGA algorithm continues. This TD-ADGA iteration was carried out after 2000 a.u.

had passed and thus the dynamics are reset to wave function saved at 1800 a.u. The reset

is shown in Fig. 2e, where the current density (full green line) is moved slightly towards a

more negative displacement compared to the density in iteration 21 (dashed greeen line). At

this point the PES was considered converged and all integration boxes are evaluated with

the reset density. Similar to the integrals evaluated in Fig. 2c, these integrals are saved and

used to evaluate the change of the integration boxes in the subsequent convergence checks.

As the dynamics restart from the reset wave function, the PES used in the propagation is

slowly updated from the PES before the new SPs were added to the new PES obtained using

the new SPs, in the interval [1800, 1900] a.u. Fig. 2f shows the final TD-ADGA iteration

where new SPs are added. This iteration is carried out after a time-propagation of 14900

a.u. A restart similar to the one described for Fig. 2e is then carried out. After this restart,

40

https://doi.org/10.26434/chemrxiv-2023-5s80n ORCID: https://orcid.org/0000-0003-0568-0095 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5s80n
https://orcid.org/0000-0003-0568-0095
https://creativecommons.org/licenses/by/4.0/


the PES is considered converged for the rest of the dynamics simulation and no more SPs

are added.

The TD-ADGA requests a total of 20 SPs to construct the PES for the A state. This

is fewer than the 26 SPs requested by the TI-ADGA calculation in the construction of the

reference potential for the A state. However, the TI-ADGA PES covers a much wider area of

the PES than the TD-ADGA. The number of SPs placed by the TI-ADGA that are within

the maximum and minimum displacements of the TD-ADGA SPs is 16, with two additional

SPs placed at slightly larger displacements. The number of SPs placed in the domain relevant

for the dynamics is thus comparable between the two PESs. A plot of the fitted A state

surfaces and single points obtained using the TI-ADGA and the TD-ADGA can be found in

Fig. S1 in the SI.

We now turn our attention to comparing the results of the two dynamics calculations.

To compare the dynamics simulations, we compare the autocorrelation function of the two

TDH simulations as well as the Fourier-transforms of these. The auto correlation function

is defined as the expectation value of the time-evolution operator taking the wave function

from time t′ to t, U(t, t′),

S(t, t′) = ⟨Ψ(t′)|U(t, t′)|Ψ(t′)⟩ = ⟨Ψ(t′)|Ψ(t)⟩ . (50)

Determining the autocorrelation function with respect to the initial wave function at t0 we

obtain

S(t) = ⟨Ψ(t0)|Ψ(t)⟩ . (51)

The autocorrelation function is a sensitive property and differences between the two simula-

tions will thus show up in these results. We will also consider the Fourier transform of the

41

https://doi.org/10.26434/chemrxiv-2023-5s80n ORCID: https://orcid.org/0000-0003-0568-0095 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5s80n
https://orcid.org/0000-0003-0568-0095
https://creativecommons.org/licenses/by/4.0/


autocorrelations function

S(ω) =

∫ ∞

−∞
S(t)e−iωtdt. (52)

The Fourier transform yields a spectrum of the frequencies from the autocorrelation function

and can show whether the PESs produces the same frequencies even though the autocorre-

lation function might differ between the two PESs.

Fig. 3 shows the autocorrelation functions and their Fourier transforms obtained in the

TD-ADGA and reference calculation. The Fourier transforms have been normalized with

respect to the maximum value of the reference calculation. The TD-ADGA results are

superimposed on the reference results and no differences between the two can be observed.

However the functions are not completely identical. The autocorrelation function differs

on the order of 10−7 and the difference very slowly increases during the dynamics. The

normalized Fourier transform also shows small deviations on the order of 10−6 this primarily

arises from very slight displacements of the maximum frequency. The most intense peak is at

around 2.8 Eh. These difference are to be expected as the PESs are not exactly identical, but

obviously the numerical difference should be small for PESs converged in the two different

manners. A difference plot between the TD-ADGA and reference results can be found in

Fig. S2 in SI.

We have also recorded the mean value of the displacement coordinate during the two

simulations. Similar to the results for the autocorrelation function, the mean displacements

during the calculation is indistinguishable and the deviations are on the order of 10−5. A

figure of these results can be found in in Fig. S3 of the SI.

We finally conclude that the TD-ADGA method can quantitatively reproduce the refer-

ence calculation for this system with a similar number of required SP calculations.
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Figure 3: Autocorrelation function (a) and the Fourier transform of the autocorrelation
function (b) for the bromine dimer. The Fourier transforms have been normalized with
respect to the maximum peak of the reference calculation.

4.3 Dynamics in a one-mode double-well potential

In this subsection we study how the TD-ADGA algorithm fares when it must determine a

more difficult potential energy surface. To do this we will investigate how well the TD-ADGA

method describe a double-well potential that is discovered during a dynamics simulation. To

do this, the time-dependent wave function is initialized from a VSCF state localized in one

well of a double-well potential and only during the time-propagation will the wave function

reach the other well of the system. The TD-ADGA algorithm must thus be able to detect

that the wave function is located in a double-well potential and fit a potential energy surface

effectively for the dynamics to be accurate.

In the previous calculation the wave function was initialized from an initial state obtained

on a different PES than the one the dynamics was propagated on. In this subsection we will

explore an initialization from a stationary VSCF ground state calculation on the potential

surface and then initialize dynamics by introducing a time-dependent Hamiltonian. This

time-dependent Hamiltonian can, as an example, model a short laser pulse interacting with

the vibrational ground state. We note that we in the present case do not consider the

43

https://doi.org/10.26434/chemrxiv-2023-5s80n ORCID: https://orcid.org/0000-0003-0568-0095 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5s80n
https://orcid.org/0000-0003-0568-0095
https://creativecommons.org/licenses/by/4.0/


possibility of a electronic excitation as this is beyond the scope of the current investigation.

The laser pulse is simulated by adding a time-dependent perturbation operator to the

time-independent Hamiltonian

H(t) = H0 + c(t)H1, (53)

where H0 is the time-independent Hamiltonian (Eq. 1) described by the PES and kinetic

energy operators, H1 is the perturbation operator, and c(t) is the perturbation parameter

which is modelled as a Gaussian pulse

c(t) = Ae−
(t−tp)

2

2σ2 cos(ω(t− tp)− ϕ). (54)

In the Gaussian pulse, A is the overall amplitude of the pulse, tp is the time at which

the pulse peaks, σ is the standard deviation of the pulse, ω is the angular frequency, and

ϕ an overall phase. For a laser pulse, the physically relevant choice for H1 would be the

dipole operator, but we chose to simply use the displacement coordinate (H1 = q) as the

perturbation operator, as it gives a simple interpretation of the pulse and because the goal

is simply to start the dynamics.

As a model system to investigate, we have chosen the inversion mode of ammonia. An

analytical PES for the inversion in ammonia have been calculated by J. B. Coon et al.50

and we use this analytical expression as implemented in MidasCpp to calculate SPs that

are required by the ADGA algorithms. We use the transition state of the inversion mode

(planar D3h structure) as the reference structure and describe the dynamics using a single

mode connecting the two degenerate minima (C3v structures).

In order to localize the wave function in one of the double wells, we split the basis set up

into two sub-basis sets with no overlap and a boundary basis that overlaps with both basis

sets. A VSCF calculation is then carried out in this split basis in order to obtain a set of

localized VSCF modals in each basis set. The initial wave function is initialized from the

44

https://doi.org/10.26434/chemrxiv-2023-5s80n ORCID: https://orcid.org/0000-0003-0568-0095 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5s80n
https://orcid.org/0000-0003-0568-0095
https://creativecommons.org/licenses/by/4.0/


lowest-energy state which is localized in a single well. Details on how to carry out a VSCF

calculation in a split basis can be found in Appendix A.

We carry out three simulations of the ammonia system. We have performed a reference

dynamics simulation using a pre-calculated reference TI-ADGA PES, a TD-ADGA dynam-

ics simulation where the PES is determined on the fly, and a rerun dynamics simulation

where the dynamics are simulated using the final PES obtained in the TD-ADGA simula-

tion throughout the entire dynamics simulation. For all simulations, the initial state is a

localized VSCF state obtained from the pre-calculated TI-ADGA PES.

In the TI-ADGA calculation, an average over the ten lowest energy VSCF densities was

used in the PES construction. This is a high number of eigenstates to include but since the

VSCF states are pairwise degenerate a high number is required in order to ensure that the

PES is described in a broad domain. The TI-ADGA calculation required 25 SPs to converge.

Fig. 4a shows the fitted PES and SPs obtained from the TI-ADGA calculation. Fig. 4a also

shows the density of the localized VSCF state used as the initial state in all the simulations.
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Figure 4: The setup for initializing the dynamics simulations for the ammonia inversion
mode. (a) The reference potential for the fitted potential and the SPs are obtained from
the reference TI-ADGA calculation. The initial density is the (non-smoothened) density
obtained from the localized VSCF state in the left well. (b) The final potential and all SPs
obtained from the TD-ADGA calculation.

The dynamics are propagated at the TDH level of theory but by using the MCTDH
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module in MidasCpp. This is done in order to add the time-dependent pulse. For all

simulations, the initial state is the localized VSCF state obtained from the pre-calculated

TI-ADGA PES and the simulation time is 2.0·105 a.u. (4.838 ps). The amplitude of the pulse

in the simulations was A = 1.0 · 10−5 a.u., the peak position of the pulse was at tp = 3.5 · 104

a.u. (846.61 fs), and the phase was ϕ = 0. The angular frequency of the pulse have been

chosen to match the excitation energy from the lowest-energy state to the first excited state

within the same well obtained from the split basis VSCF calculation, ω = 4.4619 · 10−3 a.u.

The standard deviation of the pulse was chosen such that the full width half maximum of

the pulse was ten times the oscillation period τper = 2π/ω, thus σ = 10 π
ω
√
2 ln 2

= 5.9900 · 103

a.u.

We will give a short summary of the dynamics observed during the TD-ADGA time-

propagation. A video of the propagation showing the density and potential at selected

TD-ADGA iterations can be found in Fig. S4 of the SI. The initial TD-ADGA PES is

generated using the localized VSCF density obtained using the reference PES and the split

basis. The dynamics is then initialized and since the localized VSCF state is not a stationary

state, the wave function moves a little around in the left well. After 16.93 fs (the eighth

TD-ADGA iteration) this leads the TD-ADGA to place another SP in the left well. The

density is localized in the right well until the amplitude of the perturbation increases enough

to perturb the wave function. After 788.56 fs, the density is no longer contained only in the

left well and a new SP is added in the right well. At this point more and more density slowly

moves to the right well and the TD-ADGA places mores SPs in the right well (and one in

the left well) during the next 220 fs. After 1001.42 fs (TD-ADGA iteration 427) no more

SPs are placed in the TD-ADGA calculation. For the rest of the simulation, the density

moves back and forth between the two wells of the double well system, but always with the

largest weight of the wave function being localized in the initial well. Fig. 4b shows the SPs

and fitted PES from the TD-ADGA calculation at the end of the simulation. A total of 22

SPs are requested during the TD-ADGA simulation, which is slightly less than the 25 SPs
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requested in the TI-ADGA calculation.

To compare the results of the simulations, Fig. 5 shows the expectation of the displace-

ment coordinate, ⟨q(t)⟩, for the three simulations. Fig. 5a shows the expectation value of

the displacement coordinate in the reference simulation while Fig. 5b shows the value of the

perturbation parameter c(t) used to model the Gaussian pulse. The initial value of ⟨q(t)⟩

is -48.298 a.u. which corresponds to the initial density shown in Fig. 4a. In the initial 600

fs of the simulation, ⟨q(t)⟩ exhibits very small oscillations. This is before the perturbation

parameter has become large enough to affect the wavefunction and these oscillations arise

from the initial state not being an exact stationary state. As the perturbation parameter

increases in amplitude ⟨q(t)⟩ begins to oscillate. It is observed that two overall oscillations

are induced, one with a short period and one with a longer period.. During the remainder of

the simulation, the oscillations in ⟨q(t)⟩ continues. The value of ⟨q(t)⟩ remain negative for

the entire simulation, in agreement with the the simulation video in Fig. S4, where density

oscillates back and fourth but is at all times primarily localized in the left well.

The same overall behaviour is seen for the TD-ADGA and the TD-ADGA rerun simu-

lations. For at better comparison of the differences between these two simulations and the

reference simulation, the TD-ADGA and TD-ADGA rerun expectation values of the dis-

placement coordinate have been plotted on top of the reference results in Figs. 5c and 5d,

respectively. In Fig. 5c it is observed that the values of ⟨q(t)⟩ in the TD-ADGA simulation

differs from the values of the reference simulation. Small discrepancies can be observed as

the oscillations ⟨q(t)⟩ are induced and overall it is seen that the displacements of the two

simulations deviates a little with the TD-ADGA simulation predicting a smaller mean dis-

placement that the reference simulation. Looking at the TD-ADGA rerun calculation in

Fig. 5d a much better agreement with the reference is observed. There is small differences in

the smaller oscillations but the TD-ADGA rerun calculation reproduces the reference results

very accurately.

The observed difference between the TD-ADGA and TD-ADGA rerun calculations shows
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Figure 5: Expectation value of the displacement coordinate in the ammonia inversion mode
and the value of the perturbation parameter during the simulation. (a) The expectation
value in the reference simulation. (b) Perturbation parameter during all simulations. (c)
The expectation value in the TD-ADGA and reference simulations. (d) The expectation
value in the TD-ADGA rerun and reference simulations.

that the used restart time is not long enough to eliminate all artefacts from partial restarts

with potential updates during the dynamics. However, the similarity of the TD-ADGA

rerun calculation with the reference calculation shows that the PES fitted by the TD-ADGA

calculation is very similar to the reference PES. To confirm this we carried out an additional

TD-ADGA simulation using the full restart scheme. Indeed we find that using the full

restart scheme, the reference results can be obtained from a single TD-ADGA simulation.

The results from this simulation can be found in Fig. S5 of the SI. Since using longer restart

times is not computationally attractive for larger systems, the TD-ADGA rerun approach

may very well be an attractive compromise where the initial TD-ADGA calculation map out

the PES in all areas of relevance and then the rerun simulation with a fixed PES provides a

description of the time-evolution completely free of any artefacts. The extra computational

cost added in this extra careful approach depends on both the wave function method and

total simulation time, however, from the point of uncovering the physical content of the

simulation this extra step might be unnecessary.
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4.4 Full mode coupled dynamics of water

We now turn our attention to a multi-dimensional system. Water is an attractive system

to benchmark against, as water only has three internal degrees of freedom which makes it

possible to easily describe the PES in the full coupling limit and also carry out the dynamics

at the full coupling level. The three internal degrees of freedom are described using normal

coordinates and we enumerate the normal coordinates as q0, q1, and q2 for the symmetric

bend, symmetric stretch, and asymmetric stretch, respectively.

We use the analytical potential for water determined by Partridge and Schwenke51 to

obtain SP energies as required by the TD-ADGA algorithm and then we fit these SPs to

obtain the PES. We will use the full three-mode representation of the PES and in each of

the seven MCs, the PES is fitted to a polynomial function in the displacement coordinates.

As a reference potential, we initially determine a TI-ADGA PES using the four lowest

energy VSCF states in the average density and coupling all vibrational modes. To obtain

this PES the TI-ADGA requested 2052 SPs.

We propagate the dynamics using MCTDH with six active modals for each mode and as

an initial wave function we use the full vibrational configuration interaction (FVCI) wave

function obtained from the reference three-mode PES and using the six lowest-energy VSCF

modals from each mode as the basis. We will propagate the wave function through a simu-

lation time of 2.0·105 a.u. (4.838 ps) and similar to the ammonia double well system, we will

initialize the dynamics by simulating a short laser pulse. We will thus add a time-dependent

perturbation to the system according to Eqs. 53 and 54. We will still only consider a per-

turbation directly in one displacement coordinate and we choose to use the symmetric bend

H1 = q0. We use an amplitude of the pulse of A = 2.00 · 10−5 a.u., the peak position of the

pulse was at tp = 2.0 · 104 a.u. and the phase was ϕ = 0. The angular frequency of the pulse

was chosen to match the excitation energy for the fundamental excitation of the symmetric

bend obtained from a FVCI response calculation using the reference PES, ω = 7.2095 · 10−3

a.u. Using the condition that the full width half maximum of the pulse equals ten times the
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oscillation period, the standard deviation was determined to be σ = 10 π
ω
√
2 ln 2

= 3.6904 · 103

a.u.

We carry out three MCTDH simulations. A reference calculation using the reference

potential, a TD-ADGA calculation, and a rerun calculation, where the final TD-ADGA PES

is used to propagate the dynamics.

To initialize the TD-ADGA surface, the density of the reference VSCF state of the FVCI

wave function was inputted to the TD-ADGA algoritmh as an initial density. The TD-

ADGA initially requested 747 SPs to converge the three-mode PES using the initial density.

At the end of the simulation the TD-ADGA has requested a total of 1585 SPs. Compared

to the 2052 SPs requested by the TI-ADGA calculation used to obtain the reference PES,

the TD-ADGA provides a reduction of 22.30%.

Fig. 6 shows the expectation value of the displacement coordinate for modes q0 and

q1 (symmetric bend and symmetric stretch), as well as the perturbation parameter of the

perturbing pulse during the three simulations. The expectation value of the q2 mode is not

shown since the changes observed are on the order of magnitude of 10−4 a.u. in the displace-

ment coordinate. The lack of large oscillations in the q2 mode shows that there is no strong

coupling between the symmetric bend (q0) and the asymmetric stretch modes, when the

former is excited using the present perturbation. For all simulations, it is observed from Fig.

6 that as the perturbation increases in amplitude, both small and large period oscillations

are induced in the q0 mode. These oscillations persist throughout the rest of the simulation

time. Shortly delayed after the initial oscillations in the q0 mode are observed, oscillations

are induced in the q1 mode which also continues through the rest of the simulation. This

redistribution of energy is to be expected since both q0 and q1 are totally symmetric.

By inspection of the first and second column of plots in Fig. 6, it can be seen that the over-

all structure of ⟨q0⟩ and ⟨q1⟩ are similar between the reference and TD-ADGA simulations.

However, while ⟨q0⟩ is nearly identical for the two calculation throughout the simulation

time, ⟨q1⟩ show a larger discrepancy. In the ⟨q1⟩ plots, the structure of the long period
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Figure 6: The expectation value of the displacement coordinates q0 and q1 and the value of
the perturbing Gaussian pulse in the q0 coordinate during the TD-ADGA and the reference
simulation.
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oscillations are similar in shape, but the reference results display "smooth" oscillations while

the TD-ADGA results starts out smooth and the become more and more "jagged" as the

simulation time proceed.

In the third column of Fig. 6, the TD-ADGA rerun results for the expectation values

are shown. In the rerun calculation the evolution of the expectation values are very near to

the reference results and in particular the ⟨q1⟩ results are here also in very good agreement

with the reference. Similar to the results from the ammonia system, this large change shows

that the restarts carried out during the TD-ADGA simulation is not sufficient to eliminate

artifacts from fitting the PES on the fly. However, the obtained PES is in excellent agreement

with the PES of the reference.

We finally note that in the beginning of the simulation (where the perturbation has

not yet induced any oscillations in the q0 mode), ⟨q1⟩ has a constant value in the reference

simulation while small oscillations are observed in the same time-interval in the TD-ADGA

and TD-ADGA rerun simulations. In the reference calculation, we expect the expectation

value of q1 to be constant in the beginning of the simulation because the initial wave function

is a stationary state of the potential. This is not the case in the TD-ADGA and TD-ADGA

rerun calculations, because the initial state is created from the reference potential and it is

thus not exactly a stationary state for the TD-ADGA PES. Small oscillations in the ⟨q0⟩

values are similarly observed in the TD-ADGA results, but these are visible seen in Fig. 6

due to the larger scale on the y-axis.

We now consider the autocorrelation function and its normalized Fourier transform ob-

tained from the three simulations. Figs. 7 and 8 shows these for the TD-ADGA and

TD-ADGA rerun results, respectively, plotted on top of the reference results.

For all three simulations, the autocorrelation function remains one during the beginning

of the simulation. Around the time where the time-dependent perturbation peaks the au-

tocorrelation quickly drops to a value around 0.74, around which it stays for the rest of the

simulation.
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Figure 7: Absolute value of the autocorrelation function (a) and its Fourier transform (b)
for the TD-ADGA calculation and the reference calculation. The autocorrelation function
is only shown for the initial 4000 fs but the Fourier transform is obtained using the results
from the entire simulation. The Fourier transforms have been normalized with respect to
the maximum peak of the reference calculation.
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Figure 8: Absolute value of the autocorrelation function (a) and its Fourier transform (b) for
the TD-ADGA rerun calculation and the reference calculation. The autocorrelation function
is only shown for the initial 4000 fs but the Fourier transform is obtained using the results
from the entire simulation. The Fourier transforms have been normalized with respect to
the maximum peak of the reference calculation.
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For the TD-ADGA results shown in Fig. 7a, a discrepancy from the reference simulation

is again observed. On the scale showed in Fig. 7a, the reference autocorrelation function

is at a constant value while the TD-ADGA results are non-constant and at a higher value.

The Fourier transform shown in Fig. 7b are very similar for the TD-ADGA and reference

simulations with the TD-ADGA spectrum being shifted slightly larger frequencies.

Fig. 8a shows the autocorelation function obtained in the TD-ADGA rerun simulation.

These results are observed to be in excellent agreement with the reference and as the two

results cannot be distinguished in Fig. 8a. The difference between the two autocorrelation

functions are on the order of magnitude of 10−4 and from a plot with appropriate scaling

on the y-axis, it can be observed that the TD-ADGA rerun autocorrelation function has a

different oscillation pattern than the reference simulation. A plot displaying the difference

between the TD-ADGA rerun and reference autocorrelation functions can be found in Fig.

S6 of the SI. Considering the Fourier transform shown in Fig. 8b, the TD-ADGA rerun

spectrum coincide almost perfectly with the reference spectrum.

Based on the above results we conclude for the water system that the TD-ADGA algo-

rithm, combined with a final rerun, can provide quantitative dynamics and at the same time

using only a reduced number of SPs.

4.5 Keto-enol tautomerization of salicylaldimine

As a final study, we will investigate the keto-enol tautomerization of salicylaldimine. This

system allows us to test how the TD-ADGA framework fares when applied to a chemical

problem with many modes and complex dynamics. In the tautomerization, a hydrogen is

transferred between a nitrogen and an oxygen atom to form either the keto or enol form of

salicylaldimine. We will in this subsection study the ability of the TD-ADGA to describe

the reaction as salicylaldimine reacts from the enol to the keto form. The following de-

scription of the setup of the TD-ADGA calculation (excluding the construction of the full

reference potential) outlines how the TD-ADGA can be applied to other chemical systems
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and reactions.

To obtain a suitable set of coordinates to describe the intramolecular proton transfer,

we initially optimized the salicylaldimine transition state (TS) for the transfer step. We

then calculated the Hessian at the TS and used this to obtain a set of 42 normal mode

coordinates. Following previous work on this system,40,52 we use only a minimal number of

these modes in order to describe the dynamics at the fully coupled MCTDH level of theory.

We include the modes q0 (TS mode), q15, q17, q19 (displacements of the ring structure), q37

(wagging of outer hydrogens, deformation of the ring structure, and internal displacement of

the transfer hydrogen), and q41 (movement of the transfer hydrogen perpendicular to the TS

mode). The six modes included in the reduced system are illustrated in Fig. 9 together with

the associated harmonic wave numbers. The TS structure and the displacement coordinates

can be found in the SI.

Since our goal is to benchmark the performance of the TD-ADGA method and not a

high-accuracy investigation of the tautomerization, we will limit ourself to the Hartree−Fock

method53,54 with the 6-31G basis set55 to describe the electronic structure of salicylaldimine.

The structure optimization, Hessian calculation, and all SP calculations were all carried out

using the Turbomole program.56,57

Computing the fully coupled six-mode PES for the reduced salicylaldimine system is an

immense task, and we will accordingly represent the PES with restrictions in the included

mode-couplings. We construct a MCR consisting of all one-mode (6) and two-mode combi-

nations (15) and we further add all three-mode combinations including the TS mode (10).

This is obtained through including MCs using Eq.(10) with wm = 1 for all modes except the

TS mode for which wm = 0. This keeps the number of MCs at a manageable level (31) while

giving a high coupling level for the TS mode. This MCR is used both in the TD-ADGA

calculation and in the reference PES.

To obtain the reference PES, we carried out a TI-ADGA calculation using an average

VSCF density obtained from the eight lowest energy modals in the TS mode and the four
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ν̃0 = −1820.01 cm−1 ν̃15 = 626.79 cm−1 ν̃17 = 787.97 cm−1

ν̃19 = 849.61 cm−1 ν̃37 = 1674.76 cm−1 ν̃41 = 2125.96 cm−1

Figure 9: Illustration of the normal coordinates and the harmonic frequencies for each of the
six modes included in the salicylaldimine simulations. Displacement vectors (arrows) with a
length smaller than 0.05 a0 have been excluded. The displacement vectors of mode 15, 17,
19, and 37 have been scaled with a factor of ten while the displacement vectors of mode 0
and 41 have been scaled with a factor of four. Atom labels: hydrogen (grey), carbon (black),
nitrogen (blue), and oxygen (red).
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lowest energy states in the remaining five modals of the system. Further, we did not use the

default threshold for the relative convergence threshold (εrel = 1.0 · 10−2) but a tighter value

of 1.0 · 10−3 in order to get an accurate representation of the PES. To obtain this PES the

TI-ADGA requested a total of 45787 SPs.

In the TD-ADGA simulation we also did not use the default values for the convergence

threshold. Instead we used the values listed in Table 1, which will be repeated here for

convenience. ϵrel = 1.0 · 10−4, ϵabs = 1.0 · 10−6, ϵρ = 1.0 · 10−4, and ϵlin = 1.0 · 10−4. We

note that these thresholds do not mirror the thresholds of the TI-ADGA calculation used to

obtain the reference PES and we will discuss this further at the end of the current subsection.

At the end of the TD-ADGA simulation a total of 64017 SPs had been requested which is an

increase of 39.8 % compared to the TI-ADGA reference. This is not surprising considering

that the TD-ADGA thresholds are considerably tighter than those used in the TI-ADGA

calculation.

In the simulations, the dynamics of the six modes are described at the MCTDH level

including all mode couplings (for the six-mode model) and the dynamics are propagated for

a total of 5000 a.u. (120.9 fs). The initial state used in the dynamics is created from a

ground state VSCF wave function obtained by using only the one-mode part of the reference

potential and where the double well in the q0 mode is replaced by a displaced harmonic

potential. This harmonic potential is defined such that the harmonic frequency is 2493.55

cm−1 and the Gaussian wave function is centered around a displacement of 14.27 a.u. in the

mass and frequency scaled coordinates used in the simulation. Thus, the initial state is a

Hartree product of the VSCF modals obtained from the q15, q17, q19, q37, and q41 one-mode

cuts and a Gaussian modal displaced away from the double well minima of the enol form

towards the TS. The harmonic potential and the corresponding VSCF modal in the q0 mode

are shown in Fig. 10.

Firstly, we compare the flux over the transition state in the q0 mode. The flux is obtained
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Figure 10: Initial state in the q0 TS mode. The solid blue line is the one-mode potential
determined by the reference TI-ADGA potential, the dashed blue line is the harmonic po-
tential used to obtain the initial state, and the green solid line is the one-mode density of
the state obtained from the harmonic potential.

during the two simulations from the expectation value of the flux operator3

Fq0=0 = i[H,Θ(q0)] = −
i

2

(
∂

∂q0
δ(q0) + δ(q0)

∂

∂q0

)
, (55)

where the last equality is only true for rectilinear coordinates and where Θ(q0) is the Heaviside

step function and δ(q0) is the Dirac-delta function.

The fluxes obtained in the two simulations are shown in Fig. 11. It is observed that

the TD-ADGA and reference simulation results are not quantitatively identical, but they

do display a similar qualitative behaviour. For both simulations, the flux initially grows

negative to a minimum value after 3.35 fs after which the flux increases in values until it

reaches a value of zero after approximately 11 fs. This corresponds to some part of the wave

function (initially localized in the right well) passes through the TS to the left well, while

the major part of the wave function is still localized in the right well. For the rest of the

simulation the flux values fluctuates around zero. The fluctuations of the flux value arises

from the wave function oscillating back and forth in both the left and the right well with

enough energy to pass through the TS. At some times more of the wave function is moving
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from the left well to the right well, resulting in a net positive flux, while at at other times

the more of the wave function is moving from the right to the left well, resulting in a net

negative flux. The fluctuations in the flux values decreases with the simulation time, as the

vibrational energy is transferred to other vibrational modes in the system making it harder

to pass through the TS.

During the first 50 fs the two simulations are in good agreement, but after 50 fs they

differ from each other. The flux obtained in the TD-ADGA simulation decreases after the

50 fs, while the flux from the reference is roughly constant for another 10 fs before it starts

to decrease. Thus, after 50 fs the fluxes obtained from the two simulations diverge and are

no longer agreeing. However, the qualitative behaviour of a flux value fluctuating around

zero is the same in the two simulations after this point.

0 20 40 60 80 100 120

Time / fs

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

i
flu

x
/

a.
u

.

×10−3

Reference

TD-ADGA

Figure 11: Flux over the transition state during the TD-ADGA and the reference simulation.

The results for the autocorrelation function and its Fourier transform obtained from the

two simulations are shown in Fig. 12. Fig. 12a shows the values of the autocorrelation

function during the two simulations. Similar to the results for the flux, we observe a very

good agreement for between the two simulations for the initial 50 fs and after this point the

similarity decreases. The results are however, qualitatively the same for the entire simulation

time. Looking at the Fourier transforms in Fig. 12b, a very good agreement between the TD-

ADGA and Reference autocorrelation spectra is observed. The largest difference between

the two autocorrelation spectra is found in the frequency interval between 0.015 and 0.020
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Eh, where two peaks are present. In this region the TD-ADGA peaks are shifted to a higher

frequency and the amplitude of the second peak is smaller.
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Figure 12: Absolute value of the autocorrelation function (a) and its Fourier transform (b)
for the TD-ADGA calculation and the reference calculation. The Fourier transforms have
been normalized to one with respect to the maximum peak of the reference calculation.

We have also carried out a TD-ADGA rerun simulation similar to the other molecular

systems but we observe no changes in the results compared to the TD-ADGA results. Figures

with the TD-ADGA rerun results can be found in the SI.

We have observed that the results of the TD-ADGA simulation varies to some extent

when the convergence thresholds are varied. I.e. qualitatively similar results are obtained,

but the quantitative agreement between different settings varies as the flux-changes appear

at different times. The TD-ADGA thresholds presented above have been chosen as they give

reasonable results while not being so tight that the number of required SPs becomes very

large. However, it seems difficult to push accuracy further, with respect to both converging

internally and with respect to the results obtained with the TI-ADGA PES. In the present fits

we use global polynomial fit functions for each MCs and the details of number, position, and

overall distribution of points influence the obtained fit, and lead to small global variations.
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As expected, tightened thresholds leads to more SPs being required in all MCs. But more

SPs are added in the right well regions, where the wave function is initially located, than

in the left well. It is seemingly delicate to obtain hard convergence in TD-ADGA in such

cases, perhaps due to the global polynomial fit basis causing slightly unbalanced fits and/or

distributing tiny changes globally. We have also observed that varying the order of the

polynomials used in the fitting leads to significant changes in the results even when using the

same thresholds. Contrary, the simulations carried out with the TI-ADGA PES is converged

when using the tighter value described above and varies only slightly when the thresholds are

tightened further. However, changing the fit order in the TI-ADGA calculation also changes

the obtained results. Some dependency of details in the placement of points and choice of

fit-bases in principle applies to any fitting approach. However, the level of instability found

in TD-ADGA is larger than in the TI-ADGA PES. In the latter, the full region of the PES

is determined from the beginning. Thus after the one-mode cuts are converged, SPs in the

higher order MCs are only placed by subdividing boxes and this leads to a much more even

distribution of the SPs in the TI-ADGA. This opens the question whether the TD-ADGA

would be more stable, and even more efficient, by i) introducing protocols for keeping SPs

somewhat more evenly distributed, or ii) replacing the global polynomial fits in each MC

with some kind of local fit functions, such that only nearby SPs dominate the fitted PES in

each region. The latter can support better possibilities for improving the PES locally without

giving global effects that may be partially artificial and potentially cause the PES to be hard

to converge. The implementation and tests of such approaches and the further uncovering

of these finer details are major undertakings and will be included in future research.

5 Summary and Conclusion

We have introduced a quasi-direct quantum dynamics method, where the PES is constructed

as needed by the dynamics by on the fly acquisition of new SPs together with refittings and
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continuous updates of the PES. The suggested TD-ADGA is a generalization of the previous

ADGA (TI-ADGA) where the evolving nuclear density is put central in the decisions of

when and where to update the PES with new SPs. We have verified the approach for both

single- and double-minimum PESs, one- and multi-dimensional PESs, and with and without

time-dependent terms in the Hamiltonian. In all cases, the results obtained with TD-ADGA

are near to the results obtained in reference computations where extensive reference PESs

have been used. In particular, an approach where first the whole dynamics is studied with a

partial restart followed by a final full restart dynamics calculation has shown a high level of

agreement with the results of accurate reference computations. We believe the method opens

a whole new framework for computing quantum dynamics accurately, also for larger systems.

As long as the electronic structure code can run fairly automatic, the whole procedure is

essentially black box, and is a much needed mid-position between using a pre-computed PES

and doing full direct (quantum) dynamics. Still, the method needs to be tested in many new

contexts.

It is important to emphasize that the method is not limited to normal coordinates. If

the density can be provided in any other set of coordinates, this coordinate set can equally

well be used, and this will be exploited in forthcoming work. In the present work, we

have employed the developed methods in conjunction with the TDH and MCTDH methods.

Any other wave function propagation method capable of providing time-dependent reduced

one-body densities will also be applicable in this context. We will in future work use the

methodology in conjunction with the time-dependent vibrational coupled cluster with time-

dependent modals methods,34–36 offering new attractive compromises between accuracy and

efficiency.

In the present work we considered bound dynamics on a single PES. Consideration of

for example photodissociation dynamics should also be fully possible, but requires dynamics

method capable of handling simultaneously the different wave function components with-

out generating artificial density distributions. The extension to simultaneous dynamics on
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multiple PESs and including non-adiabatic couplings is another interesting but complicated

topic of future research, where clearly extension to multi-state ADGA selection criteria are

needed.

Further tuning of the algorithms for the distribution of grid points and the optimal

fit bases for representing the PES can likely lead to improved options for obtaining good

compromises between accuracy and efficiency. Finally, we have in this work emphasised the

learning of the PES based on physical ideas and refitting to known/given analytical forms.

Similar to how TI-ADGA has been combined with probabilistic ML methods like GPR

with encouraging results,18 it is a very promising perspective to use GPR to accelerate the

accurate construction of the PES relative to the number of SPs. This does, however, require

some further extension on the decision criteria as well as significant numerical exploration.
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A Obtaining VSCF solutions localized in space by using

a split B-spline basis

In this appendix we will show how local VSCF solutions can be obtained by dividing a

B-spline basis set into smaller non-overlapping basis sets and then finally re-obtaining the

completeness of the basis.

We consider a basis set of B-spline functions in one-dimension {Bm}, where the basis

functions are B-spline functions of the displacement coordinate of the vibrational mode that

we consider Bm
i (qm). The B-spline have a limited domain where they are non-vanishing

and are thus localized in space. We want to divide {Bm} into a number of subsets with no

overlap so we can find solutions to the time-independent nuclear Schrödinger equation that

are localized in these basis functions and thus localised in space. Due to the localized nature

of B-spline functions we can at any given value qsplit
m divide {Bm} into three subsets, where
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two of the sets, S1 and S2, are completely orthogonal to one-another and the a third set,

which we denote the boundary set b12, is non-orthogonal to both S1 and S2. The three sets are

uniquely defined by defining b12 as containing only B-spline functions with a non-vanishing

value at qsplit
m .

Bm
i (qm) ∈ b12 | Bm

i (qsplit
m ) ̸= 0. (56)

The S1 and S2 sets are then subsequently defined as containing all the remaining B-spline

functions which are localized at qm values that are smaller than and larger than qsplit
m , re-

spectively.

Bm
i (qm) ∈ S1 | Bm

i (qm) = 0 ∀ qm ≥ qsplit
m , (57)

Bm
i (qm) ∈ S2 | Bm

i (qm) = 0 ∀ qm ≤ qsplit
m . (58)

It is possible to come up with other partitioning schemes but for our purposes it is convenient

to make the boundary basis as small as possible as we are interested in solutions in the S1

and S2 sets. The boundary basis thus takes the role of an auxiliary basis that we need to

ensure completeness in the basis.

The three bases now obtained can each be further sub-divided in order to create a further

division of the basis. A primitive B-spline basis of n subdivisions can generally be written

as a set of the basis sets

{Bm} =
{
{Bm

i (qm) ∈ Sk}, {Bm
i (qm) ∈ bkl}

}
, 1 ≤ k ≤ n+ 1, l = k + 1 ≤ n+ 1. (59)

We will in the following keep to the simple example of a single division of the basis as this

is relevant for localizing a solution in a double well potential, but the results can easily be

generalized to further subdivisions.

As mentioned above we have at this point ensured that the two sub-basis sets S1 and S2
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are completely orthogonal to each other as they span different domains in space

〈
Bm,Sk

i

∣∣∣Bm,Sl
j

〉
= 0, if k ̸= l. (60)

We now consider a VSCF calculation in the basis {Bm}. In the VSCF algorithm we need,

for each mode in the system, to solve the eigenvalue equation

FmCm = SmCmEm, (61)

where Fm is the Fock matrix containing all Fock matrix elements between the primitive

B-splines, Sm is the overlap matrix containing the overlap of all the primitive B-splines, Cm

is the coefficient matrix that contain the eigenfunctions as column vectors, and finally Em is

a diagonal matrix containing the eigenvalues for each eigenstate.

Employing the division of {Bm} in Eq. 59, we want to solve the VSCF eigenvalue equation

for each of the sub-basis sets independently. This can be done if the Fm and Sm matrices

are block diagonal in the split basis. In fact it holds that

Fij = Sij = 0 for
(
|Bm

i ⟩ ∈ Sk ∧
∣∣Bm

j

〉
∈ Sl

)
∧ k ̸= l. (62)

However, there are formally some non-zero matrix elements between the boundary region

and the neighboring B-spline functions. We thus enforce additional block diagonality at this

point by requiring that also all other coupling elements between different basis blocks are

set to zero in the Fock and overlap matrices,

Fij = Sij → 0 if
(
|Bm

i ⟩ ∨
∣∣Bm

j

〉
∈ bk,l

)
∧
(
|Bm

i ⟩ ∨
∣∣Bm

j

〉
∈ Sk

)
. (63)

This yields a block-diagonal eigenvalue equation and the VSCF modals that are obtained

are given as linear combinations of the primitive B-spline basis functions where only basis
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functions from one set contributes

∣∣∣ϕ̃m,U
k

〉
=
∑
i

Cm
ik |Bm

i ⟩ , Cm
ik = 0 if |Bm

i ⟩ /∈ U. (64)

The coefficient matrix can thus be divided into three matrices Cm,S1 , Cm,b12 , and Cm,S2

which have dimensions N ×NU where N is the number of B-spline function in {B} and NU

is the number of eigenstates in one of the set U .

VSCF modals from the S1 and S2 sets are all orthonormal

〈
ϕ̃m,Sk
i

∣∣∣ϕ̃m,Sl
j

〉
=δijδkl, (65)

but the VSCF modals from the b12 set are not orthogonal to the VSCF modals from the S1

and S2 sets since Eq. 63 is enforced and not exact. Often we prefer to use an orthonormal

basis so if we want to use a localized VSCF basis in subsequent calculations it is desirable

to orthonormalize it.

To obtain a complete orthonormal basis we must thus ensure that the eigenstates in the

b12 set are orthogonal to the VSCF eigenstates from the S1 and S2 sets. We carry out this

reorthogonalization of the b12 VSCF modals by projecting out the overlap with the VSCF

modals in S1 and S2 sets

∣∣∣ϕ̌m,b12
k

〉
= OS2OS1

∣∣∣ϕ̃m,b12
k

〉
, (66)

where OS1 and OS2 are the orthogonal compliment to the S1 and S2 sets respectively

OSk =1− P Sk , (67)

P Sk =
∑
i

∣∣∣ϕ̃m,Sk
i

〉〈
ϕ̃m,Sk
i

∣∣∣ . (68)

After this projection has been carried out, the new functions spanning b12 are no longer
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eigenstates of the VSCF equation we solved and thus no longer orthonormal among them-

selves. This can be cured by for example a Gram-Schmidt orhogonalization. However, we

follow an approach that preserves as much as possible of the VSCF nature of the basis

while maintaining that as many as possible of the basis functions are purely local. First a

normalization is carried out

∣∣∣ϕ̂m,b12
k

〉
=
∣∣∣ϕ̌m,b12

k

〉(〈
ϕ̌m,b12
k

∣∣∣ϕ̌m,b12
k

〉)−1/2

. (69)

The purified coefficient matrix is a matrix containing the coefficients for expressing
∣∣∣ϕ̂m,b12

k

〉
in the primitive B-spline basis

∣∣∣ϕ̂m,b12
k

〉
=
∑
i

Ĉm
ik |Bm

i ⟩ . (70)

We note that these functions can have contributions from all B-spline basis functions due

the projection carried out and the Ĉ
m

matrix is thus a N ×Nb12 matrix. Next, we chose to

orthonormalize the functions by solving the VSCF eigenvalue equation in this purified b12

basis, which is now orthogonal to all VSCF modals in the S1 and S2 sets. We thus solve the

equations

F̄mC̄m
= S̄mC̄mĒm

, (71)

where the purified basis Fock and overlap matrices are obtained by transforming the matrices

in the primitive basis with the coefficient matrices for the purified basis functions in the b12

set

F̄m
= (Ĉ

m
)TFmĈ

m
, (72)

S̄m
= (Ĉ

m
)TSmĈ

m
. (73)

68

https://doi.org/10.26434/chemrxiv-2023-5s80n ORCID: https://orcid.org/0000-0003-0568-0095 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-5s80n
https://orcid.org/0000-0003-0568-0095
https://creativecommons.org/licenses/by/4.0/


After these VSCF-like eigenvalue equations have been solved we have obtained a set of

orthonormal modals that can be expressed in the primitive B-spline basis through the coef-

ficients

Cm,b12 = Ĉ
m
C̄m

. (74)

This extra VSCF calculation is inexpensive since the boundary basis by construction is very

small.

The above procedure thereby determines a set of localized orthonormal VSCF modals

for the mode m, where we have VSCF modals strictly localized in the two sub-basis sets

S1 and S2 and in addition boundary modals in basis b12 that are orthonormal and have the

major amplitude in the boundary region. The localized VSCF modals are not the optimal

VSCF modals found if they had been optimized freely in the entire basis but for the use

in dynamics calculation the basis is complete and the localization properties can be used

to define physically meaningful basis functions and initial wave functions. This allows for

example the wave packet to be initialized to a VSCF state localized to only one of the wells

in a double well potential. Fig. 13 shows the VSCF solutions for the one-dimensional double

well potential corresponding to the NH3 inversion mode. In Fig. 13a the VSCF solutions

when using the full global basis is shown. Here we observe the well known character of wave

functions delocalized over both wells with alternating parity. In Fig. 13b the localized VSCF

states obtained by using the split basis is shown. Here it is observed that the VSCF modals

are only non-zero in one of the wells a the time. Below the barrier in Fig. 13a, the VSCF

solutions are approximately pairwise degenerate, but this is no longer the case for energies

higher than the barrier. For the localized solutions in Fig. 13b, the solutions localized in

each well are pairwise degenerate for all energies in this system. We note that the low energy

localized VSCF modals have no contribution in the b12 region. This is because the modals

which are mainly localized to the b12 region have a much higher in energy than the modals
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in the S1 and S2 regions.. The two lowest-energy VSCF modals in the b12 regions are shown

in Fig. 14, together with the six split basis VSCF modals also found in Fig. 13b. From Fig.

14 it can be seen that the b12 modals are primarily localized at a displacement value around

zero where the modals from the S1 and S2 sets are zero.
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Figure 13: Lowest-energy VSCF modals for a full and split basis. All modals are displaced
along the energy axis corresponding to their energy. (a) The six lowest-energy VSCF modals
obtained using the full basis. The modals are pairwise colored for states of similar energy but
different parity and the horizontal grey lines indicate the energy of each modal. (b) The six
lowest-energy VSCF modals obtained in the split basis. The modals are pairwise degenerate
and localized in one of the wells. Degenerate modals have the same color and dashed lines
refer to modals localized in the left well while full lines refer to modals localized in the right
well.
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