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Abstract

Yield stress shear thinning/thickening fluids flow through flexible channels, tubes are widespread
in the natural world with many technological applications [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In
this paper, we have derived analytical formulae for the velocity profiles and flow rate using
the Herschel–Bulkley rheological model in the rigid and deformable shallow channels under lu-
brication approximation. To represent deformable walls, we have utilized small displacement
structural mechanics and perturbation theory presented by Gervais et al. [12] and Christov et al.
[13], respectively. The newly derived formulae also facilitate the flow dynamics of Newtonian
fluids, power–law fluids, and Bingham fluids as its limiting cases, which have been previously
derived in the literature [12, 13, 14, 15]. We find that the deformability increases the effective
channel height and the flow rate in the channel. We find many scalings for the flow rate under
different regimes of applied pressure and the deformability parameter. We also find that increas-
ing the yield stress leads to a decrease in the velocity in the plug flow as well as in the non–plug
flow regions. Increasing yield stress also leads to increasing the yield surface height and the solid
plug in the central region due to which decreasing in the flow rate. We also find that the shear
thinning/thickening index does not affect the plug height, although as the index increases, the
flow rate starts to decrease due to the corresponding increase in shear thickening of the material.

Keywords: Herschel–Bulkley fluids, yield stress fluid flow, deformable channels, lubrication
approximation.

1 Introduction

Herschel–Bulkley fluids are a type of non–Newtonian fluid that exhibits yield stress and their flow
behavior is either shear thinning or shear thickening which are described by the Herschel–Bulkley
rheological model. When these fluids flow in flexible channels, several interesting and important
applications arise. Examples include in food processing where these fluids are commonly found
in food products such as ketchup, mayonnaise, and yogurt. In food processing, flexible channels
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(e.g., tubes, pipes, and hoses) are used for conveying and distributing these yield stress fluids
[1, 2, 3]. Understanding the flow behavior of Herschel–Bulkley fluids in flexible channels is
crucial for optimizing the processing conditions, preventing blockages, and ensuring consistent
product quality [4, 5, 6]. In the oil and gas industry, drilling muds and crude oil are often
treated as Herschel–Bulkley fluids due to their non–Newtonian behavior. When transporting
these fluids through flexible pipelines or risers, it’s essential to account for their yield stress
and shear thinning properties to accurately predict pressure drops and flow characteristics [7].
Herschel–Bulkley fluids are also encountered in various biomedical applications such as blood flow
in vessels and transport of synovial fluid in flexible joints [8, 9]. Understanding the behaviour of
such non–Newtonian fluids in flexible channels is crucial for modeling blood flow in arteries, veins
and predicting flow patterns in flexible tissues [10, 11]. In polymer processing industries, such as
extrusion and injection molding, Herschel–Bulkley fluids are also used. During these processes,
molten polymers flow through flexible channels to form various products [16, 17, 18, 19, 20].
Waste sludges and slurries often exhibit Herschel–Bulkley behavior too. In waste management
and mining industries, these materials are transported through flexible pipelines and channels [21,
22, 23, 24]. A proper understanding of their flow behavior is essential for efficient handling and
processing. Some pharmaceutical formulations such as coatings, ointments, and creams, exhibit
Herschel–Bulkley behavior. In pharmaceutical manufacturing processes that involve pumping
and filling these formulations, understanding the flow behavior in flexible channels is crucial to
ensure accurate dosing and product uniformity [25, 26, 27, 28]. Herschel–Bulkley fluids are also
found in various environmental systems, such as wastewater treatment, sediment transport in
rivers, and the flow of mudslides. In these scenarios, the flow behavior in flexible channels play
a vital role in understanding and managing environmental processes [29, 30, 31, 32].

In the context of non–Newtonian fluids, the methods devised to handle various non–Newtonian
flows in deformable conduits encounter significant analytical & numerical challenges and hence
require computations [33, 34, 35, 36]. Consequently, the progress in their analytical develop-
ment and utilization is hindered, and their application is limited to specific cases with notable
approximations. The existing literature reveals that substantial advancements in most aspects
of non–Newtonian flow in deformable conduits are lacking, leaving several research gaps where
common problems remain unexplored. In the past, several endeavors have been undertaken to de-
velop models for fluid flow in deformable conduits. The majority of these attempts have focused
on Newtonian fluids, with only a few considering non–Newtonian rheologies. One well–known
example of the former is the widely adopted one–dimensional (1D) Navier–Stokes flow model,
specifically applied to deformable tubes in various studies [37, 38, 39, 40]. The limitation of this
1D model is that it is valid only for Newtonian flows with a large number of parameters, which
makes it tough to use for any practical applications. Sochi [41] studied the flow of Newtonian
and power–law fluids in elastic tubes. We note that both these models: the (1D) Navier–Stokes
flow model and the model derived by Sochi [41] are not for the channel studies. Fusi et al. [42]
proposed a lubrication approximation method for solving Bingham plastic flows in symmetric
long channels of non–constant width. This model did not take into considerations the effects
of shear thinning and shear thickening properties of the fluid. Also, it did not account for the
flexibility of the channel walls. Panaseti et al. [43] extended the method of Fusi et al. [42] to solve
the flow of Herschel–Bulkley fluids to include the shear thinning and shear thickening properties
of the fluid with pressure–dependent consistency index and yield stress and derived analytical so-
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lutions for channels with linearly varying width. However, this investigation specifically focused
on rigid channel walls. Fusi and Farina [44] extended the lubrication-approximation method for
axisymmetric viscoplastic flows in long tubes of varying radii assuming rigid walls of the tube.
Their method has been applied by Housiadas et al. [45] to solve the flow in a tube of constant
radius of a Bingham plastic with yield stress and plastic viscosity varying linearly with pressure.
Fusi et al. [46] applied the method of Fusi and Farina [44] to study the flow of a Bingham plastic
in tubes of varying radius, e.g. expanding or contracting tubes, or tubes with a stenosis. This
model focused on tubes and did not take into account the influence of fluid characteristics that
lead to shear thinning and shear thickening . Vajravelu et al. [10], have made efforts to model
the flow of Herschel–Bulkley fluids in elastic tubes as a representation of non–Newtonian be-
havior. Vajravelu et al. [10] arrive at a broad deduction regarding the behavior of yield stress
fluids within flexible tubes, wherein they ascertain that the flow rate increases with tube radius
and deformability. Furthermore, they establish that both yield stress and shear thickening ef-
fects lead to a reduction in the flow rate. Nevertheless, this research, unlike our research, was
conducted using tubes rather than channels. In the forthcoming results and discussions in this
paper, we observe that the findings align with the generic conclusions drawn by Vajravelu et al.
[10] regarding flow in tubes, which also holds for flow in channels. Moreover, we uncover more
insights about the impact of shear thinning and thickening indices on plug flow, the correlation
between flow rate, thinning, thickening indices, and the applied pressure at the reservoir.

In order to model flows in channels, the Poiseuille law Q = W (−∆p/(12ηL))H3 is indeed a
significant formula in fluid dynamics, describing the relationship between the flow rate (flux) Q
of a viscous incompressible fluid through a rigid tube and the pressure difference between the
ends of the tube. The equation indicates that the flow rate is directly proportional to the width
of the channel W , the pressure difference along the length L of the channel ∆p/L, and to the
cubic power of the channel height H3. The flow rate Q is inversely proportional to the viscosity
of the fluid η. A similar Poiseuille law relationship exists for rigid tubes with constant diameter
and under laminar flow conditions. However, in the vascular beds of mammals, especially in the
circulation of blood through arteries and arterioles, the pressure–flow relationship is non–linear,
deviating from the linear behavior predicted by the Poiseuille law. This non–linearity can be
attributed to several factors such as the elasticity of the walls, the non–Newtonian nature of the
fluid (such as for Herschel–Bulkley or viscoelastic fluids).

The deformability of a shallow channel plays a vital role in impacting both the effective pres-
sure drop across the channel and the resultant flow configuration [12, 13]. This is primarily
because the flow rate is greatly influenced by the size of the cross–sectional dimensions, showing
a strong relationship to the fourth power [13]. Consequently, even slight modifications in the
geometry of the channel can lead to substantial changes in the pressure drop and flow charac-
teristics. Gervais et al. [12] introduced a satisfactory model to explain the alteration in flow rate
caused by deformations, linking a Hookean elastic response with the lubrication approximation
for the Stokes flow. However, their model includes a parameter that requires empirical deter-
mination for each channel shape. Christov et al. [13] establish a connection to the parameter
introduced by Gervais et al. [12] through a perturbation technique for the flow. In this study, we
adopt the small displacement structural mechanics from Gervais et al. [12] and the perturbation
theory as presented by Christov et al. [13] to formulate a model for a deformable channel wall for
the yield stress fluid flows. Under the lubrication assumption in shallow conduits (particularly,

3

https://doi.org/10.26434/chemrxiv-2023-jb7xw ORCID: https://orcid.org/0000-0003-4544-7036 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-jb7xw
https://orcid.org/0000-0003-4544-7036
https://creativecommons.org/licenses/by-nc-nd/4.0/


where the ratio of height to width and height to length are both considered small), we investigate
the impact of channel flexibility on velocity profiles and the flow rate. Additionally, we analyze
the influence of fluid properties such as yield stress and shear thinning/thickening index along
with varying pressure conditions. 1

FIG. 1. Schematic diagram of the upper-half part of the shallow channel of length L and the cross-section of width W , and
height H. The cartesian axis is taken at the mid-plane of the channel.

Figure 1: Schematic diagram of the upper–half part of the shallow channel of length L, cross–sectional
width W , and height H. The Cartesian axis is taken at the mid–plane of the channel.

We consider a shallow rectangular channel characterized by dimensions: length L, width W ,
and height H, satisfying the conditions H ≪ W and H ≪ L, as depicted in Figure 1. The upper
surface of this channel is comprised of an elastic sheet securely attached along the edges of the
vertical channel wall enabling it to undergo deformation. A pressure difference prompts a flow
rate Q in the x direction. The flow’s normal stresses acting on the walls cause the flexible upper
wall of the channel to deform upwards in the positive z–direction, away from the x−−y plane.
This deformation shapes the constant configuration of the channel’s top surface, represented as
z = H(x, y) = Ho + δ(x, y), where δ(x, y) symbolizes the vertical deformation, as illustrated in
Figure 1. At x = 0, a pressure field p(x) is introduced at the reservoir, while the exit pressure
is considered zero for reference. Presently, we abstain from assuming any specific magnitude for
the displacement. However, we anticipate that, given the smallness of the pressure field, the
magnitude |δ| remains significantly smaller than W within our context.

The structure of the paper is outlined as follows. Section 2 delineates the governing equations,
while the Section 3 describes the model’s derivation. In the Section 4, we present and analyze
the results. This includes an exploration of the impact of yield stress on the necessary pressure
difference to induce flow, as well as its influence on the yield surface’s shape. Additionally, we
probe the consequences of the shear thinning/thickening indices on both the plug and shearing
velocity profiles along with the flow rate.

2 Governing equations

2.1 Cauchy equations

The Cauchy’s equation and the continuity equation for an incompressible fluid are given by
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ρ

(
∂v

∂t
+ (v ·∇)v

)
= −∇p− ρg +∇.τ ,

∇ · v = 0,

(1a,b)

where v = [u v w] is the fluid velocity, p is the fluid pressure, ρ is the fluid density, g is the
gravitational body force, and τ is the total deviatoric stress tensor.

2.1.1 Boundary conditions

Boundary conditions play an important role in determining the solution. We assume that the
fluid cannot penetrate the channel wall. Therefore, on the boundary Γ

v · nwall = 0, (2)

where nwall is the unit outward normal vector on the wall. We assume the no–slip boundary
condition at the fluid–solid interface, which leads to

v.mwall = 0, (3)

where mwall is the tangential unit vector along the channel wall. The symmetry boundary
conditions at the centreline of the channel z = 0 demand that the velocity normal to the centreline
and the velocity gradient vg tangential to the centreline (and with in the plug) are both zero.
These two conditions can be expressed as

v · ncentreline = 0, and vg ·mcentreline = 0, (4a,b)

respectively, where ncentreline and mcentreline are the unit normal and unit tangent vector to the
symmetry boundary, respectively.

3 The model

3.1 Structural mechanics: small displacement mechanics

Gervais et al. [12] performed the scaling analysis and showed that if the top wall is thick and the
deformations are shallow, then the internal strains along vertical (δ/W along z direction) and
lateral (∆W/H) directions are proportional to p/E, where p is the pressure and E is the elastic
modulus. For H/W ≪ 1, the strains could be rearranged to δ/H = cpW/EH, where δ is the
change in height due to shallow deformations and c is a unknown constant. Therefore Gervais
et al. [12] approximated, the width–averaged height of the channel along the length as

H(x) = Ho

(
1 + α

p(x)W

EHo

)
, (5)

where p(x) is the pressure at any longitudinal direction x and 0 < α < 2/3. Young’s modulus
of a graphene membrane is E = 1 TPa. Ho is the initial height of the channel when δ = 0.
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However, the α is a fitting parameter that varies with the geometry of the channel and needs
to be calculated explicitly from the experiments. To overcome this issue, [13] performed the
perturbation analysis using the isotropic quasi–static plate bending and the Stokes equations and
found that for rectangular cross–section α = (1/60)(W/T )3(1− ν2), where T is the thickness of
the upper horizontal wall and µ is the Poisson’s ratio of the material (for incompressible material
ν = 0.5 [47]).

3.2 Herschel–Bulkley fluid model

We study the flow of yield stress, shear thinning , and thickening fluids in the flexible channels.
To model the fluid behavior, we use the Herschel–Bulkley fluid model, which in one dimension
is given by

γ̇ = 0, if τ < τy

τ = τy + ηoγ̇
n, if τ ≥ τy

(6)

where τ and τy are the stress and yield stress, respectively. γ̇ is the shear-rate. ηo and n are the
consistency and shear-thinning/thickening indexes, respectively. If n = 1, the model represents
the Bingham model. For τy = 0, the model is the power–law fluid. For the cases, n < 1 and
n > 1 represent the shear thinning and shear thickening fluids, respectively. Finally, τy = 0 and
n = 1 represents the Newtonian fluids.

3.3 2D planar model

We consider fully developed, steady laminar flow of an incompressible yield stress Hershcel–
Bulkley fluid between two parallel plates under lubrication limits in a rectangular channel of
height H and width W as shown schematically in Figure 1. The channel is assumed to be
sufficiently long and wide in comparison to the height (that is, H/W ≪ 1, and H/L ≪ 1) to use a
two–dimensional planar model [13, 48, 19]. We also exclude any hydrodynamic instability caused
in the transience flow–field due to pulsatory pressure. We further assume a very small expansion
or contraction due to deformability in comparison to the height of the channel, δ/H ≪ 1, which
is caused by the pressure difference between the fluid and the atompheric conditions in the
deformable channel. The mid–plane between the plates will be taken as the origin with the flow
domain extending from z = −H/2 to z = +H/2.

Further suppose that the Cartesian velocity components u and w along longitudinal and
vertical directions x and z, respectively. The z coordinate is measured from the channel’s mid–
plane. Therefore, using the lubrication assumptions in the shallow cross–section of the channel
as shown in [13], we retain the leading order terms. Using the impermeable solid–wall boundary
condition, we get w(z = −H(x)/2) = w(z = H(x)/2) = 0. In the leading order terms, using the
impermeable solid-wall boundary condition, the normal velocity vanishes everywhere, that is,

w(z, t) = 0. (7)

Further, we neglect the pressure gradient and velocity components normal to the channel wall.
Also, we neglect all body forces. Under these assumptions, for H/W ≪ 1, and H/L ≪ 1, we show
a fluid element ABCDD′A′B′C ′ in Figure 1. The force balance on this element can be calculated

as the pressure p and p+
∂p

∂x
dx acting on the AA′D′D, and BB′C ′C surfaces, respectively along
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the positive and negative x directions. Also, the shear stress τxz is acting along the negative x
direction on both the surfaces DD′C ′C and AA′B′B. Dropping the xz notation from the stress,
the force balance can be written as [15]

2Wpz − 2W
(
p+

∂p

∂x
dx
)
z = 2Wτ dx, (8)

which implies

τ = −∂p

∂x
z, (9)

where τ is the shear stress for the Herschel–Bulkley fluids. From equation (6), τ is given by

τ = τy + ηo

(
− ∂u

∂z

)n

, (10)

and ηo is a Herschel–Bulkley consistency index (Bingham consistency index for n = 1). Using
equation (9) and (10), we get

−∂u

∂z
=

1

η
1/n
o

(
− ∂p

∂x
z − τy

)1/n

. (11)

Integrating equation (11), we get

−u =
1

η
1/n
o

(
− ∂p

∂x

)(− ∂p

∂x
z − τy

)(1+n)/n

+ c1, (12)

From equation (9), the stress on the upper channel wall is

τwall = −∂p

∂x

H

2
, (13)

Also, the yield surface Hp or the plug height below which the flow will be like a plug says that

at z = Hp,
∂u

∂z
= 0. This implies from equations (9) and (10) that

Hp = τy

/(
− ∂p

∂x

)
. (14)

Using the boundary condition u = 0 at z = H/2, and equations (13) and (14) in equation (12),
we get

u =
n

(n+ 1)

H

2

(
τwall

ηo

)1/n[(
1− 2

Hp

H

)(1+n)/n

−

(
2
z

H
− 2

Hp

H

)(1+n)/n]
. (15)

From above, the velocity in the plug that is up at z = Hp, is

up =
n

(n+ 1)

H

2

(
τwall

ηo

)1/n(
1− 2

Hp

H

)(1+n)/n

. (16)
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It is important to note that the equations (15), and (16) for the flow velocities are only applicable
when Hp ≤ H/2, otherwise both the u and up are zero in the channel and the fluid is completely
plugged without any motion. The volume flow rate in a deformable nanochannel is given by

Q = 2W

∫ H(x)/2

0

u dz = 2W

∫ Hp

0

up dz + 2W

∫ H(x)/2

Hp

u dz. (17)

Integrating the right–hand–side of the above equation (17) and using equations (13), (14) with
rearrangment, we get

Q = 2W
n

(2n+ 1)(n+ 1)

(
− ∂p

∂x

1

2ηo

)1/n

(H − 2Hp)
(n+1)/n

(
(n+ 1)H

4
+

nHp

2

)
. (18)

Now, from equation (8), that

H(x) = Ho

(
1 + α

p(x)W

EHo

)
= Ho

(
1 + βp(x)

)
, (19)

where β = α
W

EHo

. Substituting equation (19) in equation (18), we integrate along the channel

length L by assuming a constant pressure gradient and a pressure p(x) at x with respect to the
pressure at the outlet of the channel, where we assumed the outlet pressure p(x = L) = 0. This
yields∫ L

x

Qndx = −

(
2Wn

(2n+ 1)(n+ 1)

)n
1

2ηo

∫ 0

p(x)

(
Ho

(
1 + βp(x)

)
− 2Hp

)n+1
(
(n+ 1)Ho

(
1 + βp(x)

)
4

+
nHp

2

)n

dp.

(20)

=⇒ Qn(L− x) =

(
2Wn

(2n+ 1)(n+ 1)

)n
1

2ηo

[
(Ho − 2Hp)

n+1

(
(n+ 1)Ho + 2nHp

4

)n

∫ p(x)

0

(
1 +

βp(x)Ho

(Ho − 2Hp)︸ ︷︷ ︸
R1

)n+1(
1 +

(n+ 1)Hoβp(x)

(n+ 1)Ho + 2nHp︸ ︷︷ ︸
R2

)n

dp

]
.

(21)

Under small displacement assumption, where βp(x) ≪ 1 such that R1 ≪ 1, R2 ≪ 1, therefore
the expression in the integral can we approximated to the leading order of βp(x) as(
1 +

βp(x)Ho

(Ho − 2Hp)︸ ︷︷ ︸
R1

)n+1(
1 +

(n+ 1)Hoβp(x)

(n+ 1)Ho + 2nHp︸ ︷︷ ︸
R2

)n

=

(
1 +

(n+ 1)βp(x)Ho

(Ho − 2Hp)
+

n(n+ 1)Hoβp(x)

(n+ 1)Ho + 2nHp

)

+O((βp(x))2) + ....

(22)
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Using the leading order terms of the integral from equation (22) in equation (21), we integrate
to

Qn(L− x) =

(
2W

n

(2n+ 1)(n+ 1)

)n
1

2ηo

[
(Ho − 2Hp)

n+1

(
(n+ 1)Ho + 2nHp

4

)n

(
p(x) +

(n+ 1)βp2(x)Ho

2(Ho − 2Hp)
+

n(n+ 1)Hoβp
2(x)

2(n+ 1)Ho + 4nHp

)]
.

(23)

Using x = 0, where p(x) = pin = −∆p (as px=L = 0), we rewrite the above expression as

Q =
2Wn

(2n+ 1)(n+ 1)

(
−∆p

2ηoL

)1/n[
(Ho − 2Hp)

(n+1)/n

(
(n+ 1)Ho + 2nHp

4

)
(
1 +

(n+ 1)β(−∆p)Ho

2(Ho − 2Hp)
+

n(n+ 1)Hoβ(−∆p)

2(n+ 1)Ho + 4nHp︸ ︷︷ ︸
X

)1/n]
.

(24)

It’s important to emphasize that equations (24) governing the flow rate is valid exclusively when
Hp ≤ H/2. Otherwise the flow is completely chocked. We could have another asymptotic limit,
where βp(x) ≫ 1 such that R1 ≫ 1, R2 ≫ 1. In this limit, the perturbation due to flexibility is
large and the predicted flow rate can have chances of large errors. Under this limit, the expression
in the integral in equation (21) can be approximated to(
1 +

βp(x)Ho

(Ho − 2Hp)︸ ︷︷ ︸
R1

)n+1(
1 +

(n+ 1)Hoβp(x)

(n+ 1)Ho + 2nHp︸ ︷︷ ︸
R2

)n

≈

(
βp(x)Ho

(Ho − 2Hp)

)n+1(
(n+ 1)Hoβp(x)

(n+ 1)Ho + 2nHp

)n

,

(25)

which gives the flow rate as

Q =
Wn

2(2n+ 1)

(
(−∆p)2n+2

2ηoL(2n+ 2)

)1/n[(
βHo

)(2n+1)/n
]
. (26)

3.4 Limiting cases

3.4.1 For the Bingham fluid flow in flexible channel: n = 1

Using equation (24) under the small displacement assumption for the Bingham fluid flow, that
is, n = 1, we get

Q =
W

12

(
−∆p

ηoL

)[(
Ho − 2Hp

)2(
Ho +Hp

)(
1 +

β(−∆p)Ho

(Ho − 2Hp)
+

Hoβ(−∆p)

2Ho + 2Hp

)]
. (27)

To the best of our knowledge, we have not seen the above derived equation (27) in the literature
so far.

9

https://doi.org/10.26434/chemrxiv-2023-jb7xw ORCID: https://orcid.org/0000-0003-4544-7036 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-jb7xw
https://orcid.org/0000-0003-4544-7036
https://creativecommons.org/licenses/by-nc-nd/4.0/


3.4.2 For the Newtonian fluid flow in flexible channel: n = 1, Hp = 0

Similarly, using equation (24) under the small displacement assumption for the Newtonian fluid
flow, that is, n = 1, τy = 0 =⇒ Hp = 0, we get

Q =
W

12

(
−∆p

ηoL

)
H3

o

(
1 +

3β(−∆p)

2

)
. (28)

The above expression (28) is also derived by Gervais et al. [12], Christov et al. [13], Garg [14] for
β|∆p| ≪ 1.

3.4.3 For the Herschel–Bulkley fluid flow in the rigid channel: β = 0

Using equation (24) under the small displacement assumption for the Herschel–Bulkley fluid flow
in the rigid channel, that is, β = 0, we get

Q =
2Wn

(2n+ 1)(n+ 1)

(
−∆p

2ηoL

)1/n[(
Ho − 2Hp

)(n+1)/n
(
(n+ 1)Ho + 2nHp

4

)]
. (29)

A similar expression but for the Bingham fluid flow in rigid channel is given in Chhabra and
Richardson [15].

3.4.4 For the Bingham fluid flow in the rigid channel: β = 0, n = 1

Using equation (24) for the Bingham fluid flow in the rigid channel, we get

Q =
W

12

(
−∆p

ηoL

)(
Ho − 2Hp

)2(
Ho +Hp

)
, (30)

which is also given in Chhabra and Richardson [15].

3.4.5 For the power–law fluid flow in the rigid channel: β = 0, τy = 0

Using equation (24), for the power–law fluid flow in the rigid channel, we get

Q =
HoWn

(2n+ 1)

(
1

2

)(1+n)/n(
−∆p

ηoL

)1/n(
Ho

)(n+1)/n

, (31)

which is also given in Chhabra and Richardson [15].

3.4.6 For the Newtonian fluid flow in the rigid channel: β = 0, n = 1, Hp = 0

Using equation (24) for the Newtonian fluid flow in the rigid channel, we get

Q =
W

12

(
−∆p

ηoL

)
H3

o , (32)

which is a classical result of the Hagen–Poiseuille flow in channels as given in [49, 50, 51, 15, 14].
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4 Results and discussion

4.1 Effect of yield stress on the flow in the rigid and deformable channel
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FIG. 1. Velocity profiles at varying yield stress for the rigid (β = 0, in black) and deformable (β = 0.005, in red) channels.
The Solid line, dashed line, and dotted lines show the data at yield stress values of 0 Pa, 2 Pa, and 4 Pa, respectively.

Figure 2: Velocity profiles at varying yield stress for the rigid (β = 0, in black) and deformable (β =

0.005, in red) channels. The solid line, dashed line, and dotted lines show the data at yield stress values
of 0 Pa, 2 Pa, and 4 Pa, respectively.

For the discussions in the results section, we set Ho = 0.1 m, L = 0.5 m, W = 1 m,
and ηo = 0.7 Pa everywhere. From equation (14), we calculate the values of plug height as
Hp = τyL/|∆p|. Using equations (15) (for z > Hp) and (16) (for 0 ≤ z ≤ Hp), we show the
velocity profiles at |∆p| = 60 Pa, n = 1 at varying yield stress for the rigid (β = 0 Pa−1, in the
black color), and deformable (β = 0.005 Pa−1, in the red color) channels in Figure 2. The solid
line, dashed line, and dotted lines show the data at yield stress values of τy = 0 Pa, τy = 2 Pa,
and τy = 4 Pa, respectively. We find that due to flexibility (β = 0.005 Pa−1) in the channel, the
channel height increases by 30%.

Further for τy = 0 Pa, we find that the deformability parameter increases from 0 to 0.005 Pa−1.
The maximum velocity at the centerline increases from approximately 0.21 m/s to 0.36 m/s.
This trend has been found at non–zero yield stress values too. In the presence of yield stress,
the velocity profiles are divided into two parts, the plug velocity within the central region where
the bulk of the fluid moves with a constant velocity as a solid material. On the other hand, for
z > Hp, the velocity profile is dictated as the fluid is flowing normally with finite shear stresses.
We find that for τy = 2 Pa, the centerline plug velocity increases from 0.09 m/s in the rigid
channel to 0.19 m/s in the deformable channel with β = 0.005 Pa−1 as shown with dashed black
and red lines respectively. A similar increment due to deformation is found at τy = 4 Pa. This
indicates that the deformability increases the velocity and hence the flow rate in the deformable
channel for a given pressure and material properties. We also find that as the yield stress is
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increasing, the plug height keeps increasing and the maximum velocity decreases which also
decreases the flow rate in the channel.

4.2 Effect of shear-thinning/thickening on the flow in the rigid and deformable
channel

1

0 0.05 0.1 0.15 0.2 0.25 0.3
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plug flow

region

FIG. 1. Velocity profiles at varying shear thinning and thickening index for the rigid (β = 0, in black), and deformable
(β = 0.005, in red) channels. The Solid line, dashed line, and dotted lines show the data at shear thinning/thickening index
values of n = 0.8, n = 1, and n = 1.2, respectively. The central region within the dashed blue line indicates the plug flow
region.

Figure 3: Velocity profiles at varying shear thinning and thickening index for the rigid (β = 0, in black)
and deformable (β = 0.005, in red) channels. The solid line, dashed line, and dotted lines show the
data at shear thinning/thickening index values of n = 0.8, n = 1, and n = 1.2, respectively. The central
region within the dashed blue line indicates the plug flow region.

We show the velocity profiles at |∆p| = 60 Pa, τy = 2 Pa at varying shear thinning/thickening
index n for the rigid (β = 0 Pa−1, in the black color), and deformable (β = 0.005 Pa−1, in the
red color), channels in Figure 3. The solid line, dashed line, and the dotted lines show the data
at shear thinning/thickening index n of n = 0.8, n = 1, and n = 1.2, respectively. The central
region within the dashed blue line indicates the plug flow region.

We find that due to non–zero yield stress in all predictions, the velocity profiles are divided
into two parts, the plug velocity in the central region and the normal shearing velocity towards
the channel wall. For n = 1 (Bingham fluid), as the deformability parameter increases from 0
to 0.005 Pa−1. The maximum velocity at the centerline increases from approximately 0.09 m/s
to 0.2 m/s as shown with dashed lines. This trend has been found in shear thinning (n = 0.8),
and shear thickening (n = 1.2) materials too. We find that for n = 0.8, the centerline plug
velocity increases from 0.12 m/s in the rigid channel to 0.3 m/s in the deformable channel with
β = 0.005 Pa−1 as shown with solid black and red lines respectively. A similar increment due to
deformation is found for n = 1.2. This indicates that the deformability increases the velocity and
hence the flow rate in the deformable channel for a given pressure and material properties. We
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also find that as the shear thinning/thickening index n is increasing, although the plug height
remains the same but the maximum velocity decreases which also decreases the flow rate in the
channel.

4.3 Effect of yield stress and shear thinning/thickening index on the flow rate in
the rigid channel 1
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FIG. 1. We show the flow rate in the rigid (β = 0 Pa−1) channel at varying ∆p, and shear thinning/thickening index n at
τy = 0 Pa in (a), and τy = 1 Pa in (c), respectively. The red arrow indicates the increasing values of shear thinning/thickening
index n with 0.5, 0.75, 1, 1.25, 1.5, 1.75, 10, 20, and 500 from blue triangle to red circles, respectively. In figures (b), and (d),
we show the corresponding plug height with varying pressure for all n at τy = 0 Pa, and τy = 1 Pa, respectively.

Figure 4: We show the flow rate in the rigid (β = 0 Pa−1) channel at varying |∆p|, and shear thin-
ning/thickening index n at τy = 0 Pa in (a), and τy = 1 Pa in (c), respectively. The red arrow indicates
the increasing values of shear thinning/thickening index n with 0.5, 0.75, 1, 1.25, 1.5, 1.75, 10, 20, and
500 from blue triangle to red circles, respectively. In Figures (b) and (d), we show the corresponding
plug height with varying pressure for all n at τy = 0 Pa, and τy = 1 Pa, respectively.

Using equation (24), we calculate the flow rate in the rigid (β = 0 Pa−1) channel at varying
|∆p|, and shear thinning/thickening index n at τy = 0 Pa in Figure 4(a), and τy = 1 Pa in Figure
4(c), respectively. The red arrow indicates the increasing values of shear thinning/thickening
index n with 0.5, 0.75, 1, 1.25, 1.5, 1.75, 10, 20, and 500 from blue triangle to red circles,
respectively. We find that for n < 1, the flow rate curve is like an upward parabola, whereas for
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n = 1, it is a straight line and n > 1, it is a rightward parabola. Due to that, for |∆p| ≤ 10 Pa, the
flow rate for n < 1, is lower than for n > 1, whereas it becomes the opposite for |∆p| > 10 Pa.
In the case of a rigid channel wall, the flow rate scales as Q ∼ (|∆p|)1/n. We find that for
n = 10, 20, the Q is weakly dependent on |∆p|, further as the n ≫ 1 such as for n = 500 (shown
with red asterisk), the flow rate becomes independent to |∆p|. This behaviour is consistent with
the scaling also, where Q ∼ (|∆p|)1/n and as n =⇒ ∞, Q ∼ (|∆p|)0 . In Figure 4(b), we show
the corresponding plug height with varying pressure for all n. We find that, for τy = 0 Pa, the
Hp = 0 for all n and the data collapse on the same line.

On the other hand for τy = 1 Pa in Figure 4(c), We find that below |∆p| = 10 Pa, Hp = Ho/2,
thus the material inside the channel is plugged and can not flow, hence show no flow rate. As
the pressure difference increases, the flow rate starts to build and show similar trends as in
Figure 4(a). We also find that, for given |∆p|, and n, the flow rate decreases as yield stress is
increased. We show the corresponding plug height at τy = 1 Pa with varying pressure for all n
in Figure 4(d). We find that the plug height Hp collapse on the same curve for all n. We find
that for τy = 1 Pa, Hp = Ho/2 for |∆p| ≤ 10 Pa. As the pressure increases the Hp monotonically
decreases as Hp ∼ |∆p|−1, which is consistent with equation (14). We also find that the shear
thinning/thickening index does not affect the plug height which is also consistent with what we
saw in the velocity profiles in the previous section 4.2.

4.4 Effect of yield stress and shear-thinning/thickening index on the flow rate in
the deformable channel

We calculate the flow rate in the deformable (β = 0.005 Pa−1) channel at varying |∆p|, and
shear thinning/thickening index n at τy = 0 Pa in Figure 5(a), and τy = 1 Pa in Figure 5(c),
respectively. The red arrow indicates the increasing values of shear thinning/thickening index n
with 0.5, 0.75, 1, 1.25, 1.5, 1.75, 10, 20, and 500 from blue triangle to red circles, respectively.
We find that for n ≤ 1.25, the flow rate curve is like an upward parabola, whereas for n > 1.25, it
is a rightward parabola. Due to that, for |∆p| ≤ 10 Pa, the flow rate for n ≤ 1.25, is lower than
for n > 1.25, whereas it becomes opposite for |∆p| > 10 Pa. In case of deformable wall channel,
the flow rate scales as Q ∼ (|∆p|)1/n for X ≲ O(10−1) (the X , which is shown as the under–brace
term in equation (24). On the other hand the flow rate scales as Q ∼ (|∆p|)2/n for X ∼ O(100).
We truncated our expansion in equation (23) because of the small displacement deformability,
otherwise for much larger pressure, we need to take those terms into account which gives the
scaling as Q ∼ (|∆p|)2+2/n as shown in equation (26) (although the theory could predict large
errors in this asymptotic limit. For n = 1, we find that the flow rate Q ∼ (|∆p|)4, which is
consistent as found in [13, 12, 14]). In Figure 5(b), we show the corresponding plug height with
varying pressure for all n. Also, for τy = 0 Pa, Hp = 0.

On the other hand for τy = 1 Pa in Figure 5(c), we find that below |∆p| = 10 Pa, Hp = H/2,
thus the material inside the channel is plugged and can not flow, hence show no flow rate. As the
pressure difference increases, the flow rate starts to build and show similar trends as in Figure
5(a). We also find that for given |∆p|, and n, the flow rate decreases as yield stress is increased.
We show the corresponding plug height at τy = 1 Pa with varying pressure for all n in Figure
5(d). We find that for τy = 1 Pa, Hp = Ho/2 for |∆p| ≤ 6.5 Pa. As the pressure increases,
Hp monotonically decreases as Hp ∼ |∆p|−1. We also find that in the case of the deformable
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FIG. 1. We show the flow rate in the deformable (β = 0.005 Pa−1) channel at varying ∆p, and shear thinning/thickening
index n at τy = 0 Pa in (a), and τy = 1 Pa in (c), respectively. The red arrow indicates the increasing values of shear
thinning/thickening index n with 0.5, 0.75, 1, 1.25, 1.5, 1.75, 10, 20, and 500 from blue triangle to red circles, respectively.
In figures (b), and (d), we show the corresponding plug height with varying pressure for all n at τy = 0 Pa, and τy = 1 Pa,
respectively.

Figure 5: We show the flow rate in the deformable (β = 0.005 Pa−1) channel at varying |∆p|, and
shear thinning/thickening index n at τy = 0 Pa in (a), and τy = 1 Pa in (c), respectively. The red
arrow indicates the increasing values of shear thinning/thickening index n with 0.5, 0.75, 1, 1.25, 1.5,
1.75, 10, 20, and 500 from blue triangle to red circles, respectively. In Figures (b), and (d), we show the
corresponding plug height with varying pressure for all n at τy = 0 Pa and τy = 1 Pa, respectively.

channel as well, the shear thinning/thickening index does not affect the plug height which is also
consistent with what we saw in the velocity profiles in the previous section 4.2. On comparison
of Figure 4(a,c), and 5(a,c), we further find that at given pressure and material properties, due
to deformability the flow rate increases.

5 Conclusion

In this paper, we derived analytical formulae for the velocity profiles and volumetric flow rate
in the rigid and deformable channels for the shear thinning and shear thickening yield stress
materials. We focus on investigating the impact of many factors such as the deformability of the
channel wall, yield stress, shear thinning, and shear thickening index. In these derivations, we
used the small displacement structural mechanics and perturbation theory presented by Gervais
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et al. [12], and Christov et al. [13], respectively for the constitutive relations of the elastic nature
of the channel–walls. We assumed the lubrication assumption in the shallow channels, where the
flow velocity profile is assumed to be determined locally by the fluid rheology and the size of the
local cross–sectional area. The newly derived formulae facilitate the flow dynamics of Newtonian
fluids, power–law fluids, Bingham fluids, and shear thinning and thickening yield stress fluids as
its limiting cases. For validation, several sensible trends have been observed. These include (a)
the exact derived expression to their corresponding rigid channel–wall formulas given in literature
[12, 13, 14, 15] for the Bingham fluids, power–law fluids and the Newtonian fluids. Thorough
tests have revealed that the newly derived formulae produce mathematically and physically
sensible results in diverse situations of fluid rheology, shallow channel geometry, and boundary
conditions. The derivation method proposed in this paper can in principle be extended to less
regular geometries (e.g. converging-diverging) or regular geometries such as tubes.

We also examined the influence of the deformability of the wall on the the behavior of non–
Newtonian yield stress flows within the channels. We found that the deformability increases the
effective channel height and the flow rate in the channel. In case of deformable wall channel,
the flow rate scales as Q ∼ (|∆p|)1/n for X ≲ O(10−1) (the X is shown as the under–brace term
in equation (26)), on the other hand the flow rate scales as Q ∼ (|∆p|)2/n for X ∼ O(100).
Further, for the large perturbations, the flow rate scales as Q ∼ (|∆p|)2+2/n (although the theory
could predict large errors in this asymptotic limit, and for n = 1, we find that the flow rate
Q ∼ (|∆p|)4, which is consistent as found in [13, 12, 14]). It is known that due to the presence
of yield stress, a threshold inlet pressure is required for the onset of flow in the channels unlike
in the case of the Newtonian or power–law fluids. We find that below this threshold, the flow is
chocked in the channels with plug height the same as the channel height, that is, Hp = ±Ho/2.
We also find that increasing yield stress leads to decreases in the velocity in the plug flow as well
as in the non–plug flow regions. Increasing yield stress also leads to increasing the yield surface
height and the solid plug in the central region due to decreasing the flow rate. We also find that
the shear thinning index does not affect the plug height, although as the index increases the flow
rate starts to decrease due to corresponding more shear thickening of the material.
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