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Abstract 

Identifying high quality chemical starting points is a critical and challenging step in drug discovery, which 
typically involves screening large compound libraries or repurposing of compounds with known 
mechanisms of actions (MoAs). Here we introduce a novel cheminformatics approach that mines existing 
large-scale, phenotypic high throughput screening (HTS) data. Our method aims to identify bioactive 
compounds with distinct and specific MoAs, serving as a valuable complement to existing focused library 
collections. This approach identifies chemotypes with selectivity across multiple cell-based assays and 
characterized by persistent and broad structure activity relationships (SAR). We prospectively demonstrate 
the validity of the approach in broad cellular profiling assays (cell painting, DRUG-seq, Promotor Signature 
Profiling) and chemical proteomics experiments where the compounds behave similarly to known 
chemogenetic libraries, but with a bias towards novel protein targets and required no synthetic effort to 
improve compound properties. A public set of such compounds is provided based on the PubChem 
BioAssay dataset for use by the scientific community. 
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Introduction 

A fundamental tenet of chemical biology is that small molecules can reveal unprecedented insights into 
biology. As such, phenotypic-based screens are often deployed to interrogate disease-relevant biology. 
There are two widely used screening approaches: unbiased high-throughput screening of a large, 
chemically diverse collection of compounds and focused screening of compounds with established targets 
and/or MoAs. The unbiased HTS approach allows for truly novel chemotypes and MoAs to be discovered 
for an activity of interest but requires the screening of very large diversity oriented chemical libraries. The 
sheer size of these screens can preclude screening of complex, disease-relevant assays which are often 
difficult to scale and miniaturize. Additionally, because of the specialized instrumentation and data 
processing infrastructure needed, screens of this size are executed at dedicated screening centers or within 
specialized groups.  

Screening of a chemogenetic library, a curated collection of compounds with annotated targets and MoAs, 
is increasingly used as an orthogonal strategy to discover potential disease-modifying targets and 
underlying MoAs (Canham et al., 2020; Elkins et al., 2016; Liu et al., 2014).  This approach has several key 
advantages: (1) the smaller scale of these screens allows for assay formats not traditionally associated with 
HTS campaigns and (2) experiments rapidly progress from screening towards hypothesis-driven research 
because target annotations are built-in to the library. Unfortunately, the growth of such libraries is resource 
intensive and slow  (Carter et al., 2019). Alternative approaches of identifying compounds with new and 
distinct MoAs would be highly valuable. 

The appeal of phenotypic screens is the target agnostic essence of these efforts. This allows for the 
discovery not only of modulators of critical known signaling proteins, but also of specific, yet indirect 
mechanisms that achieve the same desired effect. When viewed as a whole, cellular HTS data are rich in 
MoA mechanisms, which if mined properly could serve as an unbiased guide towards potentially novel 
MoAs and targets.  

Multiple informatics-based approaches have been proposed to create screening libraries which are 
enriched in bioactive compounds based on existing knowledge about bioactive chemotypes, i.e. employing 
chemogenomics information from target families (Hartenfeller et al., 2013; Renner et al., 2011; Schneider 
& Schneider, 2017)  or biology enriched chemotypes (Over et al., 2013; Renner et al., 2009; Wetzel et al., 
2009). More recently, machine learning models trained on large chemogenomics datasets  (Heyndrickx et 
al., 2022; Martin & Zhu, 2021) and generative chemistry coupled to such prediction models  (Godinez et 
al., 2022; Zhavoronkov et al., 2019) are gaining traction . However, all these strategies extrapolate from 
well understood bioactive compounds, making them dependent on existing active compounds for a MoA to 
expand to neighboring MoAs with similar target proteins and target profiles.  

By considering the activity landscape of compounds from legacy HTS data distinct fingerprints of 
chemotype-phenotype associations can emerge. It is well established that HTS fingerprints are highly 
correlated between structurally distinct compounds for the same target/MoA. In fact, clustering of 
compounds based solely on HTS fingerprints is capable of grouping compounds with the same 
targets/MoAs independent of chemical structure information (Helal et al., 2016; Petrone et al., 2012; 
Petrone et al., 2013; Riniker et al., 2014; Wassermann et al., 2013; Wassermann et al., 2014). Here, we 
provide a cheminformatic framework that utilizes already available cellular HTS data to identify chemotype-
phenotype associations for compound clusters based solely on phenotypic activity. From these 
associations, chemical clustering of related HTS fingerprints led to identifying groups of structurally related 
compounds with persistent and broad SAR, which we refer to as “dynamic SAR”. This contrasts with flat 
SAR which is characterized by structural changes leading to little difference in compound activity. We 
leverage this feature to demonstrate that this framework is enriched in cellularly active compounds, with 
potential MoAs and targets not currently represented by chemogenetic libraries. 
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Results  

Computational framework  

HTS data is susceptible to assay artifacts (Baell & Holloway, 2010; Seidler et al., 2003). Therefore, it is 
critical for computational HTS mining approaches to avoid inadvertently enriching artifacts. Additionally, 
certain classes of compounds have unusually high hit rates across a diverse panel of assays owing to their 
biological impact (e.g., HDAC inhibitors or ATP-competitive pan-kinase inhibitors). On the opposite side of 
the spectrum is so-called Dark Chemical Matter (DCM) (Wassermann et al., 2015), compounds which have 
shown minimal assay activity despite being tested in at least 100 biochemical and cellular assays. We 
envisioned that somewhere between the extremes of frequent hitters (Roche et al., 2002) and DCM there 
lies a point wherein phenotypic activity, irrespective of intended assay outcome, is a meaningful measure 
of modulating a specific target. Even if that target is unknown, the activity landscape can provide some 
assurance of selectivity. In keeping with the DCM terminology, we termed such compounds Grey Chemical 
Matter (GCM). 

The GCM workflow consists of the following steps (see Figure 1): 1) obtain a set of cell-based HTS assay 
datasets, 2) cluster the compounds based on structural similarity and keep only clusters with a sufficiently 
complete matrix of assay data to be able to generate assay profiles, 3) for each assay, calculate an 
enrichment score to determine clusters with enriched activity, 4) prioritize clusters with selective profiles 
and without known MoAs, 5) score individual compounds within the cluster based on how well they 
represent the overall cluster profile. 

One key step of the GCM pipeline is to determine whether a chemical cluster significantly affects an assay. 
The challenge arises from primary screening data for HTS assays which are often performed at a single 
concentration without replication, leading to variable assay hit rates and noisy data. This inherently makes 
it difficult to assess whether a chemical cluster is overrepresented among the active compounds. To 
address this, we used the Fisher exact test to identify chemical clusters with a significantly higher hit rate 
in assays than expected by chance. The statistical test compares the number of actives and inactives of an 
assay within a chemical cluster with the total number of actives and inactives, irrespective of clustering. If 
the fraction of actives within the cluster is significantly higher than the overall assay hit rate, then the cluster 
is considered enriched for that assay. This approach is inspired by compound set enrichment and scaffold 
networks enrichment methodologies (Varin et al., 2010; Varin et al., 2011), which were introduced to identify 
weak but significant hits in primary HTS data. With these statistical approaches, similar compounds can be 
interpreted analogously to replicates of the same compound, thereby increasing the confidence in the 
chemotype effect on an assay.  

In a typical screening project, the assay is designed to identify hits in one pre-specified direction, i.e., 
inhibition or activation. To allow for an unbiased approach towards detectable MoAs, the data were 
analyzed without regard for the desired outcome of the screen. We remained open to agonistic activity in 
antagonism screen and vice versa. For this reason, independent statistical tests were performed for both 
directions of an assay. 
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Figure 1: How to calculate Grey Chemical Matter. a Overview over the calculation pipeline. b Assay 
enrichment profile of a GCM cluster (bars) and individual activity profiles of cluster compounds (lines). The 
bars represent the logged adjusted p-values of the assay enrichment calculations. Bars are set to negative 
values if activities are in the opposite direction as the assay was intended (agonists in antagonist assays, 
and antagonists in agonist assays). Bars > 1 or < -1 (red dashed lines) are significantly enriched. 
Compounds are considered active in an assay if rscores are > 3 or < -3 (blue dashed lines). c Profile scores 
are used to identify compounds that best represent the cluster enrichment profiles. Compounds with the 
highest profile scores are most interesting (green). Weaker compounds can be caused either by a less 
strong activity (blue) or a less selective profile (orange) as can be seen by a higher mean rscore over all 
assays, including activities in non-enriched assays in the cluster.  
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Another key step is to score the compounds of a GCM cluster by how well they match the cluster assay 
profile. The cheminformatics framework enables the identification of potentially interesting clusters, but 
testing entire clusters in future assays is impractical. However, it is feasible to test a single compound from 
the cluster that best aligns with the overall cluster profile. For this purpose, we developed a profile score 
that quantifies compound activities within in the significantly enriched assays of a GCM cluster, in the 
direction of interest, versus all activities over all assays measured for the cluster.  

Formula: 

 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝑠𝑐𝑜𝑟𝑒!"#   =  
∑ %&!'%(!"#,%&
%''%(' %   ⋅+&&+, #-%(!.-'/%⋅+&&+, (/%-!0(#%

1(+/2+3&'45.(6%&!'%(!"#, %''%(78
 

In the profile score, the rscore	 represents the number of median absolute deviations of the activity of 
compound cpd	measured in assay a	is away from the median of that assay. The assay	direction term can 
be either +1 for assays enriched in the intended direction (i.e., agonists in an assay that was run for 
agonists, and inhibitors in an assay that was run for inhibitors) or -1 for assays enriched in the opposite 
direction (enrichment of agonists in and inhibitor assay or inhibitors enriched in an agonist assay). The 
same directionality convention is used for the numbers of the rscore activities. The value of the term assay	
enriched can be either +1 for enriched assays or 0 for assays without enrichment.  

The profile score prioritizes compounds that have the largest rscore values for enriched assays while 
evaluating to near-zero values for nonenriched assays. In this way we select those compounds with the 
strongest effects within a subset of cellular assays, while having minimal activity against all other assays 
profiled. 

 

PubChem Grey Chemical Matter  

For the PubChem (Kim et al., 2021) GCM dataset, we identified 171 cellular HTS assays with > 10k 
compounds tested, totaling about 1Mio unique compounds.  

After clustering and filtering to ensure sufficient data completeness, we obtained 23k chemical clusters, for 
which the assay enrichment profiles were subsequently calculated. Among these, 1956 clusters had at 
least one assay significantly enriched. Of those, 1455 clusters matching the following criteria were kept as 
PubChem GCM candidates:  >= 10 assays tested, less than 20% of tested assays showing enrichment 
(limited to a maximum of 6 enriched assays), and less than 200 compounds tested in any one of the assays. 
The cluster size limit avoids excessively large clusters with potential multiple independent MoAs.  

For validation of our approach, we leveraged the presence of chemogenetic library compounds present 
within the PubChem screening data. As such compounds often have well-described targets, the ability of 
these compounds to match the overall assay profile for the cluster could be taken as a strong indication 
that the assay activity is likely driven by the ascribed target. 

Out of the 1455 PubChem GCM clusters, 23 clusters contained compounds from the Novartis 
chemogenetic library (refer to Supporting Figure 1). Among these, 6 compounds demonstrated the highest-
ranking profile scores within their respective clusters, indicating excellent alignment of their activity with the 
overall cluster activity (Suppl Table 1). This provides compelling evidence that modulation of the annotated 
targets is likely responsible for the cluster's activity. Notably, we observed clear examples where the assay 
profile correlated with known SAR for the respective scaffolds. For instance, colchicine and analogs from 
the same cluster exhibited activity patterns consistent with established SAR on tubulin (Chen et al., 2009) 
and the GCM phenotypic profile score SAR (see Figure 2). However, we acknowledge that the SAR 
analysis is not exhaustive due to different sources of information (e.g., peer-reviewed manuscripts vs. 
patents), assay variations, assays conducted by different research labs, and the limited availability of 
inactive compound data. Additionally, the profile scores for 15 compounds fell short of the top rank score, 
but whose activity remained consistent with the activity of the PubChem GCM cluster. In only three 
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instances, a chemogenetic library member did not correlate with the assay profile, indicating that the profile 
activity in these cases is driven by a different, as yet unknown target (See Supporting Table 1). These 
findings underscore the ability of this computational framework to identify compound clusters enriched in 
specific cellular activity with defined targets. 

 

 

Figure 2. Colchicine SAR on tubulin correlates with GCM SAR. a Assay enrichment profile of Colchicine 
GCM cluster. b GCM profile scores of colchicine SAR cluster. c Selected colchicine analogs demonstrating 
consistent SAR reported on tubulin and on GCM profile scores. Colchicine and PubChem cid 99803 are 
reported active on tubulin. 6353538 and 16406192 have steric bulky groups that diminish activity on tubulin 
and on the GCM profile scores.  

 

Particularly when working with compounds of unknown MoA, such as those found from phenotypic-based 
screens, selective cellular activity of a chemical series with persistent and dynamic SAR is often the most 
convincing evidence for its engagement with a specific cellular target. The preservation of dynamic SAR 
suggests a specific molecular recognition event, such as binding to a defined pocket. However, SAR 
changes can also impact other physicochemical factors that influence cellular activity, such as cell 
permeability or solubility. Thus, examples of enantiomer pairs with significant differences in cellular activity 
can provide compelling and readily apparent evidence of target-specific interactions between a compound 
and a protein target in cells. In our analysis, we mined the PubChem GCM cluster for examples of 
enantiomer pairs and discovered two clusters where the enantiomers exhibited striking differences in rscore 
values (Figure 3). This underscores that even for compound clusters with no annotated target, clear 
evidence of selective and specific target engagement exists.  

 

a

B)

steric bulk 
diminishes activity steric bulk 

diminishes activity

6167 Colchicine 99803 6353538 16406192

b

c

O
O

O

O

O NH

O

NH

OO

O

S

O NH

OO

O

N

O

O

O

O
O

O

HN

O
F

O NH

O

https://doi.org/10.26434/chemrxiv-2023-tlj9z ORCID: https://orcid.org/0000-0002-0720-5629 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-tlj9z
https://orcid.org/0000-0002-0720-5629
https://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

 

 

Figure 3. Consistent SAR observed for enantiomer pairs within GCM clusters indicates specific molecular 
recognition events on an unknown target. a / d Assay enrichment profiles of PubChem GCM clusters. b / e  
GCM profile scores of PubChem GCM clusters. c / f Both GCM clusters contain two enantiomer pairs which 
show consistent SAR patters in their GCM profile scores. Interestingly the second example of cluster 5990 
has SAR on an assay in the opposite direction as it was run for (negative bar and profile activities in d), 
further supporting the idea that one can find genuine MoA compounds also in this direction.  
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For a broader MoA assessment, we annotated all PubChem GCM compounds with dose response 
activities from ChEMBL (Gaulton et al., 2017), where target gene information was available. The ChEMBL 
activities for PubChem GCM compounds spanned a wide range of IC50 values, ranging from <1 nM to 
>100 uM. The threshold of biochemical activity translating to cellular activity is entirely target dependent, 
though biochemical potency values of ≤100 nM is generally agreed  upon (Bunnage et al., 2013). Of the 
762 PubChem GCM clusters with at least one biochemical activity potency value available in ChEMBL, 
only 65 GCM clusters scored in the range where one could reasonably expect the cellular activity to be 
attributable to the biochemical target. Through this analysis of the PubChem database, we have identified 
clusters of compounds with selective phenotypic activity and dynamic SAR. As each phenotypic profile 
with no ascribable biochemical target represents a potential novel MoA, this analysis underscores the 
wealth of MoA and target information hidden in such large screening datasets. 

 

NIBR Grey Chemical Matter 

The NIBR cell HTS data was processed with the same pipeline as for the PubChem GCM. To focus on 
compounds relevant to mammalian biology, we excluded assay data from non-mammalian cell lines. The 
resulting NIBR GCM data features 160 assays with >40k compounds and consists  of > 1.5 Mio compounds 
(Schuffenhauer et al., 2020).  

For the NIBR GCM, 11k clusters were identified with at least one assay enriched. After applying similar 
filtering criteria as the PubChem GCM workflow, this led to 6.8k clusters being selected as GCM candidates. 
To focus on potentially novel MoAs, clusters containing compounds from the Novartis chemogenetic library 
were removed, as these compounds have well-established targets and MoAs (Canham et al., 2020). 
Additionally, we also applied computational target prediction strategies to remove NIBR GCM clusters with 
a high likelihood of being driven by a well-described protein target. Clusters were excluded if they had either 
a high confidence prediction for 10% or medium confidence prediction for 20% of the compounds within the 
cluster (Wang et al., 2016). This procedure yielded a set of 4.8k GCM clusters. 

 

Cellular profiling assays reveal broad coverage of biology encompassed by GCM compounds  

Given the wide range of cellular HTS assays and the diverse activity profiles, we anticipate that the GCM 
compounds are likely to encompass a broad spectrum of MoAs. To validate this hypothesis, we sought to 
compare the hit rate and breadth of biological response across multiple profiling platforms between GCM 
compounds and those from the Novartis chemogenetics library. Specifically, three distinct platforms were 
chosen for this analysis: Promoter Signature Profiling (King et al., 2009), which utilizes a panel of reporter 
genes and is conducted in HEK293T cells; DRUG-seq (Li et al., 2022; Ye et al., 2018), a high-throughput 
transcription profiling assay performed in NGN2 neurons; and cell painting (Bray et al., 2016; Cimini et al., 
2023; Reisen et al., 2015), a morphological profiling assay applied in U2OS cells. These platforms offer 
diverse readouts, cellular backgrounds, and do not require compounds to impact cellular proliferation to 
generate an activity signature. 

In each of the profiling assays, GCM compounds mirrored the coverage of compounds with well-
established MoAs (see Figure 4). This coverage suggests that, as a collection, the MoAs of individual 
GCM clusters are diverse and distinct from one another. Moreover, the distribution of profiles in the GCM 
compounds behaved similarly as profiles from the known MoA collection. This similarity was evident in the 
distribution of affected reporter genes, differentially expressed genes, or nuclei counts. Interestingly, the 
hit rate for GCM compounds closely matched that of the Novartis chemogenetic library, indicating that 
GCM compounds possess comparable levels of selectivity as a curated compound collection with defined 
targets and MoAs. It is essential to highlight that the GCM compounds represent primary hits from 
screening data and have undergone no synthetic modifications to enhance their properties. In summary 
GCM compounds perform like compounds with known MoAs over multiple profiling platforms with respect 
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to biological diversity, hit rate and selectivity of phenotypes. Collectively these findings suggest GCM 
collections comprise a highly promising set to enable biological discoveries. 

 

 

Figure 4. Results of NIBR GCM in NIBR profiling assays in comparison to chemogenetics compounds. 
GCMs are similar to CGL compounds in terms of hitrates, phenotype coverage over profile embeddings 
and selectivity of profiles again unspecific and broad MoAs.  

 

SAR transfer from GCM profiles to novel assays 

An important principle guiding the discovery of GCM compounds is that dynamic SAR within and across 
assays can be used to infer that a cluster of compounds has a defined target and a meaningful degree of 
selectivity for its target. For these compounds to be useful in future assays, it is crucial that this SAR 
translate to assays not previously tested. To assess the translatability of SAR, we tested analogs with 
diverse activity from multiple GCM clusters in the cell painting profiling assay to evaluate whether the 
SAR is conserved within the context of broad morphological responses. 

As an initial validation, we tested five podophyllotoxin analogs that were also observed in the PubChem 
data. These compounds ranged in profiles score activities the Novartis GCM data. Profiling these analogs 
in cell painting revealed a ranking consistent with profile score activity and the phenotypic strength as 
quantified by the Mahalanobis distance relative to DMSO images (Figure 5a).  

From the NIBR GCM, we selected 23 GCM compounds, previously identified as active in the cell painting 
profiling assay, for retesting. To assess the robustness of their SAR, we included structurally similar but 
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less active GCM cluster mates for comparison (as illustrated in Figure 5b). Of the 23 pairs of GCM 
compounds, 19 (83%) of the less active GCM cluster mates exhibited a weaker phenotype (decreased 
Mahalanobis distance) or no phenotypic change relative to DMSO. While it is very unlikely that compounds 
selected from a meta-analysis will be as selective as compounds that have gone through rounds of 
medicinal chemistry optimization, it is gratifying that in the vast majority of cases dynamic SAR is preserved 
irrespective of assay readout. 

Two of the GCM SAR pairs were examined in more depth (Figure 5c). The active GCM from cluster 78348 
(1) specifically influences cell morphology, while the active GCM from cluster 47462 (3) not only impacts 
cell morphology but also reduces the number of nuclei. The activity of each compound corresponds to 
rscore values, as compounds from the same cluster with lower rscores fail to produce the same 
morphological effect. To exclude a broad cell viability MoA, we further characterized 1 and 3 in a Cell Line 
Inhibitor Profiling (CLiP) assay (Barretina et al., 2012), assessing cell viability across > 300 well-
characterized CCLE cell lines. As expected, 3, with its lower nuclei count, affects the viability of more cell 
lines than 1. We were pleased that 1 affected the cell viability of small number of cell lines, and only at the 
highest concentration tested. However, we were surprised that 3 impacted the viability of roughly one-third 
of the cell lines tested. It is worth noting the cellular HTS assays, used to determine the profile score, 
generally use shorter time points (hours to overnight), while the CLiP assay extends to 72 hours, possibly 
accounting for the breadth of impact on cell viability observed for 3. Importantly, these results indicate that 
as 3 does not unselectively influence cell viability it is likely that a specific MoA drives both the cell painting 
and CLiP phenotypes. By comparing the overall morphological and phenotypic outcomes of 1 and 3, these 
results underscore that, while GCM compounds may not be devoid of influencing cell viability, the 
computational framework itself is not biased towards general cellular mechanisms that broadly impact cell 
viability. 

To observe how the dynamic SAR plays out at the level of target engagement, we focused on a specific 
GCM cluster containing electrophilic moieties, where the presence of an electrophile appears crucial for 
cluster activity (refer to Supplemental Figure 2). The requirement of a Michael acceptor for cluster activity 
strongly suggests that active compounds likely engage their target(s) through covalent labeling of a 
cysteine residue. To assess the selectivity differences between an active and less active GCM compound 
across the proteome, we conducted a live cell competitive proteome-wide cysteine profiling experiment 
using an acid-cleavable iodoacetamide probe in HEK293T cells. The results revealed that the less active 
GCM compound (10) competed the labeling of 95 sites, whereas the active GCM compound (11) 
competed 7 sites. While it remains uncertain how representative these stark differences in proteome 
selectivity are for the entire GCM compound collection, these finding shed light on how dynamic SAR may 
influence proteome selectivity which in turn may lead to specific and selective phenotypic activity.  
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Figure 5. SAR transfer from GCM profiles to cell painting and CLiP. a podophyllotoxin PubChem GCM SAR 
translates to cell painting phenotype strength SAR. b 23 pairs of active and less active GCM pairs were 
tested in cell painting. For 19 pairs the rank of activity was preserved. c Cell painting images of two pairs 
of active and less active GCMs. Pair 1 and 2 shows only changes in the cell morphology, which is reflected 
in a very clean profile in a Cell Line Profiling viability assay. Pair 3 and 4 also shows effects on the cell 
nuclei numbers, which is also reflected in 105 out of 300 cytotoxic cell lines in the Cell Line Profiling assay.  

 

I: cid 5396 II: cid 36462

III: cid 2363 IV: cid 2203 V: cid 4865

C
el

lP
ai

nt
in

g 
M

ah
al

an
ob

is
di

st
an

ce
ac

tiv
ity

23 GCM actives in cell painting
umap projection

Boxes = gcm clusters

Active
GCM analog

Less active
GCM analog

active GCM less active GCM

active GCM less active GCM

I

II

III
IV

V

a

b

Pick less active GCM 
analogs and test in 
Cell Painting

C
el

lP
ai

nt
in

g 
M

ah
al

an
ob

is
di

st
an

ce
ac

tiv
ity

GCM profile score activity

c

gcm cluster 47462

gcm cluster 78348

Etoposide

Podophyllo-
toxin

1 2

3 4

CLiP Cell Line Profiling of active GCMs 

GCM profile score activity

Crossing Point [uM]

Crossing Point [uM]

A
m

ax
A

m
ax Cytostatic effect

Cytotoxic effect

3 cell lines

89

105

https://doi.org/10.26434/chemrxiv-2023-tlj9z ORCID: https://orcid.org/0000-0002-0720-5629 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-tlj9z
https://orcid.org/0000-0002-0720-5629
https://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

Cheminformatic prediction of known target space 

Cheminformatics tools such as pQSAR models (Martin & Zhu, 2021) are accurate at predicting the potency 
of an unknown compound to a binding site of a target based on the known SAR for that target. We leveraged 
pQSAR models for 827 targets to compare the hit frequency of the Novartis chemogenetic library versus 
GCM compounds. On average, each compound from the Novartis chemogenetic library was predicted to 
bind 32 targets, while GCM compounds were predicted to bind to an average of 8 targets. This four-fold 
reduction in target prediction suggests that GCM compounds likely bind to targets distinct from those 
represented by current chemogenetic libraries. 

 

Chemical proteomic profiling 

The relative lack of pQSAR predictions for GCM compounds led to an alluring hypothesis that these 
compounds may engage novel targets. To assess what proteins are capable of binding to GCM 
compounds, and potentially link novel phenotypes with protein targets, a photoaffinity labeling (PAL)-based 
chemical proteomics screen was performed. PAL probes for 57 GCM compounds were synthesized. The 
parent GCM compounds were chosen for this effort based on compound availability, compatibility with a 
one-step reaction to furnish the PAL probe, and whether there was evidence that modifications could be 
tolerated at the site for the PAL group based on SAR within the cluster.  

HEK293T cells were treated with 1 uM of PAL probe for 2 hrs. After photo-irradiation, cell lysis, click-
chemistry to append biotin, probe-modified proteins were enriched, whose relative abundance was 
subsequently determined using mass spectrometry with isobaric tagging. Profiling the 57 GCM PAL probes 
led to the identification of 6879 proteins. Of these, 63 proteins were selectively enriched by 3-fold relative 
to DMSO by only one GCM PAL probe. To gain insight as to how unique these enrichments were to GCM 
probes, we compared the enrichment of 54 PAL probes from internal projects (also performed in HEK293T 
cells and treated with 1 uM PAL probe). While the PAL probes for internal projects led to the identification 
of more proteins with at least 3-fold enrichment relative to DMSO control, there was minimal overlap with 
the GCM PAL probes (Figure 6A). Additionally, checking this list of proteins uniquely enriched by GCM 
compounds against annotated targets of the Novartis chemogenetics library reveals that most of these 
targets have no known ligands (Suppl Table 2). These results highlight the potential of GCM compounds 
to exhibit novel phenotypes by accessing novel portions of the proteome. 
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Figure 6: GCM compounds engage protein targets not covered by chemogenomics libraries. a. Venn 
diagram comparing analysis of GCM exclusive hits with proteins exhibiting exclusive enrichment with PAL 
probes synthesized for internal project use. Pie chart depicts the number of known Novartis 
chemogenomics library members contained within the list of targes exclusively enrichment to one GCM 
PAL probe. b. While enrichment of SLC15A4 was observed with GCM PAL probe 6, the parent compound, 
5, was assayed for direct binding.  c. Enrichment profile of SLC15A4 across of GCM PAL probes. Dotted 
line indicates 2-fold enrichment over DMSO control. d. Scatter plot of delta Tm values derived from 
nanoDSF experiments with purified SLC15A4 and GCM profile scores. 

 

 

 

Identification of SLC15A4 binders from GCM profiling 

Deorphanizing protein function, from single proteins to entire families, is a challenge that has been taken 
up by the chemical biology community. A recent example of this is the RESOLUTE consortium (Superti-
Furga et al., 2020) , a pre-competitive academic and pharma partnership whose primary goal is to identify 
ligands and elucidate the function of as many members as possible within the solute carrier transporter 
(SLC) superfamily, which comprises 446 members.  

The PAL-based chemical proteomics experiments revealed promising implications for GCM compounds as 
potential ligand candidates for targets with no known ligands. Specifically, we investigated the possibility of 
GCM compounds binding to SLC15A4, an SLC without any reported ligands. Mining the result from the 
PAL experiments, we identified three GCM PAL probes that were able to enrich SLC15A4 ≥2-fold relative 
to DMSO control (Figure 6B). To directly assess compound binding, representative compounds from each 
of the three GCM clusters were assayed for their ability to increase the thermal stability of SLC15A4 via 
differential scanning fluorimetry (DSF). Gratifyingly, several compounds from one GCM cluster (5, 7, 8, 9) 
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demonstrated a positive shift in the Tm values for SLC15A4 (0.5-3.5°C) (Figure 6C,D). These results 
highlight the potential of GCM as starting points for ligand discovery for novel targets. 

 

Discussion 

Here we describe a computational framework that provides new insight into compounds with selective and 
specific cellular activity resident within legacy cellular HTS data. The framework applies many of the 
concepts considered in building flowcharts to capture compounds that function through a specific 
target/MoA, but in assay and target agnostic manner. The result from this approach is a compound 
collection featuring representative active and inactive members, covering diverse MoAs, and capable of 
engaging protein targets not already covered by chemogenetic libraries. While the characterization of GCM 
selectivity and specificity was performed with a proprietary compound collection it is important to note that 
this framework was able to identify ‘hidden’ features within the PubChem database. It is our aspiration that 
these publicly available compounds might become the basis for future drug hunting endeavors.  

 

Limitations of this study 

The most significant limitation of this study our inability to characterize the entire GCM collection through 
various cellular profiling and chemoproteomic assays. The sheer size of the GCM collection precludes such 
a comprehensive study. While an effort was made to characterize as large a sample of the GCM collection 
as possible, claims of cellular specificity, diversity of MoA, novelty of protein target engagement could only 
be corroborated for a subset of the GCM collection.  

 

Significance 

While cellular HTS campaigns have become common practice in academic and industry settings alike, this 
should not imply that such undertakings are effortless. The time and resources required to develop an 
innovative cellular assay, miniaturize the assay suitable for HTS, and eventually perform the HTS can be 
measured in years and tens of people. Guided by hit rate (assay enrichment), assay selectivity, and 
dynamic SAR the computational framework described herein can lead to the identification of a collection of 
compounds with diverse MoAs and the ability to access potentially novel protein targets. The described 
computational framework for identifying GCM within legacy cellular HTS data seeks to extract maximum 
value from the collected data while providing differentiated starting points enriched in novel mechanisms of 
action.  

 

How to use GCM prospectively for drug discovery 

We have demonstrated how the characterization of GCM compounds in profiling methods can help to 
prospectively develop MoA hypotheses which can then be linked to ongoing drug discovery activities where 
the compounds can be further investigated in the context of diseases of interest. Furthermore, GCM are an 
attractive screening compound set for any phenotypic screen if the goal includes identifying compounds 
with novel yet not fully characterized MoAs.  
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Online Methods 

 

GCM pipeline  

The code used to calculate the GCM compounds together with the PubChem results is published in github: 
https://github.com/Novartis/GreyChemicalMatter 

 

Assay data preparation 

All cell HTS assays were normalized to rscores according to rscore = (activity – median activity) / mean 
absolute deviation of activity. This normalization allows for a general data driven calling of active 
compounds which have activities outside the background distribution of the assays in the same manner 
over all assays.  

Compound clustering 

Compounds were encoded by morgan2 fingerprints with RDKit (Landrum, 2013) and chempf (Dalke, 2019) 
and the Tanimoto similarity matrix was calculated. Clustering was calculated with MCL (Van Dongen, 2008) 
using a Tanimoto similarity cutoff of 0.5 and a perplexity parameter of 1.8.  

 

Assay enrichment profile calculation for chemical clusters 

For each chemical cluster, for each assay and assay direction we calculated whether there were 
significantly more actives than expected from the background hit rates of the assays found in the chemical 
cluster. Actives were defined as compounds with rscore > 3 or < -3, i.e., all compounds with an activity 
outside the background activity distribution of the assays.  

P-values were calculated using the Fisher exact test with alternative ‘greater’ from the scipy.stats package, 
followed by ‘fdr_bh’ multiple hypothesis correction from statsmodels. Assays with adjusted p-values < 0.1 
were considered significantly enriched for the respective chemical clusters.  

One challenge using observed assay data that was generated for different purposes than calculating GCM 
cluster profiles is that chemical clusters can have strongly varying amounts of data from the different assays, 
which makes it difficult to compare compounds profiles over multiple assays. Therefore, we wanted to 
discard assays with very small amounts of data in a cluster compared to assays with more data. For that 
purpose, we identified the assay with most datapoints in the chemical cluster, and only kept additional 
assays which had at least data for 30% of this maximum number of compounds. Such assays are marked 
as “qualified for profile” in our data. 

  

Assess chemical clusters by their assay enrichment profiles 

Chemical clusters were evaluated based on their assay enrichment profiles whether they qualify as GCM. 
GCM clusters were defined as clusters matching the following criteria:  

1. More than 10 assays tested and qualified for the profile to guarantee a minimum number of data to 
assess the selectivity of the cluster.  

2. At least one assay enriched to focus on active compounds. 
3. Less than 20% of assays in the cluster enriched and max 5 assays enriched, to prioritize clusters 

with selective biology and avoid broad toxic and unspecific MoAs or artifact effects of compounds.  
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4. Less than 200 compounds with data in any of the assays, to avoid too large chemical clusters which 
might be driven by multiple non-overlapping MoAs with multiple SAR structures. 

  

Calculate compound profile scores 

Compounds profile scores were calculated using formula x (from main section), to prioritize compounds 
with strong effects on enriched assays in the enriched assay activity directions, and with little effects on 
other assays. Compounds are only considered active if they have at least one rscore > 3 in an enriched 
assay in the enriched direction, otherwise they are considered inactive. 

  

PubChem GCM 

All PubChem assay data was downloaded from NCBI via “rsync --copy-links --recursive --times --verbose 
rsync://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay2/Concise/CSV/Data/ data/” on January 27, 2021. The 
dataset was filtered to cell-based assays using metadata from PubChem, retaining 3900 assays as input 
for the GCM pipeline. 

 

ChEMBL annotations 

Compound clinical phases and target activity annotations were obtained from our inhouse integrated 
version of ChEMBL release 31.   

 

pQSAR predictions 

Affinity predictions for internal assays were predicted by the pre-trained pQSAR models available at NIBR. 
As pQSAR predicts affinities for individual assays, assays were aggregated at target gene level and only 
the most potent predictions were retained for each compound and target gene. For calling hits we used the 
zscore normalization (zscore = (pIC50 – mean pIC50) / standard deviation pIC50) of predicted pIC50 values 
and considered all predictions with zscore > 3 as binders for that target gene.  

iTRACE (Isobaric Tagging and Reactivity based Acid Cleavable Enrichment) Covalent Chemical 
Proteomics 

HEK293T cells were seed at 1x106 cells per 15 cm dish and cultured until confluent. Cells were then 
treated with DMSO or test compound at 50 μM for 1 hour in triplicate. Cells were washed and pelleted 
before resuspension in 50 mM 5% Glycerol, 150 mM NaCl, 1.5 mM MgCl2, 0.8% NP-40, and then lysed 
by probe sonication (amplitude 10, 1s on/ 1s off, for 30s). Lysates were clarified by centrifugation at 1000 
rpm for 10 minutes at 4°C. One mg per sample was treated with the cysteine reactive biotin 
iodoacetamide DADPS probe (dialkoxydiphenylsilane) from Click Chemistry Tools at 500 μM for 1 hour at 
room temperature. Excess biotin probe was removed by cleanup with a cold acetone crash at -20C for 
1hr.  Acetone was removed and pellet was air dried for 10 min and resuspended in 0.1% Rapigest and 
200mM EPPS.  Samples were reduced with 2 mM DTT for 15 minutes at 65C and alkylated with 55 mM 
iodoacetamide for 1 hour in the dark at room temperature. Each sample was digested overnight with 20 
μg LysC/trypsin (Promega) at 37°C. Samples were diluted to 0.8 mL with 0.1% SDS and incubated with 
100 μL High Capacity ultralink streptavidin agarose (Thermo) for 1 hour at RT on rotator. Beads were 
transferred to a 1.2 μm filter plate and washed a total of 15 times;  5x 0.1%SDS and 5x PBS and 5x 
Distilled water. Peptides were eluted by cleaving the DADPS linker with 300 μL 2.5% formic acid for 1 
hour at RT. The eluted peptides were collected by centrifugation and concentrated by speedvac. The 
eluted DADPS labeled cysteine-containing peptides were resuspended in 100 uL of 50mM TEAB and 20 
uL of each TMTpro (Thermo) isobaric label in acetonitrile was added for 1h at room temp. 16 xTMTpro 
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labeled samples were pooled and fractionated on a Dionex LC with an Xbridge 2.1x150mm C18 column 
at pH10.   The resulting fractions were concatenated to 15 fractions and dissolved in 20 uL of 2.5% formic 
acid.  Fractions were analyzed by nanoLC-MS/MS using an Easy-nLC 1200 high-performance liquid 
chromatography system (Thermo) interfaced with an Orbitrap Eclipse Tribrid Mass Spectrometer 
(Thermo). A Ionopticks (75 µm x 250 mm) Aurora Ultimate C18 column (at 45C) was used to separate 
iTRACE enriched cysteine peptides at 300 nL/minute using a mobile phase A: 2% acetonitrile + 0.1% 
formic acid in water and a mobile phase B: 98% acetonitrile + 0.1% formic acid in water over a gradient of 
3-45% B over 90 min. TMTpro labeled peptides were analyzed using SPS-RTS (real time search) on an 
Orbitrap Eclipse.   MS1 scans were acquired from m/z 400-1400 at 100,000 mass resolution with AGC set 
to auto and charge state of 2-5. SPS-RTS scans were searched using comet with FDR filtering on, MS2 
CID spectra were acquired with isolation window of 0.7 in Turbo mode.  DADPS Modified TMTpro labeled 
Cysteine peptides quantified using SPS with a HCD collision energy of 55% and a resolution of 55k. Raw 
files were processed using Proteome Discoverer 2.5. Data was searched against a reference human 
proteome using Mascot. 

 

Photoaffinity-based chemical proteoimcs 

After replacement of normal growth media with phenol red free Optimem (ThermoFisher P/N 11058021), 
HEK293T cells cultured in 15cm dishes were treated with vehicle or GCM PAL probe (1uM, 2hrs, 37 ⁰C), 
all treatments performed in duplicate. Probe engaged targets where photo cross-linked at 4 ⁰C with a 40W 
UV lamp (UVP, P/N 95-0043-04). After harvest, cell pellets were resuspended in 250 uL lysis buffer (50 
mM HEPES pH 8, 150 mM NaCl, 1.5 mM MgCl2, 5% Glycerol) containing 4% SDS, vortexed 30s, and 
heated (5 min, 95 ⁰C).  Subsequently, a probe sonicator was used to reduce sample viscosity. Copper-
catalyzed azide-alkyne cycloaddition (CuAAC) was performed by sequential addition of 650uL lysis buffer, 
20 uL biotin picolyl azide (5 mM in DMSO), 58.8 uL TBTA (1.7 mM in 4:1tBuOH:DMSO), 20uL CuSO4 (50 
mM in H2Oand 20 uL TCEP(50mM in H2O) to prepared lysates.  After 2 hr incubation at 37 ⁰C, samples 
were precipitated with addition of 4 mL cold acetone and incubation at -80 ⁰C, 1 hr.  Precipitated protein 
was collected by centrifugation (2000 g) and resolubilized in 1% SDS-PBS (1mL).  After determining protein 
concentration (ThermoFisher P/N 22662), normalized total protein amounts (3-5mg, 1 mL) were added to 
50 uL Neutravidin Agarose Resin (ThermoFisher P/N 29201) and incubated with end-over-end rotation 
overnight at room temperature.  Samples were washed with 1mL, 3x each:  PBS (0.4% NP-40, 1mM DTT), 
PBS (1mM DTT). Afterward, enriched samples were eluted in 80uL 2x LDS buffer (ThermoFisher P/N 
84788), and alkylated with 5uL iodoaceteamide (1M in H2O, 1 hr).  Detergent was removed from samples 
using Detergent Removal Spin Columns (ThermoFisher P/N 87777) and trypsinized in solution overnight 
(5uL, 0.02ug/uL, ThermoFisher P/N 90057).  Samples were labeled with TMT10plex isobaric tags 
(ThermoFisher P/N 90110) according to manufacturer’s instructions. Tagged samples were combined, 
dried using a vacuum concentrator, and resuspended in 100uL 0.1% Formic Acid in H2O .  Samples were 
fractionated by high pH reversed phase chromatography and quantitative TMT-based proteomic data 
acquistion was performed as described previously (Thomas, et al., 2017).  Acquired MS data was 
processed using ThermoFisher Proteome Discoverer software.  Trypsin cleavage specificity (cleavage at 
K, R except if followed by P) allowed for up to 2 missed cleavages. Cysteine carbidomethylation was set 
as a fixed modification, methionine and TMT modification of N-termini and lysine residues were set as 
variable.  Summed abundances with most confident centroid selected from 20 ppm window were used for 
reporter ion ratio calculation with ANOVA statistical analysis to estimate differential abundance significance. 
Data was filtered for only high confidence protein identifications with a <1% FDR cutoff derived from >2 
unique quantified peptides. 
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SLC15A4 protein expression  

Recombinant human SLC15A4 including a C-terminal cleavable eGFP-TwinStrep-His tag was expressed 
in HEK293 ExpiF cells via PEI max mediated transient transfection. Cultures were supplemented with 3mM 
sodium butyrate and incubated for 3 days at 33°C 

 

SLC15A4 protein purification 

Pellet from 3.6L culture was lyzed with dispersion homogenizer in high salt HEPES based buffer at pH7.4, 
followed by wash and clarification from soluble material at 38.4kg. Target membrane protein was solubilized 
for 150min with 1% of DDM/ CHS and clarified by ultra-centrifugation at 149kg. Purification occurs via Strep-
affinity batch-binding followed by gravity purification and biotin elution. The SLC15A4 containing fraction 
were pooled and cleaved with HRV 3C enzyme over-night at +4°C and finally loaded on SEC column for 
polishing.  

The final and highly pure pool was concentrated at 100kDa cut-off to ~1mg/mL, corresponding to yields of 
~0.25mg/ L of culture 

All buffers were containing 0.03% DDM (0.006% CHS) and purification steps were carried out at +4°C 

This material gave upon NanoDSF Prometheus analysis consistently a melting temperature of ~58°C, with 
Tm shifts observed upon specific compound addition 

 

SLC15A4 nanoDSF 

The nano Differential Scanning Fluorimetry (nanoDSF) is based on intrinsic protein fluorescence using 
aromatic residues (tryptophan, tyrosine). nanoDSF measures the changes in intrinsic fluorescence intensity 
ratio (350:330 nm) as a function of temperature. 

The Prometheus NT.48 instrument (NanoTemper Technologies) was used to determine the melting 
temperatures of SLC15A4 in presence and absence of compounds. The capillaries (high sensitivity) were 
filled with 10 μL sample containing 0.2mg/ml SLC15A4 diluted in purification buffer (refer to protein 
purification). A temperature gradient of 1 °C·min−1 from 25 to 85°C was applied and the ratio of intrinsic 
protein fluorescence at 350: 330nm was recorded. Small molecules were added to 50uM final concentration 
with a DMSO content of 5% (v/v). Protein stability was not affected up to 6% (v/v) DMSO addition. Apo 
protein was measured in quadruplets, all measurements containing compounds were performed in 
duplicates. A control compound was included during every assay run to monitor assay performance. The 
protein stabilization upon small molecule addition was recorded as dTm in °C [ Tmcompound - Tmapo].  
The nanoDSF data analysis was performed using PR.ThermControl v2.0.4 software (NanoTemper 
Technologies). 

 

cell painting (morphological profiling assay) 

The cell painting assay was run and analyzed as described in (Bray et al., 2016). 

 

DRUG-seq (transcriptions profiling assay) 

The DRUG-seq assay was run and analyzed as described in (Li et al., 2022) 
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PSP (Promotor Signature Profiling assay) 

PSP was run and analyzed as described in this publication [PSP (King et al., 2009). 

Compounds were considered active if they had a DR50 > 0.1 in at least on assay at timepoints 2 (12h) or 
3 (24h).  

 

CLiP (Growth inhibition assay across cancer cell line panel) 

CLiP (Barretina et al., 2012) was run and analyzed as described in (Isobe et al., 2020). Cells in growth 
medium were plated into a 1536 well plate (5 μL/well; 250 cells/well) using a GNF Bottle Valve liquid 
handler. A Labcyte Echo acoustic transfer instrument was used to transfer 15 nL of compounds in DMSO 
to each well (final concentration 30 μM, 9.5 μM, 3 μM, 1 μM, 0.3 μM, 0.1 μM, 0.03 μM, and 0.01 μM). The 
cells were then incubated (37 °C, 95% Humidity, 5% CO2) for 3 days and 6 hours prior to addition of 4 μL 
of 50% Cell-Titer Glo (Promega) in water using a GNF Bottle Valve liquid handler. Plates were incubated 
with Cell Titer Glo for 15 minutes at room temperature prior to reading luminescence (5 s exposure) on a 
Perkin Elmer ViewLux. For determining GI50 values, data was normalized to a day 0 cell count measured 
using a cell plate copy that was not treated with compound and growth inhibition dose-response curves 
were calculated using Helios. 
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Supplemental Figure 1 

 

Supplemental Figure 1: Chemogenomic library compounds present in PubChem GCM. Structures and 
annotated targets of Novartis chemogenetics library members contained within PubChem GCM data. 
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Supplemental Figure 2: GCM selectivity is consistent with proteome-wide selectivity. a Scatter plot of 
compound profile score versus activity in assay panel. Each circle denotes an individual compound within 
the cluster. Red indicates that compound contains Michael Acceptor, while grey does not. b structure of 
representative active (11) and inactive compound (10) from cluster. c,d iTRACE profiles from covalent 
chemoproteomic competition studies. Each circle denotes an individual cysteine-containing peptide 
identified. Blue circles indicate peptides competed by competition compound with sufficient magnitude and 
statistical significance. 
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Supplemental Table 1: High rank in cluster profile score of Novartis chemogeneitcs tools compounds 
suggests that annotated target is likely responsible for cluster activity. 
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Supplemental Table 2: Targets uniquely enriched by GCM PAL probes. 
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