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ABSTRACT

Creating a successful small molecule drug is a challenging multi-parameter optimization problem
in an effectively infinite space of possible molecules. Generative models have emerged as powerful
tools for traversing data manifolds comprised of images, sounds, and text, and offer an opportunity
to dramatically improve the drug discovery and design process. To create generative optimization
methods that are more useful than brute-force molecular generation and filtering via virtual screening,
we propose that four integrated features are necessary: large, quantitative datasets of molecular
structure and activity, an invertible vector representation of realistic accessible molecules, smooth
and differentiable regressors that quantify uncertainty, and algorithms to simultaneously optimize
properties of interest. Over the course of 12 months, Terray has collected a dataset of 2 billion
quantitative binding measurements, which directly motivates multi-parameter generative optimization
of molecules conditioned on this data. To this end, we present COATI1, a pre-trained, multi-modal
encoder-decoder model of druglike chemical space. COATI is constructed without any human
biasing of features, using contrastive learning from text and 3D representations of molecules to
allow downstream use with structural models. We demonstrate that COATI possesses many of the
desired properties of a universal molecular embedding: fixed-dimension, invertibility, autoencoding,
accurate regression, and low computation cost. Finally, we present a novel metadynamics algorithm
for generative optimization using a small subset of our proprietary data collected for a model
protein, Carbonic Anhydrase, designing molecules that satisfy the multi-parameter optimization task
of potency, solubility, and druglikeness. This work sets the stage for fully-integrated generative
molecular design and optimization for small molecules.

Keywords contrastive learning, generative optimization, molecular generation, small molecules, drug design, drug
discovery

1 Introduction

The space of druglike small molecules is estimated to
contain over 1060 unique structures (Reymond, 2015). Be-
cause of its sheer size, brute force search over the entire
space is impossible. Typical drug discovery campaigns rely
on a two-step approach for virtually evaluating select parts
of this space for both hit discovery efforts and molecular
optimization efforts: molecular generation and property
prediction/filtering. A variety of approaches to genera-
tion are commonly used: reaction-based or combinatorial

enumeration, evolutionary algorithms, molecular exper-
tise/intuition, scaffold replacement, and others. There are
also "pre-generated" virtual chemical spaces such as Enam-
ine REAL (Grygorenko et al., 2020) and WuXi Galaxi
(Xu, 2021) that can be explored. However, for hit-to-lead
and lead optimization efforts, de-novo generation is com-
monly used to explore focused chemical spaces that are not
found in commercially-available collections. Once chemi-
cal spaces of interest are produced, a variety of property
prediction models can be used to triage costly experimen-
tal measurements. These methods can be split into two
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categories: machine learning (ML)-based methods and
physics-based methods. Ligand-based ML methods for
small molecule property prediction have three basic re-
quirements: experimental molecular training data (e.g.,
IC50s from a biochemical activity assay), a method for fea-
turizing or representing small molecules (e.g., molecular
fingerprints), and a supervised learning algorithm for clas-
sification or regression (e.g., an XGBoost regressor (Chen
and Guestrin, 2016)). On the other hand, physics-based
approaches typically require little to no experimental input
and rely on quantum mechanics (i.e., Density Functional
Theory), classical mechanics (i.e., force fields), or other
related methods to calculate properties such as conforma-
tional strain, solubility, or target-ligand binding (Wang
et al., 2015; Bannwarth et al., 2019).

While this two-step approach to hit discovery and molecu-
lar optimization has been successfully used in many drug
discovery programs, a one-step generative method that can
simultaneously explore chemical space while optimizing or
constraining properties of interest would be far more com-
putationally efficient for hit-to-lead and lead optimization.
This approach of generative molecular optimization re-
quires four fundamental components: a) an iterative source
of quantitative, experimental data at scale, b) a molecular
featurization or representation that is decodable and pre-
dictive of molecular properties – a primary focus of this
work, c) smooth and differentiable regressors with built-in
uncertainty quantification, and d) chemical space explo-
ration methods that can be used to directly explore and
optimize on the surface of a regressor. Due to the appeal of
this approach, many generative models for molecules have
been reported in both text (Reidenbach et al., 2023; Seidl
et al., 2023; Blaschke et al., 2020; Winter et al., 2019),
graph (Bengio et al., 2021; Liu et al., 2023; Vignac et al.,
2022) and 3D (Pinheiro et al., 2023) modalities.

A method for molecular generation that has been gaining
popularity in recent years as an alternative to the conven-
tional methods mentioned earlier is the use of unsupervised
learning algorithms to generate a decodable latent space
vector representation of molecules that can be explored
directly in the vector representation and subsequently de-
coded to a valid molecule. These pre-trained, generalizable
encoders have become a popular molecular design tool in
recent years (Yang et al., 2021; Kim et al., 2022; Masters
et al., 2022). However, these models may operate on differ-
ent chemical representations with no clear optimal choice.
Contrastive learning approaches are able to integrate sev-
eral data modalities, can boost robustness on downstream
tasks, and have been shown to be successful in multiple
fields (Radford et al., 2021a; Stärk et al., 2021; Xue et al.,
2022). We explore a scheme that uses contrastive learn-
ing of multiple molecular modalities, and our experiments
show that this strategy leads to broadly applicable and ro-
bust representations. More generally, we seek a generative
foundation model of small molecules that decouples condi-
tional generation from fine-tuning of the foundation model
and provides a path forward for future multi-modal rep-
resentation learning advances. To this effect, we present

COATI, a novel and practical method for generative molec-
ular design that can be used with any set of molecular
properties that can be expressed by a differentiable model.
We rely on a novel multi-modal encoder-decoder scheme
for structures that is a competitive encoder for a variety
of molecule regression tasks. We achieve this by align-
ing 2D (text) and 3D (point) representations of molecules,
and simultaneously training a generative transformer de-
coder which recovers a molecule from either input. We
demonstrate that contrastive pre-training leads to excel-
lent regression performance vs. fingerprints, encoder-only
models, and other decodable representations. We report ar-
chitecture variations of the model, and quantify likelihoods
of decoding and generating various molecular spaces. In
direct analogy with recent developments in text-to-image
generative models (Radford et al., 2021a; Ramesh et al.,
2021; Rombach et al., 2021; Saharia et al., 2022) that in-
spired this work, a common latent space for molecular
representations which is space-agnostic (Wellawatte et al.,
2022) has many practical uses.

We envision that this generative design method will be used
in concert with novel, high-throughput experimental meth-
ods capable of iteratively generating data relevant to molec-
ular discovery (e.g., target-ligand binding measurements).
We anticipate that our decodable molecular representation,
COATI, along with our proposed metadynamics-inspired
algorithm for molecular design and optimization will pro-
vide a useful template for future developments in practical
generative design. This paper initially focuses on the de-
velopment and assessment of COATI, and concludes with
a real-world application of generative molecular optimiza-
tion, using a small subset of the Terray platform data for a
model protein (Carbonic Anhydrase) to generate molecules
with optimized potency while satisfying multiple embed-
ded property constraints.

2 Prior Works

2.1 Molecular Representations

Small molecules can be represented by a variety of meth-
ods including strings, binary fingerprints, property-based
descriptors, and 3D coordinates. The most common string-
based representation for molecules is called Simplified
Molecular-Input Line-Entry System (SMILES) (day). We
will also consider SELFIES (Krenn et al., 2020, 2022),
which are by construction always valid. Both represen-
tations encode molecular graph topology into a string of
text, and can be conveniently used with machine learn-
ing methods designed to process text for the purposes of
property prediction (Honda et al., 2019) or autoregressive
generation (Olivecrona et al., 2017).

Traditional methods of vectorizing molecular structures
for input into machine learning models have used graph
topology hashing (Morgan, 1965; Rogers and Hahn, 2010),
substructure queries (Durant et al., 2002), or pairwise itera-
tion of atom distances (Carhart et al., 1985; Capecchi et al.,
2020). These "molecular fingerprints" have been used for
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decades to perform Quantitative Structure-Activity Rela-
tionship (QSAR) modeling (Muratov et al., 2020), vir-
tual screening, and similarity search across large chemical
databases (Maggiora et al., 2014; Muegge and Mukher-
jee, 2016). Traditional approaches are still widely used,
and often have significant practical advantages for small
datasets.

Recent research has sought to replace engineered features
with representations learned directly from data. End-to-
end learning methods have taken the form of supervised
learning directly on molecular graphs using Graph Neu-
ral Networks (Gilmer et al., 2017), unsupervised learning
on graphs or SMILES strings via autoencoders (Gómez-
Bombarelli et al., 2018; Jin et al., 2018), GANs (De Cao
and Kipf, 2018), or autoregressive pre-training (Honda
et al., 2019). Learned molecular representations have
shown promising results approximating quantum chemical
calculations (Smith et al., 2017; Schütt et al., 2017; Schütt
et al., 2017; Yao et al., 2017; Gilmer et al., 2017), predict-
ing products of chemical reactions (Schwaller et al., 2021),
and performing virtual screening after training on DNA-
Encoded Library (DEL) data (McCloskey et al., 2020).
Neural network architectures designed to be invariant or
equivariant to transformations on Euclidean space (Thomas
et al., 2018a; Fuchs et al., 2020; Satorras et al., 2021a) per-
form well simulating many-body systems and predicting
properties of molecular configurations.

2.2 Generative Models for Molecules

Traditional Monte-Carlo algorithms and related approaches
are able to sample plausible molecular structures either
unconditionally, or with constraints (Gómez-Bombarelli
et al., 2018; Jin et al., 2018). Data-driven methods have
contributed new paths to molecular generation (Zhou et al.,
2019), which can broadly be divided between autoregres-
sive and one-shot approaches. Autoregressive generators
build up a molecule step-wise, leveraging information from
previous steps. The most common autoregressive models
are text models (Olivecrona et al., 2017; Ahmad et al.,
2022; Chilingaryan et al., 2022; Ross et al., 2022; Lee and
Nam, 2022; Winter et al., 2019), but autoregressive graph
models have also been explored (Shi et al., 2020). Winter
et al. (2019) provides decodability as well as a secondary
regression objective during pre-training, which we bench-
mark against our model architectures. Another approach
is GFlowNets, which try to emulate autoregressive genera-
tion while technically being one-shot (Bengio et al., 2021).
One-shot approaches that have been tried in this space in-
clude GANs (De Cao and Kipf, 2018), normalizing flows
(Satorras et al., 2021b), and diffusion models (Vignac et al.,
2022; Satorras et al., 2021b).

2.3 Unsupervised Contrastive Pre-training

Contrastive learning is a self-supervised learning paradigm
that produces input space embeddings by training a model
to match pairs of data points, either across different input
modalities (Radford et al., 2021b) or augmentations of
input data (Zbontar et al., 2021a), described later in Sec-

tion 3.2.2. The CLIP (Contrastive Language-Image Pre-
training) architecture uses a cross-entropy loss between
encodings of different modalities and achieves state-of-the-
art performance on many zero-shot learning tasks (Radford
et al., 2021a). Other work has used graph contrastive learn-
ing (You et al., 2020) to learn molecular representations
directly from 2D atomic connectivity graphs. There have
also been several works which pre-train a mixed 2D/3D
representation, although none to our knowledge based on
an end-to-end contrastive loss with a decodable represen-
tation. Chen et al. used weighted graphs to incorporate
3D information (Chen et al., 2021). Liu et al. reported
GraphMVP (Liu et al., 2021), which used an InfoNCE loss
to align 2D and 3D graph representations (described in
more detail in Section 3.2.1). Stärke et al. also rely on the
InfoNCE loss to produce a joint 2D/3D encoder without de-
coding capability (Stärk et al., 2021). We experiment with
this loss function as well as a related loss (Zbontar et al.,
2021b), in addition to the added decoding ability that our
model provides. Zhu et al. (2022) has reported pre-training
with a mixed 2D/3D encoding and autoregressively gen-
erates 3D structures from their embedding. However, the
point encoder used in that work is not equivariant and the
learning objective invokes molecular substructures. Seidl
et al. (2023) use contrastive learning to align embedding
spaces of SMILES strings and natural language describing
scientific assays, finding useful improvements in predic-
tive performance on regression tasks. We focus instead on
aligning multiple spaces of molecule structure data that
are more intrinsic, but the addition of more modes into the
joint representation space is a reasonable extension.

2.4 Related General Purpose Embeddings

Resting on the developments above, several methods oc-
cupying a similar niche to COATI will be discussed in
the results: CLAMP (Seidl et al., 2023), MegaMolBART
(mmb, 2022), ChemGPT (Frey et al., 2022), ChemBERTa
MTR (Ahmad et al., 2022), and the model from Winter
et al. (2019) which we will reference as CDDD. Table
1 summarizes the features of related model architectures
discussed later in our linear probe regression results (Sec-
tion 4.3)). Generative models can decode to molecules
from their embeddings, which enables molecular design
without filtering. Fixed dimensionality allows for simpler
generative optimization on an embedding space using the
encoder as a foundation model for regressors. We consider
contrastive objectives desirable, because they can be scaled
to large datasets without supervision and do not introduce
bias towards property datasets. An alternative approach
taken by models such as CDDD and ChemBERTa MTR
is to add expressive power for features known to be im-
portant for druglike space to the learning objective. This
gives good performance on available datasets, but calls
into question whether features important to every down-
stream task have been chosen. Models with a contrastive
loss or built-in bias for known drug features outperform
encoder/decoders without these features. Finally, embed-
ding from a 3D point representation of molecules enables
combination of the encoder-decoder with 3D generative
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Property COATI CLAMP CDDD MegaMolBART ChemGPT ChemBERTa MTR

Fixed Embed Dim. ✓ ✓ ✓
Generative ✓ ✓ ✓ ✓
No Properties in Training ✓ ✓ ✓
Contrastive Loss ✓ ✓
Text Input ✓ ✓ ✓ ✓ ✓ ✓
3D Input ✓

Table 1: COATI’s features were chosen for unbiased generative molecular design; choices made by related methods are
summarized here.

Figure 1: COATI is trained by jointly optimizing a contrastive loss with an autoregressive loss, producing a point cloud
encoder and a SMILES transformer able to encode and decode.

models. For example, a generative diffusion model can be
conditioned with such a model (Schneuing et al., 2023),
although leveraging this feature is a topic for future work.

3 Methods

We seek a common representation for both SMILES and
3D molecular structures that can be used as input to pre-
dictive models, and is able to be decoded to generate new
molecules.

3.1 Network Architecture

3.1.1 Point Encoder

For our 3D point encoder, we use the Welling group’s
E(3)-equivariant GNN (referred to as E(3)-GNN through-
out this work) (Satorras et al., 2021a), a message passing
network, because of its computational affordability relative
to models with spherical tensor features (Unke et al., 2021;
Thomas et al., 2018b; Batatia et al., 2022). Note that the
use of an E(3)-equivariant point encoder implies that the
version of the COATI latent space presented explicitly
discards chirality information. This design choice can be
relaxed by using an SE(3)-equivariant point encoder, or
by tacking on a chiral spherical tensor invariant (Osipov
et al., 1995) onto the point encoder. Atom nodes are
embedded by two one-hot encoded vectors passed into a

linear layer, for the row and period of the periodic table in
which the element occurs (which we refer to as "periodic-
one-hot" encoding). This node encoding improves loss
over naïve embeddings per element, presumably because
of an inductive bias where underrepresented elements can
borrow from periodic relatives. Messages are differen-
tiably masked beyond rc = 12 by multiplying them by the
cubic polynomial ϕ(r) = 1+(−3/2)r−2

c r2+(1/2)r−3
c r3.

3.1.2 Text Encoder

COATI uses a rotary transformer (Su et al., 2021) to per-
form text encoding and decoding, and takes the representa-
tion of the [STOP] token as the embedding of SMILES or
graph. We experiment with several schemes for tokeniz-
ing SMILES strings (Radford et al., 2019), all of which
involve a basic trie encoder. We perform a token com-
pression by recursively counting and appending the most
common token pairs, starting from single characters. The
process is repeated until the frequency of new compos-
ite tokens falls below a hand-tuned threshold, with some
care taken to ensure the vocabulary retains irreducible to-
kens needed to span chemical space. We experiment with
multiple tokenization schemes. We experimented with a
vocabulary that only contained closed parenthetical groups
and another that uses the SELFIES chemical representation
(Krenn et al., 2020). SELFIES are constructed so that they
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always translate to valid molecules. Additional details are
described in Appendix 8.4. The mean token string length
of a training example including all augmentations is only
∼15 tokens due to the significant compression afforded by
pair tokens.

3.2 Learning Objective

We optimize a contrastive loss and autoregressive cross-
entropy together in an end-to-end fashion (Fig. 1). Given
a batch of SMILES/point cloud pairs of size K, each in-
stance pair (xsmiles, xpoint) has xsmiles augmented with an
[EMBED] token with a 90% probability. We then select
a representation vector to be injected into the [EMBED]
token, inspired by the ClipCap injection procedure from
Mokady et al. (2021).

50% of augmented token strings are selected for SMILES
injection and 50% for point injection. Any SMILES injec-
tion pair gets a third representation xbase, the [STOP] token
embedding from the SMILES transformer without augmen-
tations applied to the input string. xpoint is fed through the
E(3)-GNN encoder head, then mapped through a linear
layer to produce embedding zp. If the instance was se-
lected for point injection, the [EMBED] token embedding
in xsmiles is replaced by zp. If an instance is selected for
SMILES injection, xbase is run through the transformer and
the [STOP] token’s representation is mapped through a
linear layer to produce embedding zbase and the [EMBED]
token embedding in xsmiles is replaced by zbase. Regardless
of injection, xsmiles is then fed into the transformer with
the usual softmax output and autoregressive entropy loss.
The [STOP] token’s representation is fed into a linear layer
to produce zs. The joint objectives are intended to allow
the model to both encode and decode molecule structures,
with the ability to decode from a point cloud to a SMILES
string and to autoencode SMILES strings. We emphasize
that the encoder and decoder are trained end-to-end with
gradient flow through generation of the embedding token,
and in our experiments this is necessary for training.

We experiment with two contrastive losses: the InfoNCE
loss (Oord et al., 2018) and a cross-correlation loss we
refer to as the "Barlow" loss (Zbontar et al., 2021b).

3.2.1 InfoNCE

For a given batch of size b with index i where zs,i is the
d-dimensional embedding of a SMILES string, and zp,i is
the d-dimensional embedding of a molecular point cloud,
LInfoNCE is defined as:

LInfoNCE = − 1

2b

∑
i

(
ln

exp(z⊤s,izp,i)

K∑
j=0

exp(z⊤s,izp,j)

+ ln
exp(z⊤s,izp,i)

K∑
j=0

exp(z⊤s,jzp,j)

)
(1)

In short, this maximizes the cosine similarities of matched
embeddings from the two heads and minimizes the similar-
ities of unmatched embeddings, by minimizing the entropy
classifying each row to belong to the diagonal.

3.2.2 "Barlow" Cross-Correlation

We also experimented with a loss derived from Zbontar
et al. (2021a), which we refer to as the "Barlow" loss.
Rather than focusing on moving non-matched vectors "far
apart" in terms of the cosine distance, this loss minimizes
the cross-correlation between off-diagonal vector compo-
nents of the pairs in a batch. We find empirically that
this loss trains more quickly without clear loss of em-
bedding quality. This loss operates on elements of the
cross-correlation matrix, C, computed between the vec-
tor embeddings of each modality. The hyperparameter
λ controls the relative weight of on- and off- diagonal
cross-correlations.

Cij =
∑

b z
S
b,iz

P
b,j√∑

b(z
S
b,i)

2
√∑

b(z
P
b,i)

2
(2)

LBarlow =
∑
i

(1− Cii)2 + λ
∑
i

∑
j ̸=i

C2
ij (3)

Here, b indexes batch samples, i, j index vector dimen-
sions, and S and P identify SMILES and point embed-
dings, respectively.

3.2.3 Aggregate Loss

The model is trained with the sum of Lcontrastive
and an autoregressive entropy loss with Lcontrastive ∈
LinfoNCE,LBarlow weighted by another hyperparameter, β.

LAR = −⟨log(P (xi|xj<i))⟩minibatch (4)
L = LAR + βLcontrastive (5)

This scheme is well-suited to rapidly screening large
text-based corpora of small molecules without any pre-
processing, but there are shortcomings which could be
addressed in future work. In particular, because multi-
ple SMILES strings can be made for one molecule, the
autoregressive loss unfairly penalizes valid and desired
generations. We experimented with an auxiliary loss term
that incorporated molecular property information (See Ap-
pendix 8.1.1) but ultimately found that it reduced training
stability.

3.3 Dataset

The training set for our contrastive learning model
consists of more than 140 million (SMILES, geome-
try) tuples aggregated from several sources: ChEMBL
(Gaulton et al., 2012), GEOM-Drugs (Axelrod and
Gómez-Bombarelli, 2022), TensorMol (Yao et al., 2017),
Mcule compounds (https://mcule.com/database/),
ZINC22 (Tingle et al., 2023), and 54M combinatorial
molecules enumerated from Enamine’s catalog of building
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blocks (https://enamine.net/building-blocks/
building-blocks-catalog). The 3D coordinates are
generated by several different processes. In the case of
GEOM-Drugs and TensorMol, geometries are the result
of DFT calculations, and in all other cases they are RDKit
conformers optimized by MMFF94s. The mixed quality
of geometries is intentional to increase the generality of
our point encoder. The TensorMol geometries feature
many structures which are significantly distorted from
equilibrium. Train/test/validation splitting is achieved with
fixed ranges of md5-hashes of the SMILES string. Some
summary statistics of the conformer distribution of the
dataset are given in Appendix 8.3. Exploring the precise
effects of conformer ensemble quality on COATI results is
left as an interesting avenue for future work.

3.4 Training

Table 2 contains hyperparameters of the COATI model
variants we experimented with during this work. All net-
works are implemented in PyTorch (Paszke et al., 2019)
and optimized with AdamW (Kingma and Ba, 2014), with
β1, β2 = {0.9, 0.99}. Models were trained in float preci-
sion with a cosine learning rate schedule starting at 5∗10−4.
Experiments with mixed precision (bfloat16) for the trans-
former head led to worse losses and were not pursued
further. Dropout is not used throughout, but a weight de-
cay of η = 0.1 is applied. Models were trained using
16 A100 80GB GPUs, distributed across two DGX nodes
each. Models were trained to approximate convergence,
typically after 7 billion tokens had been iterated through
during training. Held-out validity and isomorphism statis-
tics were monitored in order to determine convergence.

As the total space of hyperparameters is large and training
a single model is fairly expensive, we focused our effort
and resources on 256-dimensional models which is the
maximum embedding size which is well-behaved with this
point encoder architecture. Attempts to increase the point
embedding dimension beyond 256 suffer from initializa-
tion or smoothing issues. Additionally, we train a model
(Autoreg_Only) that does not use any contrastive informa-
tion in order to determine how much value the contrastive
loss adds over a SMILES transformer. There is signif-
icant evidence that the limited expressive power of the
point encoder relative to the transformer head is a major
limitation of the model as-developed. This sets up a com-
promise between regression performance (which is driven
by representation independence and strong contrastive loss
against the point representation) and autoencoding (which
is driven by the transformer). This is a clear direction for
improvement in future work.

We note that batch size does not behave as a COATI hy-
perparameter in the same way it does in networks which
do not couple training examples. In the limit of single-row
batches (which is often used to fine-tune large language
models with batch gradient aggregation), the contrastive
losses would never contain any contrastive information.
To accelerate training, we run models at the largest batch
size possible, and find anecdotally that large batch sizes

provide the most stable training. In practice, this leads to
batch sizes of ∼2048 for 256-dimensional models across
all GPUs.

During training, we randomly apply the following aug-
mentations to training data: injecting a token with the
molecule’s dataset of origin (see Section 3.3 for datasets),
randomizing the order of SMILES strings as in Arús-Pous
et al. (2019), and permuting substring order following the
fill-in-the-middle procedure of Bavarian et al. (2022). See
Appendix 8.4 for examples of augmented strings.

PyTorch code of the model, exploratory notebooks,
and trained checkpoints are open source and avail-
able at https://github.com/terraytherapeutics/
COATI/.

4 Results

4.1 Generation and Autoencoding

COATI models can be used to perform molecular genera-
tion and autoencoding by encoding (from either a SMILES
string or a molecular point cloud) to produce a latent vector
describing molecular identity, and decoding by injecting
the latent vector into the transformer using the procedure
described in Section 3.2. Unless otherwise mentioned,
generations are performed using GPT-2’s top-k scheme
with k=100 and an inverse temperature of 2 (Radford et al.,
2019), although we find in practice that fidelity and validity
of autoencoding and generation are not sensitive to these
choices. We observe that the best COATI variants achieve
generation validity upwards of 98%, and autoencoding
ability on par with benchmark models that use descriptors
to condition the encoder/decoder scheme (Winter et al.,
2019). We also observe, interestingly, that a SMILES
transformer model trained without contrastive information
performs very well at this autoencoding task, but is un-
able to perform multi-modal encoding. We provide a table
containing results of all COATI variants in Table 3 of Ap-
pendix 8.5. We interrogate generation/encoding failure
modes in the next section using decoding likelihood as a
proxy measure.
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logP (RDKit)

COATI
ChEMBL

Figure 2: Conditional sampling from the space of
ChEMBL-like molecules produces molecules with drug-
like properties. These histograms contain RDKit property
distributions of ChEMBL samples overlaid with COATI
samples from the set of ChEMBL molecules.

4.2 Chemical Space Generation

The use of tokens encoding a molecule’s dataset of ori-
gin (described in Section 3.4) allows us to prompt the
autoregressive transformers to generate samples not re-
lated to a specific molecule, but from a set of molecules
as designated during training. Figure 2 shows property
histograms computed from molecules decoded via the
prompt [SET][chembl_mols][SMILES]. These proper-
ties are not encoded or decoded by our model. We see that
the distributions of the quantitative estimate of druglike-
ness (QED), lipophilicity, and molecular weight are close
matches to the "real" ground-truth distribution of ChEMBL
molecules, indicating that the statistical properties of the
molecule set have been learned by the transformer. One
could easily imagine other molecular properties encoded
as tokens, suitable for conditioned generation.

Figure 3: Decoding errors tend to occur in rare molecules.
Negative log likelihoods of generating ChEMBL samples
with the embedding token are plotted versus the uncondi-
tional negative log-likelihood of the same molecule. This
indicates that poorly autoencoded molecules are highly
unlikely - and that perhaps autoencoding performance can
be improved by adding unlikely molecules to training.

The mean likelihood of generating druglike molecules with
and without embedding is an important metric of any gen-
erative model, and both the mean and distributions of both
quantities for a sample from ChEMBL are given in Figure
3. Most of the molecules in the low-likelihood tail have
very high molecular weight, and are somewhat unfairly
represented by comparing likelihoods of vastly different
molecular weights. We also wanted to examine if the like-
lihood of generating a molecule without a conditioning
embedding token indicates how likely the molecule is to
decode given the embedding token. This has ramifications
for use of the embedding space in a generative model,
because the likelihood of unconditioned generation is de-
termined by the composition of the training set. Indeed,
we find that the two likelihoods are closely related (Figure
3). Many large-scale generative models of chemical space,
including this work, use available catalogs of molecules
as training data and are appropriate generators of rapidly
accessible chemical space. However, this raises questions
about the generative likelihood of synthetically accessi-
ble but unavailable, and physically stable but synthetically
challenging molecules. We have no practical purpose to
pursue generation of "likely unavailable" molecules at this
time, but prospective users should bear this limitation in
mind.
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4.3 Regression with Linear Probes

A critical feature of a molecular representation is its ability
to be "decoded" not only to molecular structure but to use-
ful molecular properties, such as potency against a drug
target or Absorption, Distribution, Metabolism, Excretion,
and Toxicity (ADMET) properties that are critical to a
molecule’s pipeline progression. Unfortunately, almost all
publicly available realistic regression datasets for chemical
tasks are small, typically under 1000 data points; there-
fore, we have created an ensemble of tasks with data from
diverse sources, augmenting publicly available data with
millions of data points from the Terray platform. In this
experiment, we compare frozen embeddings from COATI
(text and point), CDDD (Winter et al., 2019), ChemBERTa
MTR (Ahmad et al., 2022), ChemGPT (Frey et al., 2022),
CLAMP (Seidl et al., 2023), MegaMolBART (mmb, 2022)
as well as fingerprints from 2048-dimensional ECFP6
(ECFP6 2048) (Rogers and Hahn, 2010), RDKit finger-
prints (RDKit FP), and RDKit 2D normalized descriptors
(Kelley, 2023) on real-world activity regression tasks. To
avoid advantaging or disadvantaging embeddings down-
stream based on the expressive power of a regressor, we
fit a linear regressor (Pedregosa et al., 2011) for each em-
bedding. The performance of each embedding for a given
task is scaled from 0 to 1 - proportional to the best linear
regressor for that task such that a score of 1 means the
embedding was the best for that task.

To provide a more practical evaluation of molecule-target
binding data, we leverage data from the Terray platform
described in Section 5.2. This assay produces millions
of scalar values correlating with the binding affinity of a
molecule to a protein target. We consider four proteins for
the molecule binding affinity datasets: Bruton’s Tyrosine
Kinase (BTK), Human Carbonic Anhydrase II (Sly and
Hu, 1995) (hCAII), Protein-1, and Protein-2, whose names
we are unable to release. Each protein has a training and
test dataset of binding measurements, as well as a held-out
set of biochemical activity assay data. We evaluate embed-
dings on their predictive power for the binding test split
by sensitivity of the model at distinguishing the top-2%
of binding molecules. We also evaluate the models on
rank correlation to the held out set of biochemical assay
measurements for BTK, Protein-1, and Protein-2 (hCAII
activity results not available).

COATI learned representations outperform or match other
learned representations when ordered by performance
across all tasks (Figure 4). We see that 2048-dimensional
ECFP6 fingerprints perform very well on the binding tasks
(Table 4) - indicating that variation in the data is well-
explained by graph structural features. On the small AD-
MET datasets, RDKit 2D normalized descriptors perform
well but occasionally seem to overfit as do other represen-
tations.

During ablation studies (see full results in Table 4), we dis-
covered that an autoregression-only SMILES transformer
underperforms relative to contrastively trained COATI
models, but other SMILES language models like CDDD

(Winter et al., 2019) perform competitively. We hypoth-
esize that the additional supervision in the form of prop-
erties provides a useful advantage, although combining
contrastive training with additional property supervision
(the FP variants) did not improve regression results. With-
out directly training on properties, COATI representations
still perform competitively to models that used property
information during training (Figure 4).

Figure 4: Embedding performance using a linear regressor
for ADMET and binding tasks. Results are scaled propor-
tionally to the best performance for a given task to better
assess the performance across all tasks. Embeddings are
ordered by the mean of their relative performances divided
by their standard deviation. The highlighted COATI model
(This Work) was trained using Barlow loss and inferred
via SMILES input (Barlow_Closed).

We also see no discernible trends between the point rep-
resentation (i.e., leveraging the 3D encoder to encode a
conformer) and SMILES-based representations. This is
certainly interesting - it is possible that 3D information
does not contribute well to this task, the conformers (gen-
erated via RDKit MMFF94s) are too low quality to have
any meaningful signal, or the training process of the 3D
encoder focused on removing 3D information for the sake
of contrastive optimization. We look forward to further ex-
ploring the properties of 3D encoders in a self-supervised
setting in future work.

We evaluated the performance of linear regressors (de-
scribed above) trained using frozen COATI embeddings
on a set of ADMET datasets from the Therapeutic Data
Commons (TDC) (Huang et al., 2021) and MoleculeNet
(Wu et al., 2017; Ramsundar et al., 2019). These tasks
represent typical noisy and data-limited chemical prob-
lems. Information on the datasets and training approach
can be found in the Table 5. COATI embedding models
perform consistently well when compared to the best lin-
ear regressor for each task. While it might be expected
that featurizations trained or augmented with molecule
properties would perform best on these datasets, COATI
models without a mechanism for property reinforcement
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perform comparably to similar learned representations and
traditional methods.

5 Conditional Generation of Therapeutics

5.1 Background

A common task in early-stage drug discovery is often re-
ferred to as hit-to-lead optimization, where molecular de-
sign teams leverage information from a high-throughput
screen to propose new molecules with improved potency
or other properties. We assume a realistic molecule design
scenario where one would like to make a generative model
from a small (∼< 1M) number of experimental samples of
a desired molecular property, possibly simultaneously opti-
mizing or constraining several properties at once (Fromer
and Coley, 2022). For example, it is often desirable to
improve potency while constraining lipophilicity, due to
its relationship to both protein-ligand affinity and various
ADME properties (Johnson et al., 2018).

One approach to generation conditioned on these prop-
erties would be to fine-tune the generative model with a
small number of samples as in Blaschke et al. (2020), al-
though in our view this is more costly and cumbersome
than using the frozen pre-trained embedding. We propose
a method that achieves a "separation of concerns" - lever-
aging the continuous nature of the COATI latent space
to train differentiable regressors using the pre-trained em-
bedding, optimize properties directly on the vector space
of the embedding, and decode to obtain molecules with
desired properties (Anstine and Isayev, 2023; Bilodeau
et al., 2022). This also allows us to easily use regression
methodologies which quantify uncertainty.

5.2 Terray Platform Data

To build differentiable regressors and optimize compounds,
we used an experimental dataset of 1,307,908 (combina-
torial molecule, binding affinity) data points collected us-
ing the Terray platform. To briefly summarize the assay:
molecules are produced by combinatorial synthesis teth-
ered to polymer beads immobilized in an ultradense mi-
croarray on a silicon chip. A fluorescently-labeled target
protein is flowed over the chip, incubated, and microscopy
is used to quantify the amount of bound protein as a ra-
tio of fluorescence on each bead to an empty background.
The target protein considered in this section is Human Car-
bonic Anhydrase 2 (Sly and Hu, 1995), for which several
hundred pIC50 data points are also available in ChEMBL
(Mendez et al., 2018) (which we make use of as indepen-
dent test data). None of the combinatorial molecules from
the Terray dataset occur in the ChEMBL data, nor are the
potency data collected from the same type of assay. Po-
tency rank-ordering on the Terray platform corresponds
well with low-throughput standard measurements of IC50
(Lebakken et al., 2009).

5.3 Differentiable Regressor with COATI
Embeddings

These (combinatorial molecule, binding affinity) data
points were embedded with COATI (Barlow_Closed),
and the resulting 256D embedding vectors were used
as training data for a DUE regressor (van Amersfoort
et al., 2022). This regressor returns a normal distribution
(µbinding(v), σbinding(v)) as a function of a COATI vector
v with an uncertainty estimate proportional to the input
vector’s distance to the training data . The outsample Pear-
son correlation between the log fluorescence ratio inferred
by the COATI-DUE model with Terray platform data and
experimental pIC50 tabulated in ChEMBL is 23%. We
also trained DUE regressors for other chemical properties:
RDKit-determined QED (Bickerton et al., 2012) and logP.
These regressors were trained on a dataset of a few million
molecules from the COATI dataset.

5.4 Metadynamics Generative Algorithm

One can easily use COATI to draw molecules randomly,
using the conditional generation method explored in Sec-
tion 4.2, and filter them for desired properties with these
regressors. However, there are a few reasons to try more
sophisticated optimizations. Binding potency is extremely
sparse in chemical space, i.e., most druglike molecules do
not bind to most targets. In a realistic regression model,
trained with a realistic amount of data, potency is also
sparse over vector space and riddled with local maxima
making random sampling inefficient. Instead, we seek
to treat the problem of selecting desirable compounds as
a differentiable optimization of a vector-valued function.
This allows us to exploit the smoothness of our learned
chemical space, and focus on activity basins with room to
chemically modify the lead.

We perform gradient ascent to maximize inferred po-
tency in the DUE model, utilising Lagrange multipliers
(λQED, λlogP) to enforce druglikeness constraints (QED >
.5 and logP < 5). A rate of 2 ∗ 10−3 is used in the gradient
ascent, and molecules are decoded from the optimization
vector every 15 iterations. We have found that optimizing
the µ− σ of the DUE potency model is sufficient to keep
the optimization from straying into a space of molecules
and vectors too far from the training data. This objective
function is somewhat analogous to other methods that uti-
lize the predicted mean and variance of a Bayesian model
(Srinivas et al., 2012) to balance exploration and exploita-
tion, although we utilize the gradient of our model directly
(along with other constraints specific to differentiable func-
tions).
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Figure 5: Optimizing binding affinity via metadynamics
enriches generated molecules for predicted binding. His-
tograms above show binding scores for molecules gener-
ated during optimization of potency with constraints on
QED and logP ("binding"), ChEMBL samples ("chembl"),
and optimization purely for QED with a constraint on logP
("no binding").

We find that this optimization will rapidly reach local max-
ima, and so, inspired by the idea of metadynamics (Laio
and Parrinello, 2002), we add a 256D isotropic Gaussian
bump of standard deviation 0.125 periodically to the po-
tential if the decoded molecule is unchanged after 25 steps.
The final objective function minimized for 40,000 steps
was:

L(v⃗, λQED, λlogP) = −(µbind(v)− σbind(v))

+ λlogP((µlogP(v)− 5)+)2 + λQED((0.5− µQED(v))
+)2

+ Lbump(v) (6)

The results of this generative optimization task are summa-
rized in Figures 5-6. The data labeled as "binding" refer
to the primary optimization task – maximizing binding
affinity while constraining QED and logP. As a control ex-
periment (labeled "no binding" in Figures 5-6), and also to
further demonstrate constraints, three independent trajecto-
ries were drawn from an objective which optimizes QED
instead of potency. Instead of constraining logP < 5, as we
do in our potency optimization experiments, it constrains
logP > 4, which is difficult to satisfy since logP < 5 is
correlated with high QED. Relative to filtering random
samples, optimization is especially useful with constraints.
Due to the nature of gradient descent, and the action of
the added Gaussian bumps, the Lagrangian constraints are
not perfectly satisfied over the entire trajectory, but are
generally well-satisfied (Figure 6). We find that 94.6% of
the potency trajectory samples satisfy the logP < 5 con-
straint, and 63% of the QED samples satisfy the logP > 4
constraint.

logP (RDKit)

Figure 6: Lagrangian penalties are obeyed during optimiza-
tion. Adding a Lagrangian penalty to binding optimization
produces a distribution of molecules (blue) that largely
satisfies the desired constraint of logP < 5.

5.5 Realistic Generations from Experimental Data

As a realistic test of this metadynamics algorithm and
learned COATI representation against a related method, we
ran five trajectories from five randomly drawn molecules
using COATI + Metadynamics and CDDD + QMO (Hoff-
man et al., 2022), another gradient-based generative ap-
proach to multi-objective molecule optimization. The start-
ing points, regression method, and training data (consisting
only of Terray platform data) of the two methods are the
same, and only the encoder-decoder and gradient algorithm
differ. The results of these generative experiments are sum-
marized in Figure 7, along with the pIC50 data from
ChEMBL. The COATI + Metadynamics method travels
close to potent molecules known from ChEMBL, while the
CDDD + QMO trajectories find fewer molecules near the
ChEMBL molecules based on Tanimoto similarity. As a
best-effort "impartial score" of binding affinity, we trained
a separate ECFP6 regressor to score the unique generations
from both methods. This provides a sense of whether or
not each optimization method is exploiting artifacts of
their embedding space. The COATI + Metadynamics
generative optimization procedure succeeds in achieving
high similarity to known potent molecules, despite the fact
that these molecules do not occur in the training data. A
movie of molecules visited in an example optimization pro-
cess is available in the source code repository at https:
//github.com/terraytherapeutics/COATI/blob/
main/examples/binding_meta.gif. Further details
of this methodology and the experimental setup can be
found in Appendix 8.9.

6 Conclusions

We have presented COATI, a contrastive framework for
training decodable multi-modal molecular encoders. We
provide several variants of these models, and show that
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Figure 7: Metadynamics generation in the COATI latent space produces druglike molecules similar to known hits
from ChEMBL. A) Examples of compounds found by COATI + Metadynamics and each of their nearest neighbors in
ChEMBL by Tanimoto similarity. B) A visualization of COATI + Metadynamics along with CDDD + QMO. The t-SNE
contains five metadynamics trajectories, five QMO trajectories, and out of sample ChEMBL hCAII data. Points with a
Tanimoto similarity to ChEMBL < .3 are faded. Embeddings are generated from ECFP6 fingerprints and scored by a
DUE model trained on ECFP6 representations. Compounds from (A) are identified by black arrows. C) A histogram of
predicted binding for all trajectories based on the same ECFP6 DUE used in (B). Note that this ECFP6 model was not
used during optimization.

they can perform generation/autoencoding from a latent
vector space into textual molecular representations. We
have shown that the learned embedding is usefully ex-
pressive and produces linear models which match or out-
perform commonly used fingerprints for a real-world,
large-scale molecule binding assay and low-data ADMET
datasets, without task-specific feature engineering. We fur-
ther contribute a metadynamics-inspired molecular design
algorithm that leverages a unique set of high-quality data
to perform practical, constrained molecular optimization.

We found that while it is possible to produce a fixed-length
representation that is both decodable and useful for molec-
ular property regression, there exists some tension between
these two goals. We demonstrate that focusing on valid-
ity of autoencoding over a large dataset can lead to poor
regression performance. Several representations includ-
ing this work have sought to constrain the embedding to
also represent molecular properties which may be phys-
ically connected to downstream tasks in different ways.
Our work is premised on the hypothesis that 3D structure
would produce a more smooth and continuous embedding
of chemical space than autoencoded text alone. Other
chemical representation models also leverage supplemen-
tary sources of information during pre-training, such as
pre-computed physiochemical heuristic features used by

Winter et al. (2019), or textual descriptions of assays (Seidl
et al., 2023). We find that pre-training additional proper-
ties improves robustness versus ECFP6 fingerprints (see
Section 4.3), but underperforms on binding affinity tasks.
The paucity of publicly available data at the present time
makes the relative merits of pre-training choices somewhat
unclear, and supports the need for larger public datasets to
support development of molecular encoders.

We demonstrated our end-to-end training scheme with two
contrastive losses and two common encoders, but there
is nothing preventing the approach from being applied to
new point encoders, textual representations, or contrastive
loss functions. Highly expressive molecular graph en-
coders have been an important area of research activity
for decades, and it is certain that, especially for 3D rep-
resentations, there are encoders more powerful than the
E(3)-GNN used in this work. A clear and useful direction
for future work will be conditioned generation of molecu-
lar conformers on the basis of this latent space, or latent
diffusion to produce molecules with desired properties
while remaining close to an embedded molecule. We see
COATI models and their successors as providing a path
towards a unified representation of molecular structures
and conformations that can be used productively for many
tasks.
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The field of generative molecular design and optimization
is very new and promising for accelerating the process
of bringing effective therapeutics into the clinic. It will
likely progress differently than the meteoric rise of image
or text data, simply because accurate, practically useful
data is far more difficult to acquire. In our view, coupling
generative design with novel assay technologies provides
an attractive practical advantage over filtering or virtual
screening, which we have demonstrated via constrained
generative optimization using realistic, large-scale data
from the Terray platform.
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8 Appendices

8.1 Descriptor Decoding Auxiliary Loss

8.1.1 Descriptor Decoding

We experimented with adding an auxiliary loss that is designed to encourage encoding of additional chemical modalities,
although this variant is not the preferred checkpoint discussed in the results. We extended the model to linearly map the
[STOP] token vector from our SMILES encoder to 2048-dimensional ECFP6 fingerprints (Rogers and Hahn, 2010)
and 200-dim RDKit 2D normalized descriptors (Kelley, 2023). These were selected given their strong empirical
performance on the regression tasks evaluated in the results. The additional loss LFP is the sum of binary cross-entropy
loss over Morgan bits and mean squared error loss over RDKit 2D normalized descriptors:

Lm =
1

2048

∑
i

yi log(σ(fm(zs)i)) + (1− yi) log(1− σ(fm(zs)i)) (7)

L2d =
1

200

∑
i

(yi − f2d(zs)i)
2 (8)

LFP = w(Lm + L2d) (9)

where w is a weight hyperparameter. This loss was added to the aggregate loss described in Section 3.2.3 and applied
batchwise.

We found that this loss decreased training stability and produced suboptimal results.

8.2 Model Variants

Model Loss Vocab Aux. Loss E(3)-GNN Transformer Latent Dim.
Tall_Closed InfoNCE + AR Closed No 4*128 16*16*128 128

Grande_Closed InfoNCE + AR Closed No 5*256 16*16*256 256
Grande_Closed_FP InfoNCE + AR + FP Closed Yes 5*256 16*16*256 256
Barlow_Closed_FP Barlow + AR + FP Closed Yes 5*256 16*16*256 256

Barlow_Closed Barlow + AR Closed No 5*256 16*16*256 256
Autoreg_Only AR Closed No N/A 16*16*256 256
Barlow_Venti Barlow + AR Closed No 5*256 16*16*384 384
Grande_Open InfoNCE + AR Open No 5*256 16*16*256 256

SELFIES_Barlow Barlow + AR SELFIES No 5*256 16*16*256 256

Table 2: COATI model variants. The E(3)-GNN and Transformer columns specify number of layers * hidden dim and
number of layers * number of heads * hidden dim, respectively.

8.3 Dataset Conformers

GEOM-Drugs and TensorMol are sets of multiple DFT-optimized conformers per molecule of which there are 24.3 per
molecule on average in GEOM-Drugs, and 20.1 per molecule on average in TensorMol. All other datasets have five
initial conformers generated using RDKit’s ETKDG implementation and optimized via MMFF94s, with the lowest
energy conformer selected. SMILES strings were deliberately standardized differently for different datasets to provide
a diversity of representations - for example, TensorMol SMILES strings contain explicit hydrogens while other datasets
do not.

8.4 Tokenization

8.4.1 Vocab Generation

Tokenizer vocabulary was initialized with a simple set of characters required to encode SMILES strings, along with a
set of "sentinel" tokens used to encode augmentations. We iteratively apply a BPE procedure (Radford et al., 2019) to
training data, iteratively combining tokens from 400 batches of 256 entries. Tokens that appeared more than 1000 times
were added to the vocabulary to produce the "open" vocabulary, which contains approximately 11,996 tokens. The
closed vocabulary was produced by pruning the original vocabulary of tokens with unbalanced parenthesis (i.e., an
incomplete branch of the graph). An additional run of token aggregation was performed after pruning, producing a total
of 8,726 tokens.
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Ablation Validity Canonical Match Match (no Chiral) Matching 2D Connectivity
Tall_Closed .917 ± .020 .734 ± .029 .741 ± .028 .759 ± .026

Grande_Closed .986 ± .007 .877 ± .027 .888 ± .026 .902 ± .026
Grande_Closed_FP .981 ± .009 .885 ± .021 .897 ± .019 .911 ± .018
Barlow_Closed_FP .945 ± .016 .785 ± .028 .792 ± .027 .812 ± .029

Barlow_Closed .987 ± .008 .914 ± .020 .928 ± .018 .939 ± .019
Autoreg_Only .973 ± .013 .980 ± .009 .981 ± .009 .981 ± .009
Barlow_Venti .984 ± .009 .862 ± .028 .882 ± .025 .895 ± .024
Grande_Open .902 ± .021 .860 ± .031 .867 ± .030 .885 ± .026

SELFIES_Barlow 1.000 ± 0 .748 ± .032 .759 ± .029 .782 ± .029
CDDD .993 ± .005 .941 ± .015 .942 ± .014 .962 ± .012

Table 3: Generative Metrics: SMILES-to-SMILES. We see practically equivalent performance from closed-vocabulary
models (with Barlow loss slightly outperforming infoNCE loss), and on par with the CDDD character-level baseline.

8.4.2 Augmentation Tokens

Several special tokens are reserved for implementing the data augmentations described in Section 3.2. Provided below
are a few examples of (reconstructed) SMILES strings with special tokens included:

[EMBED][UNK][SMILES]CNC(=O)CN1CCCN(C(=O)c2cc(-n3cccc3)ccc2Br)CC1[STOP]

[EMBED][UNK][SMILES]CCOc1ccc(F)c(-c2cc(F)c[MIDDLE]([SUFFIX]C(=O)N3CCN(CCC#N)CC3)cc2C)c1[STOP]

[EMBED][UNK][SMILES]Cc1ccccc1NC(=O)C[MIDDLE]N1C(=O)N/C(=C\\c2cccn2-c2cccc(C(=O)O)[SUFFIX]c2)C1=O[SET][geom_drugs][STOP]

Note that in the original implementation, the [EMBED] tokens are listed as [CLIP]. The [UNK] tokens are used as the
actual positional injection of the embedding vector.

8.5 Generation Metrics

We use several types of metrics to assess the quality of COATI for translation between molecular representations and
generation. Tanimoto similarity (Bajusz et al., 2015) of ECFP4 fingerprints (Rogers and Hahn, 2010) will be invoked
as a measure of molecular similarity. Validity of a SMILES string or graph are both binary measures determined by
RDKit’s valence rules. We evaluate identity using three variants, corresponding to different levels of "strictness" - bond
graph isomorphism without atom types (Matching 2D Connectivity), bond graph isomorphism with atom types (Match
(no Chiral)), and whether or not the canonical SMILES match exactly (Canonical Match). We compute isomorphism
using the VF2 algorithm (Foggia et al., 2001) as implemented in NetworkX (Hagberg et al., 2008). These answer
different questions about the representation, and in practice we find that the differences between the latter two metrics
are driven by chirality and tautomerization. Unless otherwise mentioned, generations are performed using GPT-2’s
top-k scheme with k=100 and an inverse temperature of 2 (Radford et al., 2019), although we find in practice that the
fidelity and validity metrics we report are not sensitive to these choices.

8.6 Autoencoding and Decodability

We assess the ability of COATI models to encode molecules and decode into SMILES strings. We focus on the
"SMILES-to-SMILES" task for comparison to other methods, where a SMILES strings is encoded using the transformer
module described in Section 3.1.2, and decoded using the same transformer. Table 3 contains summary statistics for the
validity, similarity, and isomorphism metrics described in Section 8.5, across multiple variants of COATI models. We
also evaluate the SMILES-to-SMILES decoding metrics on the RNN-based autoencoder from Winter et al. (2019),
another fixed-size encoder-decoder model we refer to as CDDD. We note that CDDD’s training process was designed
to decode several molecular properties represented in our regression test set and that it was not trained on SMILES with
stereochemistry.

We see a few interesting properties of the model variants - the first of which is that models only trained on (augmented)
SMILES text sequences (Autoreg_Only and CDDD) perform excellently on this task, indicating that the contrastive
training is not strictly required for the task of producing valid SMILES strings, or autoencoding the strings themselves.
However, Figure 8 suggests that autoregressive loss is not sufficient for learning a well-behaved latent space as the
Autoreg_Only models latent space does not interpolate between molecules smoothly. Autoregressive models with
additional contrastive or molecular property losses do not have this same issue.

We also see the effect of tokenizer engineering on validity - the model variants with a closed-parenthetical vocabulary
have an easier time producing valid SMILES strings versus similar models that allow for open-parenthesis tokens.
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Table 4: Nominal test results for the linear regression suite. COATI model embeddings either come from the text
representation of the molecule (often SMILES) or 3D points.
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Ames Mutagenicity AUROC 0.77 0.81 0.80 0.82 0.71 0.80 0.71 0.66 0.78 0.80 0.78 0.70 0.78 0.79 0.72 0.77 0.75 0.80 0.80 0.74 0.75 0.68
Bioavailability AUROC 0.65 0.72 0.66 0.58 0.63 0.53 0.61 0.60 0.42 0.58 0.57 0.59 0.63 0.59 0.68 0.65 0.66 0.48 0.53 0.68 0.59 0.54
CYP P450 1A2 Inhib. AUROC 0.90 0.91 0.91 0.92 0.87 0.92 0.87 0.87 0.92 0.89 0.90 0.88 0.89 0.89 0.90 0.91 0.90 0.90 0.90 0.89 0.90 0.84
CYP P450 2C19 Inhib. AUROC 0.84 0.86 0.86 0.87 0.78 0.87 0.84 0.83 0.90 0.85 0.85 0.83 0.85 0.84 0.84 0.86 0.85 0.86 0.86 0.83 0.84 0.78
CYP P450 2C9 Inhib. AUROC 0.85 0.86 0.86 0.73 0.81 0.86 0.84 0.80 0.90 0.85 0.86 0.84 0.86 0.85 0.85 0.86 0.85 0.86 0.86 0.84 0.85 0.80
CYP P450 2D6 Inhib. AUROC 0.82 0.83 0.84 0.76 0.79 0.82 0.82 0.79 0.86 0.83 0.83 0.81 0.82 0.82 0.83 0.84 0.82 0.84 0.83 0.82 0.82 0.76
CYP P450 3A4 Inhib. AUROC 0.83 0.84 0.85 0.86 0.78 0.85 0.82 0.80 0.87 0.83 0.85 0.82 0.85 0.84 0.82 0.85 0.83 0.85 0.85 0.82 0.81 0.77
Caco-2 RMSE 0.69 0.43 1.19 1.16 0.59 0.92 0.57 1.04 2.0 0.53 0.52 0.56 0.65 0.45 0.60 0.57 0.75 0.52 0.64 0.50 0.60 0.70
Clearance Hepatocyte Spearman 0.27 0.36 0.28 0.28 0.27 0.24 0.23 0.24 -0.03 0.31 0.29 0.41 0.39 0.31 0.32 0.38 0.28 0.25 0.16 0.30 0.19 0.16
Clearance Microsome Spearman 0.41 0.57 0.47 0.37 0.33 0.29 0.27 0.20 0.15 0.48 0.51 0.52 0.45 0.51 0.29 0.51 0.38 0.39 0.50 0.59 0.39 0.30
ClinTox AUROC 0.88 0.86 0.78 0.85 0.73 0.79 0.77 0.61 0.62 0.77 0.67 0.83 0.76 0.77 0.81 0.83 0.76 0.81 0.76 0.78 0.80 0.71
DILI AUROC 0.68 0.74 0.77 0.62 0.78 0.69 0.83 0.86 0.76 0.90 0.83 0.77 0.75 0.76 0.66 0.62 0.51 0.74 0.80 0.64 0.67 0.61
HIA AUROC 0.92 0.93 0.90 0.83 0.88 0.82 0.96 0.88 0.86 0.88 0.93 0.91 0.86 0.96 0.91 0.87 0.81 0.87 0.80 0.84 0.89 0.83
Half Life RMSE 91.6 92.1 170 578 65.3 616 57.3 71.0 148 71.0 101 67.6 83.8 90.0 99.8 111 157 97.4 107 96.1 94.1 80.1
LD50 RMSE 0.98 0.97 0.95 0.98 0.97 1.01 1.16 1.26 0.91 0.95 0.97 1.04 0.96 0.98 1.02 0.95 1.02 1.02 0.92 1.01 0.95 1.00
Lipophilicity RMSE 0.97 0.87 0.84 0.79 1.11 0.84 1.27 1.77 0.98 0.96 0.91 1.02 0.99 0.93 1.00 0.84 0.93 0.86 0.90 0.99 0.99 1.15
PAMPA Permeability AUROC 0.71 0.73 0.73 0.70 0.70 0.73 0.61 0.68 0.70 0.77 0.77 0.74 0.77 0.68 0.72 0.77 0.69 0.72 0.73 0.73 0.75 0.68
PPBR RMSE 15.3 13.5 14.8 14.9 15.3 15.7 29.8 47.0 16.6 12.6 14.3 14.3 13.6 14.5 15.4 14.1 16.3 14.6 13.6 15.9 15.0 17.0
Pgp Inhibition AUROC 0.87 0.90 0.80 0.87 0.84 0.84 0.81 0.79 0.73 0.93 0.88 0.87 0.84 0.87 0.87 0.88 0.82 0.90 0.84 0.86 0.86 0.80
Solubility, AqSolDB RMSE 1.25 1.08 1.15 1.08 1.32 1.14 1.84 2.24 1.26 1.28 1.19 1.29 1.21 1.2 1.2 1.18 1.25 1.32 1.21 1.21 1.28 1.56
Volume of Distribution Spearman 0.30 0.29 0.14 0.11 -0.03 -0.02 0.04 0.07 -0.02 0.17 0.19 0.19 0.22 0.09 0.14 0.20 0.18 0.16 0.23 -0.02 0.21 0.10
hERG Blockers AUROC 0.74 0.79 0.65 0.60 0.71 0.53 0.71 0.61 0.72 0.83 0.60 0.81 0.68 0.70 0.68 0.70 0.62 0.66 0.78 0.75 0.79 0.68
hERG Central Inhib. AUROC 0.83 0.84 0.85 0.85 0.79 0.86 0.86 0.85 0.86 0.83 0.83 0.81 0.84 0.84 0.82 0.84 0.83 0.84 0.84 0.82 0.82 0.75
hERG, Karim et al. AUROC 0.80 0.82 0.83 0.84 0.72 0.84 0.85 0.85 0.79 0.80 0.81 0.76 0.81 0.80 0.78 0.81 0.80 0.82 0.82 0.79 0.78 0.73
BACE Classification AUROC 0.76 0.74 0.75 0.61 0.75 0.82 0.63 0.57 0.65 0.82 0.78 0.79 0.81 0.75 0.81 0.73 0.76 0.82 0.83 0.77 0.79 0.83
BACE Regression RMSE 0.81 3295 1.38 2.56 0.95 1.17 1.88 2.32 1.05 0.81 0.95 0.89 0.85 0.90 0.83 0.96 0.90 0.88 0.88 0.86 0.84 0.92
HIV AUROC 0.76 0.73 0.73 0.75 0.71 0.76 0.73 0.76 0.92 0.76 0.76 0.78 0.77 0.75 0.79 0.78 0.77 0.74 0.76 0.77 0.76 0.75
Solubility, Delaney RMSE 0.62 0.54 1.19 0.75 0.63 0.64 1.23 1.84 0.86 0.57 0.62 0.54 0.63 0.56 0.60 0.52 0.63 0.63 0.68 0.55 0.55 0.79
Tox21 AUROC 0.75 0.79 0.77 0.77 0.74 0.76 0.69 0.71 0.76 0.76 0.76 0.75 0.77 0.76 0.73 0.75 0.76 0.77 0.76 0.76 0.76 0.70
BTK Activity Spearman 0.20 0.22 0.11 0.18 0.19 0.02 -0.10 -0.00 0.08 0.18 0.13 0.18 0.15 0.16 0.21 0.17 0.14 0.09 0.10 0.21 0.14 0.15
BTK Binding Sensitivity 0.35 0.42 0.41 0.40 0.25 0.42 0.39 0.35 0.35 0.34 0.37 0.29 0.36 0.36 0.33 0.40 0.33 0.36 0.37 0.31 0.28 0.23
Protein-1 Activity Spearman 0.37 0.36 0.34 0.50 0.30 0.28 0.50 0.24 0.36 0.40 0.40 0.34 0.42 0.44 0.41 0.28 0.37 0.30 0.33 0.40 0.23 0.36
Protein-1 Binding Sensitivity 0.34 0.27 0.35 0.36 0.25 0.41 0.48 0.46 0.26 0.30 0.35 0.26 0.34 0.35 0.32 0.34 0.36 0.34 0.32 0.36 0.32 0.25
Protein-2 Activity Spearman 0.22 0.19 0.16 0.22 0.04 0.22 0.12 0.29 0.22 0.29 0.19 0.12 0.09 0.19 0.21 0.13 0.18 0.18 0.12 0.20 0.07 0.03
Protein-2 Binding Sensitivity 0.39 0.35 0.37 0.39 0.29 0.39 0.48 0.46 0.35 0.32 0.36 0.31 0.37 0.36 0.33 0.36 0.37 0.38 0.40 0.33 0.33 0.30
hCAII Binding Sensitivity 0.66 0.58 0.54 0.65 0.55 0.64 0.62 0.60 0.52 0.66 0.64 0.56 0.61 0.63 0.59 0.63 0.59 0.59 0.64 0.59 0.57 0.49

Experiments early in development studying the weight of contrastive and autoregressive losses revealed a competition
between point-contrastive loss, and autoregressive loss, which is related to validity. We found that downweighting
off-diagonal (i.e., explicitly contrastive) terms of the loss function (both Barlow and InfoNCE) improved training speed
and stability. We hypothesize that some of this tension is due to the limited expressive power of the point encoder vs.
the text encoder.

8.7 Conformational Degeneracy and Isomerization

Atomic positions in molecules fluctuate significantly at any temperature, and so the mapping between 3D conformations
and 2D bond representations is many-to-one. The learned shared representation must map different conformations onto
the same vector, throwing away conformation information. However, if atoms move enough to constitute a change in
bonding, the two arrangements are isomers (different molecules with the same numbers of atoms), which should map to
different COATI representations.

2D embeddings of COATI representations from multiple conformations of four closely related probe molecules
(dimethyl fumarate, fumaric acid, ribose, and glucose) and a set of their isomers (C6H8O4, C4H4O4, C5H10O5,
and C6H12O6, respectively) can be viewed in Figure 9. An additional 10 chemical formulas containing multiple
conformations of approximately 10 training set isomers each were also added to expand the 2D embedding space.
Sets of isomers are distinguishable and related by similarity. Isomers of glucose and ribose are shown to be related
in the embedding space as would be expected. The same expectation for dimethyl fumarate and fumaric acid is also
demonstrated.

8.8 Regression Suite Results

Nominal values that were used to construct the scaled values in Figure 4 can be seen in Table 4. Descriptions of the
public ADMET datasets can be found in Table 5 while binding and activity datasets are characterized in Section 5.2

8.9 hCAII Optimization Overview

For experimental setup, five molecules were used as starting points by randomly sampling from the COATI holdout set
and were used as the starting point for trajectories for COATI + Metadynamics and CDDD + QMO. Each trajectory was
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Table 5: Overview of ADMET datasets
Dataset Source Type Size Metric Unit Split Description

Ames Mutagenicity TDC Class. 7255 AUROC Binary Scaffold The Ames test is a short-term bacterial reverse mutation assay detecting
a large number of compounds which can induce genetic damage and
frameshift mutations. The dataset is aggregated from four papers

Bioavailability TDC Class. 640 AUROC Binary Scaffold Given a drug SMILES string, predict the activity of bioavailability.
CYP P450 1A2 Inhib. TDC Class. 12579 AUROC Binary Scaffold The CYP P450 genes are involved in the formation and breakdown

(metabolism) of various molecules and chemicals within cells. Specifi-
cally, CYP1A2 localizes to the endoplasmic reticulum.

CYP P450 2C19 Inhib. TDC Class. 12665 AUROC Binary Scaffold CYP2C19 gene provides instructions for making an enzyme called the
endoplasmic reticulum, which is involved in protein processing and trans-
port.

CYP P450 2C9 Inhib. TDC Class. 12092 AUROC Binary Scaffold The CYP P450 2C9 plays a major role in the oxidation of both xenobiotic
and endogenous compounds.

CYP P450 2D6 Inhib. TDC Class. 13130 AUROC Binary Scaffold The CYP P450 genes are involved in the formation and breakdown of
various molecules and chemicals within cells. Specifically, CYP2D6 is
primarily expressed in the liver and in areas of the central nervous system.

CYP P450 3A4 Inhib. TDC Class. 12328 AUROC Binary Scaffold CYP3A4 is an important enzyme in the body, mainly found in the liver
and in the intestine.

Caco-2 TDC Reg. 906 RMSE log(cm/s) Scaffold The experimental result on the rate of drug passing through the human
colon epithelial cancer cell line can approximate the rate at which the
drug permeates through the human intestinal tissue

Clearance Hepatocyte TDC Reg. 1020 Spearman uL/min
per million
cells

Scaffold The volume of plasma cleared of a drug over a specified time period.
This is a dataset curated from ChEMBL database containing experimental
results on intrinsic clearance, deposited from AstraZeneca.

Clearance Microsome TDC Reg. 1102 Spearman uL/min/g Scaffold The volume of plasma cleared of a drug over a specified time period.
This is a dataset curated from ChEMBL database containing experimental
results on intrinsic clearance, deposited from AstraZeneca.

ClinTox TDC Class. 1484 AUROC Binary Scaffold The ClinTox dataset includes drugs that have failed clinical trials for
toxicity reasons and also drugs that are associated with successful trials.

DILI TDC Class. 475 AUROC Binary Scaffold Drug-induced liver injury (DILI) is fatal liver disease caused by drugs
and it has been the single most frequent cause of safety-related drug
marketing withdrawals for the past 50 years (e.g. iproniazid, ticrynafen,
benoxaprofen). This dataset is aggregated from U.S. FDA’s National
Center for Toxicological Research

HIA TDC Class. 578 AUROC Binary Scaffold The ability of a drug to be absorbed from the human gastrointestinal
system into the bloodstream of the human body

Half Life TDC Reg. 667 Spearman hr Scaffold The duration for the concentration of the drug in the body to be reduced
by half. Obtained from ChEMBL assay 1614674

LD50 TDC Reg. 7385 RMSE log(kg/mol) Scaffold The conservative dose that can lead to lethal adverse effects.
Lipophilicity TDC Reg. 4200 RMSE log-ratio Scaffold Lipophilicity measures the ability of a drug to dissolve in a lipid (e.g. fats,

oils) environment. From MoleculeNet
PAMPA Permeability TDC Class. 2035 AUROC Binary Scaffold PAMPA (parallel artificial membrane permeability assay) is a commonly

employed assay to evaluate drug permeability across the cellular mem-
brane. PAMPA does not model active and efflux transporters but the
majority of drugs are absorbed by passive diffusion through the mem-
brane

PPBR TDC Reg. 1797 RMSE Binary Scaffold The human plasma protein binding rate (PPBR) is expressed as the per-
centage of a drug bound to plasma proteins in the blood. From a ChEMBL
assay deposited by AstraZeneca

Pgp Inhibition TDC Class. 1212 AUROC Binary Scaffold P-glycoprotein (Pgp) is an ABC transporter protein involved in intestinal
absorption, drug metabolism, and brain penetration, and its inhibition can
seriously alter a drug’s bioavailability and safety.

Solubility, AqSolDB TDC Reg. 9982 RMSE log(mol/L) Scaffold Aqeuous solubility measures a drug’s ability to dissolve in water.
Volume of Distribution TDC Reg. 1130 Spearman L/kg Scaffold The volume of distribution at steady state (VDss) measures the degree of

a drug’s concentration in body tissue compared to concentration in blood.
hERG Blockers TDC Class. 648 AUROC Binary Scaffold Human ether-a-go-go related gene (hERG) is crucial for the coordination

of the heart’s beating.
hERG Central Inhib. TDC Class. 306893 AUROC Binary Scaffold Given a drug, predict whether it blocks hERG with an IC50 <10uM.
hERG, Karim et al. TDC Class. 13445 AUROC Binary Scaffold A integrated Ether-a-go-go-related gene (hERG) dataset consisting of

molecular structures labelled as hERG (<10uM) and non-hERG (>=10uM)
blockers in the form of SMILES strings was obtained from the DeepHIT,
the BindingDB database, ChEMBL bioactivity database, and other litera-
ture

BACE Classification MoleculeNet Class. 1513 AUROC Binary Scaffold Provides bindings results for a set of inhibitors of human beta-secretase
(BACE-1)

BACE Regression MoleculeNet Reg. 1513 RMSE pIC50 Scaffold Provides bindings results for a set of inhibitors of human beta-secretase
(BACE-1)

HIV MoleculeNet Class. 40000 AUROC Binary Scaffold A dataset which tested the ability to inhibit HIV replication
Solubility, Delaney MoleculeNet Reg. 1128 RMSE log(mol/L) Scaffold A regression dataset containing structures and water solubility data
Tox21 MoleculeNet Class. 8000 AUROC Binary Random The Toxicology in the 21st Century (Tox21) initiative created a public

database measuring the toxicity of compounds
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run to maximize a measure of hCAII binding predicted by a DUE Regressor with constraints that QED > .5 and logP <
5.

For COATI + Metadynamics the objective function took the form of Equation 9 in the main text and was minimized
over 40,000 steps per trajectory with molecules being decoded every 25 steps. For CDDD + QMO, steps are taken
using a zeroth-order gradient descent method outlined in Hoffman et al. (2022). The minimized objective function took
the form:

L(v⃗) = −(µbind(v)− σbind(v)) + max(.5− QED(CDDD(v)), 0) + max(logP(CDDD(v))− 5, 0) (10)

where µ, σ are computed by the CDDD binding DUE regressor and CDDD(v) is the molecule decoded from v by
CDDD. In this case, QED and logP are computed on decoded molecules directly via RDKit. With references to
the variables used in the QMO paper for optimization parameters, the starting learning rate (α0) was .2, the number
of samples to compute the pseudo-gradient (Q) was 150, and the pseudo-gradient smoothing parameter (β) was 10.
Each trajectory was run for 1000 steps, as each step is more computationally expensive given the additional sampling
required.

Figure 8: Similarity to reference compound and validity with added N (0, σ) noise over a random sample of 2500
molecules from the COATI datasets test partition. Three generation attempts were made for each molecule in the input.
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Figure 9: t-SNE of the COATI embeddings from the 3D point cloud of multiple conformations of each molecule in
different sets of isomers. Many sets of isomers from the training data were added to fully express the space.
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