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In the last several years, there has been a surge in the development of machine learning potential (MLP)
models for describing molecular systems. We are interested in a particular area of this field — the training
of system-specific MLPs for reactive systems — with the goal of using these MLPs to accelerate free energy
simulations of chemical and enzyme reactions. To help new members in our labs become familiar with the basic
techniques, we have put together a self-guided Colab tutorial (https://cc-ats.github.io/mlp_tutorial/),
which we expect to be also useful to other young researchers in the community. Our tutorial begins with the
introduction of simple fitting neural network (FNN) and kernel-based (using Gaussian Process Regression,
GPR) models by fitting the two-dimensional Müller-Brown potential. Subsequently, two simple descriptors
are presented for extracting features of molecular systems: symmetry functions (including the ANI variant)
and embedding neural networks (such as DeepPot-SE). Lastly, these features will be fed into FNN and GPR
models to reproduce the energy/force of molecular configurations of the Claisen rearrangement.

I. INTRODUCTION

In recent years, there have been significant pro-
gresses in the development of machine learning potentials
(MLPs) for generating high-quality potential energy sur-
faces for chemical systems.1–16 In general, for a molecule
with N atoms, a MLP model takes an input (Cartesian
coordinates) vector R ∈ R3N , and returns an output
(total energy and Cartesian forces on each atom) vec-
tor y ∈ R3N+1. These MLPs can be categorized into
two main groups based on their architecture:8 descriptor-
based models and graph neural network (GNN)-based
models.

For descriptor-based models, the system’s coordi-
nates are first transformed into descriptor vectors, which
must adhere to translational, rotational, and permu-
tational symmetries. In the Behler-Parrinello neural
network (BPNN)17 and its ANI variants,18–20 for in-
stance, symmetric functions are used to encode the lo-
cal environment of each atom into a descriptor called an
atomic environment vector (AEV). In the DeepPot-SE
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models,21–23 on the other hand, embedding neural net-
works are used to transform the coordinates into descrip-
tors. These and other descriptors (such as the internal
coordinates,24 Coulomb matrix,25 permutation invari-
ant polynomial5,14,26,27, bag of bonds,28 normalized in-
verted internuclear distances,29 FCHL representation,30
and weighted symmetry functions31) are then used as in-
puts to a regressor, such as a neural network or a kernel-
based regressor, to predict the target molecular energy
and the corresponding atomic forces.

In an alternative approach, GNN-based models treat
the molecular system as a dense graph, with each atom
representing a node and two-body interactions repre-
sented by edges between the nodes. Unlike descriptor-
based models where the descriptors are calculated from
the atomic coordinates in one pass, in GNN-based mod-
els, the description for each atom’s local environment is
updated iteratively through multiple rounds of refine-
ments. Examples for this category include DTNN,32
SchNet,33,34 PhysNet,35 E3NN,36 etc.

In this tutorial on basic MLPs for reactive systems,
which we prepared in the last year for training new mem-
bers in our labs, we primarily focused on descriptor-based
models, specifically the atom-centered symmetry func-
tions (including the ANI variant) and the DeepPot-SE
descriptors. We then employed these descriptors in com-
bination with two types of regressors — neural network
models and Gaussian process regression (GPR)37 based
kernel models — to train the MLPs for model systems.

This tutorial is organized as follows. In Section II, we
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will briefly introduce the underlying methods for feature
extraction (symmetry functions and DeepPot-SE) and for
data regression (neural networks and GPR). Seven tuto-
rial lessons will be briefly outlined in Section III. A dis-
cussion is presented in Section IV on the utilization and
extension of these MLPs. Concluding remarks are made
in Section V.

II. METHODS

A. Feature Extraction

1. Symmetry Functions

Atomic feature vectors {Gi}, also known as symmetry
functions, describe the organization of the environment
surrounding each atom, and are usually decomposed into
two-body and three-body terms. The two-body terms,

which are called the radial functions following the nomen-
clature of Behler and Parrinello,17 for the ith atom are
defined as

G1
i =

N∑
j ̸=i

e−η(Rij−Rs)
2

fc (Rij) , (1)

summing up the contributions from all atoms other than
the ith atom itself. Here, fc is a damping function of the
interatomic distance Rij with a cutoff Rc defined as

fc(Rij) =

{
1
2

[
cos
(

πRij

Rc

)
+ 1
]
, Rij ≤ Rc

0, Rij > Rc

(2)

Note that η and Rs in Eq. 1 as well as Rc in Eq. 2 are all
predetermined hyperparameters. The three-body terms,
or the angular functions, for the ith atom are defined as

G2
i = 21−ζ

N∑
j,k ̸=i

(1 + cos(θijk − θs))
ζ
e−η(R2

ij+R2
jk+R2

ik)fc (Rij) fc (Rjk) fc (Rik) , (3)

with the j-i-k angle being

θijk = arccos
(
Rij ·Rik

RijRik

)
(4)

and

Rij = Ri −Rj (5)

Here ζ and η are hyperparameters, and θs = 0 or π. In
the ANI18 implementation of BPNN, the angular func-
tion is replaced with

G2
i = 21−ζ

N∑
j,k ̸=i

(1 + cos (θijk − θs))
ζ
e
−η

(
Rij+Rik

2 −Rs

)2

fc (Rij) fc (Rik) , (6)

where Rs is the shifting hyperparameter defining the cen-
ter of the Gaussian. With different combinations of the
hyperparameters, a series of symmetry functions G1

i and
G2

i can be defined, enhancing the capability of character-
izing the inhomogeneous environment.

With the cutoff distance Rc, the BPNN potential be-
comes short-ranged. For systems where the long-range
interaction is non-negligible, for instance for molecules
in the condensed phase, the Coulomb interaction beyond
the cutoff distance can still be non-negligible. For these
kinds of systems, one extra feature representing the elec-
trostatic potential embedding the atom can be appended.
It can be seen that the atomic feature vectors do not de-
pend on the absolute position of the atoms but the rela-
tive positions among all the atoms, therefore the manda-

tory translational and rotational invariances are satisfied.
Behler and Parrinello used a fully-connected feed-forward
neural network for the atomic features-to-energy percep-
tion. Instead of individual neural networks for each atom,
atoms of the same element share the same neural net-
work. More generally, atoms of the same atom type share
the same neural work. In other words, the neural network
is not atom-wise, but element-wise or atom-type-wise. In
this way, the condition of permutational invariance is also
met.
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2. DeepPot-SE Representation

Similar to the symmetry functions, in Deep Potential -
Smooth Edition (DeepPot-SE),21 for a system consisting
of N atoms, each atom i (1 ≤ i ≤ N) is first represented
by its local environment matrix Ri, i.e., the relative co-
ordinates between atom i and each of its ni neighbor
atoms,

Ri =



R1i

R2i

· · ·

Rnii


=



x1i y1i z1i

x2i y2i z2i

· · · · · · · · ·

xnii ynii znii


(7)

Next, the local environment matrix Ri is transformed to
the generalized local environment matrix R̃i

,

R̃i
=



s(R1i) s(R1i)
x1i

R1i
s(R1i)

y1i

R1i
s(R1i)

z1i
R1i

s(R2i) s(R2i)
x2i

R2i
s(R2i)

y2i

R2i
s(R2i)

z2i
R2i

· · · · · · · · · · · ·

s(Rnii) s(Rnii)
xnii

Rnii
s(Rnii)

ynii

Rnii
s(Rnii)

znii

Rnii


,

(8)

where Rji = ∥Rji∥ and

s(Rji) =


1

Rji
, Rji < Rcs

1
Rji

{ 1
2 cos [π

(Rji−Rcs)
(Rc−Rcs)

] + 1
2}, Rcs < Rji < Rc

0, Rji > Rc.

(9)

Here Rcs is the switching distance from which the compo-
nents in R̃i

smoothly decay to zero at the cutoff distance
Rc.

In the next step of feature abstraction, an embedding
neural network (ENN) Gαj ,αi is used to map each s(Rji)
value through multiple hidden layers of neurons into m1

outputs, which form the j-th row of the embedding ma-
trix gi. It should be noted that a separate embedding
neural network Gαj ,αi needs to be trained for each pair
of the atom element types (αj , αi).

gi =



(G[s(R1i)])1 (G[s(R1i)])2 . . . (G[s(R1i)])m1

(G[s(R2i)])1 (G[s(R2i)])2 . . . (G[s(R2i)])m1

. . . . . . . . . . . .

(G[s(Rni)])1 (G[s(Rni)])2 . . . (G[s(Rni)])m1


(10)

Lastly, a feature matrix Di of size m1 by m2 is com-
puted

Di = (g1i )
TRiR

T
i g

2
i , (11)

where g1i is the same as gi (in Eq. 10) and a submatrix
g2i contains the first m2 columns of gi (i.e., m2 ≤ m1).
Both m1 and m2 are additional hyperparameters of the
DeepPot-SE representation, besides the number of hid-
den layers and the number of neurons in each layer of the
embedding networks.

B. Feedforward Neural Networks

BPNN, named after Behler and Parrinello, was pro-
posed in 2007 to deal with the difficulty in handling a
varying number of atoms in molecules and permutation
variance.3,17,38 The basic idea of BPNN is to decompose
the molecular energy (E) into atomic contributions (Ei)

E =

N∑
i=1

Ei, (12)

where N is the total number of atoms in the molecule,
and Ei is the energy of the ith atom as the output of a
trained neural network. The input to the neural network
is the atomic feature vector denoted as {Gi}, like those
defined in Eqs. 1 and 3, instead of the original molec-
ular coordinates. The workflow of BPNN is illustrated
in Figure 1, where an element-dependent fitting neural
network (Si) maps the the atomic feature vectors of the
ith atom into its atomic energies (Ei).

FIG. 1: The Neural Network proposed by Behler and
Parrinello (Fig. 2 in Ref. 17).

The fitting networks for DeepPot-SE are similar to the
neural networks in BPNN; the atomic feature vectors
{Gi} are replaced with vectors that are reshaped from
the feature matrix Di for each atom in Eq. 11.

The standard structure of the neural network can be
found in many books and articles.3,39 A simple example
of a NN with only one hidden layer is shown in Fig. 2.
With this NN, the molecular potential energy surface can
be expressed as

Ei =

K∑
k=1

wk f

 M∑
j=1

wjkG
j
i + bk

+ b, (13)
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layer
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layer

FIG. 2: A fully-connected feed-forward neural network
with one hidden layer.

where K and M are the numbers of nodes in the hid-
den layer and input layer, respectively. Gi is concate-
nated feature vector of the ith atom from Eqs. 1 and 3
(or 6), wjk is the weight connecting node j in the in-
put layer and node k in the hidden layer, and bk is the
bias of node k in the hidden layer. Similarly, wk is the
weight that connects node k in the hidden layer and the
output layer (only one node), and b is the bias of the
output layer. The activation function f(x) can be an
arbitrary nonlinear function and must be differentiable,
such as a sigmoid function, a hyperbolic tangent func-
tion, a trigonometric function, or an exponential func-
tion. Nonlinearity ensures the complexity of NN, and the
differentiability ensures that the parameters of a model
can be optimized by the gradient descent method. The
second derivatives of the activation functions should be
available if the forces are used for the NN training.40–42
The initial values of weight and bias parameters can be
set randomly and are optimized during a training process
using back-propagation.

The loss function is defined as the root mean squared
error (RMSE) of the predicted molecular energies with
respect to those from reference quantum mechanical cal-
culations as

L =

√√√√ 1

Ns

Ns∑
t=1

(Et − Et
ref)

2 (14)

where Ns is the number of molecular structures in the
training set, and Et and Et

ref are the potential energy pre-
dicted by the neural network and the reference electronic
energy from a quantum mechanical calculation (ground
truth) for the tth structure, respectively. In the train-
ing of machine-learning potentials for driving molecular

dynamics simulations, the loss function in Eq.14 is often
augmented by the error in the predicted atomic forces.

C. Gaussian Process Regression

Gaussian process regression (GPR) offers an alter-
native approach to modeling the relationship between
molecular descriptors and the potential energy surface
(PES). GPR is a non-parametric, kernel-based stochas-
tic inference machine learning method.37 Unlike NNs,
which are optimized by minimizing the loss function
that parameterizes a predefined functional form based
on a predefined network architecture, GPR maximizes
the likelihood of an observation based on an infinite set
of Gaussian-correlated latent functions. To begin, a prior
distribution is assumed as follows:

f(G) ∼ N (0,K(G,G)), (15)

where G is a set of Ns d-dimensional input vectors
G=[g1,...,gNs

]=[g1,1, ..., g1,d, ..., gNs,1, ..., gNs,d], 0 is the
mean of the functions and K is the covariance kernel
matrix of the training data set based on a given covari-
ance kernel function k that defines the similarity between
the two input vectors involved:37

K(G,G) =

 k(g1,g1) . . . k(g1,gNs
)

...
. . .

...
k(gNs

,g1) . . . k(gNs
,gNs

)

 (16)

In this tutorial, the covariance function, k, in use is the
radial basis function:

k(gi,gj) = σ2
f exp

(
−
||gi,gj ||2

2l2

)
, (17)

where σ2
f is the vertical variation parameter, l is the

length scale parameter, and ||gi,gj || is the Euclidean
distance between two input vectors gi and gj . A third
parameter is introduced to account for some amount of
noise in the observations, modifying the covariance kernel
matrix of the training data:

K′ = K(G,G) + σ2
nI, (18)

where I is the identity matrix.37 The hyperparameters,
Θ = {σ2

f , l, σ
2
n}, are trained by maximizing the logarithm

of marginal likelihood:

log p(y|G,Θ) = −1

2
yT(K′)−1y − 1

2
log |K′| − Ns

2
log 2π,

(19)
The expected (E) energy correction at a new configura-
tion g∗ can be predicted by GPR as follows:

E [f(g∗)|y,g∗,G,Θ] = K∗(K + σ2
nI)

−1y, (20)

where K∗ = K(g∗,G). The variance of the predictive
distribution can also be determined as:

Var [f(g∗)|y,g∗,G,Θ] = k(g∗,g∗)−K∗(K+ σ2
nI)

−1K∗T

(21)
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The forces are then calculated following the analytical
gradient of the energy correction with respect to the
Cartesian coordinates:

Fc,q = −
d∑

j=1

∂f(g∗)

∂g∗,j

∂g∗,j
∂qc

, (22)

Here, f(g∗) is the mean of the predictive distribution
that will be used to correct the energy, g∗,j is the j-th
component of g∗, and qc corresponds to the force in the
q (=x, y, or z) Cartesian direction on the c-th atom.

Permutational invaraince can be introduced following
the Gaussian approximation potential (GAP) formalism,
introduced by Bartók and colleagues,43 which employs a
set of linear combination matrices, L, to combine atomic
contributions to the potential energy. Atomic contribu-
tions to the energy can be made according to

ϵ(G∗) = k∗TL(LTKnnL+ σ2
nI)

−1y, (23)

where G∗ corresponds to the concatenated feature vec-
tor and Knn is now a covariance matrix comparing each
individual atomic environment.

Additionally, the GPR model can be influenced by
force observations, as demonstrated in our recent work.44

Because the derivatives of Gaussian processes, ∂f(G)
∂g , are

also Gaussian processes, the observation set can be ex-
tended to include a set of derivative observations.45 Here,
we use the nuclear gradients, ∂f(g)

∂qa
, as our observable

derivatives, and include them in an extended set, yext:

yext =[
y1, ..., yNs ,

∂f(g1)

∂q1
, ...,

∂f(gNs
)

∂q1
, ...,

∂f(g1)

∂qM
, ...,

∂f(gNs
)

∂qM

]T
(24)

The kernel is similarly extended, following the formalism
introduced by Meyer and Hausser,46 to account for the
transformation from Cartesian to internal input space:

Kext =

 K(G,G′)
∂K(G,G′)

∂Q′

∂K(G,G′)

∂Q
∂2K(G,G′)

∂Q∂Q′

 (25)

After the model is optimized, the expected (E) energy
correction at a new configuration g∗ can be predicted by
GPR according to:

E [f(g∗)|yext,g
∗,G,Θ] = K∗

ext(Kext+σ2
nI)

−1yext , (26)

where K∗
ext = Kext(g∗,G). The associated predictive

variance (Var) is given by:

Var [f(g∗)|yext,g
∗,G,Θ] =

k(g∗,g∗)− K∗
ext(Kext + σ2

nI)
−1K∗T

ext (27)

The prediction of the expected gradient correction is
given by:

E

[
∂f(g∗)

∂qa

∣∣∣∣yext,g
∗,G,Θ

]
=

∂K∗
ext

∂qa
(Kext + σ2

nI)
−1yext ,

(28)
with the associated variance being:

Var

[
∂f(g∗)

∂qa

∣∣∣∣yext,g
∗,G,Θ

]
=

∂2k(g∗,g∗)

∂q2a
− ∂K∗

ext

∂qa
(Kext + σ2

nI)
−1 ∂K

∗T
ext

∂qa
(29)

III. LESSONS ON THE MLP TRAINING FOR MODEL
SYSTEMS

The tutorials developed here are based on Jupyter
notebooks and Google Colaboratory. Jupyter notebooks
are a powerful and versatile tool popular in both research
and education. They allow users to combine code, text,
equations, and visualizations in a single interactive doc-
ument, making them a great tool for exploring and un-
derstanding complex concepts. The interactive nature of
Jupyter notebooks makes them particularly useful in ed-
ucation, as they allow students to experiment with code
and see the results of their work in real time. Many uni-
versities and other educational institutions use Jupyter
notebooks in their courses. Google Colaboratory, or Co-
lab for short, is a popular hosted version of Jupyter note-
books that allows users to access powerful computing re-
sources without having to set up and maintain their own
infrastructure. Overall, Jupyter notebooks and Colab are
valuable tools that can make learning more engaging and
effective.

The tutorials will cover several important topics in ma-
chine learning and molecular modeling. In Lessons 1
and 2, we will introduce the concepts of neural networks
and GPR and use these models to reproduce the two-
dimensional Müller-Brown potential energy surface. In
Lessons 3 and 4, we will introduce two molecular repre-
sentations, the Behler-Parrinello symmetry functions and
the Deep Potential, and explore their properties using the
butane molecule as a test case. In the final three lessons
(Lessons 5-7), we will combine these machine learning
models and molecular representations to train several
machine learning potentials that can accurately model
the Claisen rearrangement reaction in the gas phase.
Throughout the tutorials, we will provide hands-on ex-
amples that will allow students to apply what they have
learned and gain practical experience with these impor-
tant tools.
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Lesson 1: Basic Fitting Neural Network Models

FIG. 3: (a) Reference PES and (b) FNN predicted PES,
for the Müller-Brown PES.

We introduce the Müller-Brown potential energy sur-
face and fitting neural networks. A fitting neural network
is trained using random points from the Müller-Brown
potential energy surface (Fig. 3a). The FNN predicted
surface (Fig. 3b) is then compared to the analytical sur-
face.

Lesson 2: Basic Gaussian Process Regression Models

FIG. 4: (a) Reference PES, (b) GPR predicted PES,
(c) difference between the reference and GPR predicted
surfaces, and (d) predicted variance for the Müller-Brown
PES.

A GPR model is used to constructed a predicted sur-
face (Fig. 4)of the Müller-Brown potential energy sur-
face, similar to Lesson 1. Emphasis is placed on GPR
parameters, marginal likelihood, and variance from the
analytical surface. Additional sections are added to show
how gradients for a surface can be predicted using GPR.

Lesson 3: Behler-Parrinello Symmetry Functions for Feature
Extraction

FIG. 5: The BP angular symmetry functions (left) com-
pared to the ANI angular symmetry functions (right).

We introduce Behler-Parrinello17 and ANI methods18
for feature extraction using symmetry functions. This
lesson discusses the importance of symmetry functions
(Fig. 5) for ensuring the energy of a molecule described
by a neural network is rotationally and translationally in-
variant. BP and ANI are then used for feature extraction
of a butane molecule.

Lesson 4: DeepPot Representation for Feature Extraction

FIG. 6: Schematic of the DeepPot-SE feature extraction
process for the ith atom.

We provide an overview of DeepPot MLP training
workflow (Fig. 6) and discuss the significance of the em-
bedding matrices for feature extraction in an embedding
neural network. DeepPot is then used for feature extrac-
tion of butane molecular configurations from Lesson 3.

https://doi.org/10.26434/chemrxiv-2023-545gw ORCID: https://orcid.org/0000-0001-9337-341X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-545gw
https://orcid.org/0000-0001-9337-341X
https://creativecommons.org/licenses/by-nc-nd/4.0/


7

Lesson 5: BP-FNN Models for the Claisen Rearrangement

FIG. 7: Claisen rearrangement modeled in lessons 5-7.

We combine the Behler-Parrinello symmetry functions
with a fitting neural network to construct a neural net-
work that is rotationally and translationally invariant.
The BP-FNN MLP is trained using geometries relevant
to a Claisen rearrangement reaction (Fig. 7). Following
the training, the model is compared to reference values
calculated using Density Functional Theory (DFT) with
B3LYP functional and 6-31+G* basis set.

Lesson 6: DeepPot-FNN Models for the Claisen
Rearrangement

We combine DeepPot with a FNN to describe the
molecular configurations along the Claisen rearrange-
ment reaction pathway from Lesson 5. The predictions
made by the DeepPot-FNN MLP model we train are
again compared to DFT reference results.

Lesson 7: BP-GPR Models for the Claisen Rearrangement

Our final lesson combines the BP and ANI symmetry
functions with GPR to create an MLP model. The BP-
GPR MLP model is trained and tested using the same
reactive system as in Lessons 5 and 6.

IV. DISCUSSION

This tutorial focuses on the training of MLPs for de-
scribing the ground-state potential energy surface of a
reactive system. It should be noted that our focus
is placed on the readability of the code implementa-
tion, rather than the software modularity or run-time
efficiency. Once learning the basics through this tuto-
rial, the readers can adopt advanced software platforms,
such as DeePMD-kit,22,47,48 ænet,49,50 AMP,51 MLatom,
PhysNet,35 SchNetPack,34 sGDML,52 and TorchANI20
for their own machine learning model development. It
should also be noted that there are several other areas of
research that are not covered. These include:

• MLPs for describing electronic excited states. A
comprehensive review on this topic can be found in
Ref. 11. In general, it would require the training

of several MLPs, one for each adiabatic or diabatic
electronic surface, as well as, in the former case,
the training of ML models for the non-adiabatic
coupling.53–59

• Active learning/adaptive sampling schemes for
training the MLPs for molecular dynamics sim-
ulations. This can involve (a) the estimation
of prediction uncertainty using the query-of-the-
committee19,56,58,60 and other approaches61 and (b)
the use of uncertainty estimates in hyperactive
learning to bias sampling towards large uncertainty
regions in the generation of a training set.62,63

• Efficient protocols for generating MLPs for
QM/MM simulations. It is not practical to incor-
porate all MM atoms (in addition to QM atoms)
in the training of these potentials, as this would
lead to an explosively large array of descriptors, the
most straightforward way is to include only MM
atoms within a distance cutoff from the QM re-
gion in the MLP training.64–66 Alternatively, one
can adopt an implicit description of the MM en-
vironment through the use of MM-perturbed semi-
empirical QM charges,67,68 MM electrostatic poten-
tial or field at QM atom positions,69,70 or through
polarizable embedding.71 One can also use both
MM electrostatic potential and field in the train-
ing of QM/MM MLPs72,73 using our QM/MM-AC
scheme74 for separating inner and outer MM atoms
and projecting outer MM charges onto inner MM
atom positions.74–76

These topics will be covered in future advanced tutorials
on MLPs.

V. CONCLUSIONS

A Colab tutorial was developed to showcase the im-
plementation of basic machine learning models (Neural
Networks; Gaussian Process Regression) for reactive sys-
tems (using Claisen arrangement as a model system).
We hope this tutorial will make it easier for undergradu-
ate/graduate students to get familiar with the basics of
machine learning techniques in the context of atomistic
modeling.
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