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Abstract 

There is an increasing awareness of the importance of epigenetics to understand disease etiologies and 

develop novel therapeutics. Concomitantly, the renewed interest in epigenetic processes and their 

relationship with food chemicals has been reflected by an increasing number of publications in the past 

few years. However, there is a lack of a recent systematic and quantitative study that accounts for the most 

recent advances in the area associating the chemical structures of the food and natural product 

components with their biological activity. Here, we analyze recent advances and discuss the status of food 

chemicals and their intersection with natural products in epigenetic research. We discuss the most 

investigated diseases and potential therapeutic applications associated with food chemicals and natural 

compounds ingested in the diet. Using chemoinformatics tools, we compared quantitatively chemical 

contents, structural diversity, and coverage in the chemical space of food chemicals reported with 

epigenetic activity. As part of this work, we built and curated a compound database of food and natural 

product chemicals annotated with structural information, epigenetic target activity profile, and main source 

of the food chemical or natural product, among other relevant features. The compounds are cross-linked 

with identifiers from other major public databases such as FooDB and the COlleCtion of Open Natural 

ProdUcTs, COCONUT. The compound database is freely accessible at 

https://github.com/EuridiceJuarez/EpiFoodChemicalDatabase/blob/main/EpiFoodChemicalDatabase.csv.  

 

Keywords: chemical space; databases; epigenetics; food chemicals; foodinformatics; natural products; 

structure-activity relationships. 
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1. Introduction 

The concept of epigenetics has changed since it was first introduced in the 1940s by Conrad Waddington 

to describe “the branch of biology which studies the causal interactions between genes and their products 

which bring the phenotype into being”1 Nowadays the meaning of epigenetics is widely accepted as the 

study of the heritable changes in the gene expression profile that do not entail a change in DNA sequence 

but modifies on the accessibility of the code via DNA methylation, modifications of amino acids on the 

amino-terminal tail of histones and non-coding RNAs.1–3 It has been proposed that these changes could 

be classified into three types: direct epigenetics, which occur in the lifespan of a person, within indirect 

epigenetics define the ones that occur inside the womb, due to events during gestation and across indirect 

epigenetics, referred to those changes that affected the individual predecessors and somehow, maybe 

through changes in the gametes or intrauterine environment setting, are transmitted across generations.2 

The immense interest shown in the field lead to the development of many studies showing the link between 

epigenetic changes and certain diseases such as diabetes, heart failure, cancer, inflammatory bowel 

diseases, and neurodegenerative diseases, among others.4–7
 

Certain enzymes have been described as having a key role in these epigenetic modifications: DNA 

methyltransferases (DNMTs), in charge of the covalent addition of a methyl group to the DNA leading to 

the repression of certain genes; histone acetyltransferases (HATs) with the function of the acetylation of 

histone proteins, allowing the chromatin structure to open and become more transcriptionally active,8 and 

histone deacetylases (HDACs), which regulate the deacetylation of histones, leading to a hypoacetylation 

towards heterochromatin and gene suppression.9 Thus, the search for molecules that could hit these 

targets began, and the term “epidrugs'' was coined to describe chemical compounds that alter DNA and 

chromatin structure, promoting the disruption of transcriptional and post-transcriptional modifications by 

the inhibition of DNMTs and HDACs, mainly. As of 2022, several compounds have been approved by the 

Food and Drug Administration of the USA for clinical use while other compounds are chemical probes. 

Examples of approved drugs are azacytidine (DNMT1 inhibitor), 5-aza-2’deoxycytidine (DNMTs and 

HDACs inhibitor), procaine (DNMTs inhibitor), hydralazine (DNMTs inhibitor), vorinostat (HDACs inhibitor), 

romidepsin (HDACs inhibitor), panobinostat (HDACs inhibitor), and belinostat (HDACs inhibitor). 
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Nanaomycin A is a promising probe molecule (DNMT3b inhibitor).10-14 The chemical structures are shown 

in Figure 1. 

 

Figure 1. Chemical structures of representative drugs and drug candidates. 

 

One of the most promising areas of this search is the field of nutriepigenomics, focused on the study 

of the interaction between food nutrients and genome through epigenetic mechanisms, modulating the 

overexpression or silencing of specific genes and metabolic responses.15–17 The interaction between 

nutrition, epigenetic targets, and the development of certain diseases such as type I and type II diabetes, 

inflammatory diseases, liver fibrosis, and cancer have been discussed in the last few years, leading to new 

alternatives to mitigate the damage or prevent such conditions.4,5,9,15,18–21 

Using chemoinformatics to analyze natural products22 and food chemical data sets is increasingly 

widespread. The term foodinformatics, coined in 2014,23 captures the application of chemical information 
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to food science. Several works focused on the contents and diversity of food chemicals have been 

published, yielding useful information to organize and mine chemical information associated with food 

chemicals, which, ultimately, is at the core of informatics applications in chemistry.24 Similarly, 

chemoinformatics has a growing interest in natural product research,25 giving rise to the sub-field of natural 

products informatics.26 Notable examples of the applications of chemoinformatics to food chemistry and 

natural product research are the development of large compound databases such as FooDB27 and the 

Collection of Open Natural Products (COCONUT).28 Despite the increasing evidence of the effect of food 

and natural products chemicals on epigenetic targets, to the best of our knowledge, there is not a 

comprehensive survey of the effect of food molecules on different epigenetic targets, rather than focusing 

on a specific disease or a specific epigenetic target family.  

The goal of this study was to analyze the recent progress of research on food chemicals and food 

components acting with epigenetic targets, building a compound database that integrates the information 

on the chemical structure of food chemicals and other natural products with the epigenetic activity profile. 

The scientific papers and compound database were analyzed using chemoinformatics, data mining, and 

visualization approaches to identify: 1) the most frequent epigenetic targets and related therapeutic areas 

associated with food chemicals reported so far; 2) the food chemicals and other natural products most 

studied along with their epigenetic activity profile. The chemical structure contents, diversity, and coverage 

in the chemical space of the compounds in the molecular database were evaluated using quantitative 

methods and data visualization techniques. Since the chemical space of a compound data set depends 

on the structure representation, we characterize the recently termed “chemical multiverse,” e.g., chemical 

space generated with multiple structure representations.29 As part of the analysis, we explored the 

relationships between the chemical structures and the epigenetic activity profile using the approach of 

structure-property landscapes.30 

 

2. Methods 

2.1. Literature search and analysis 

We conducted a meta-analysis of the literature of research papers published between 2017-March 2023 

in peer-reviewed journals with digital object identifier (DOI) number, documenting the research of food 
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chemicals interacting with epigenetic targets with potential therapeutic applications or disease prevention. 

The literature search was done in PubMed31 and Web of Science Core Collection32 databases using the 

following search terms: (("epigenetics" AND "food chemical(s)") OR ("epigenetics" AND "natural products") 

OR ("epigenetics" AND "therapeutic application") OR ("epigenetics" AND "disease") OR ("epigenetics" 

AND "drug discovery") OR ("epigenetics" AND "drug development") OR "epigenetic targets" OR 

"epigenetic therapy" OR "epigenetic mechanisms" OR "epigenetic regulation" OR "epigenetic modifiers" 

OR "epidrugs" OR "nutritional epigenetics" OR "nutrigenetics"). As part of the analysis, the dietary 

compounds were determined in the abstract of the selected papers. Then the most common therapeutic 

indications associated with these compounds were selected in the related papers. Additional analyses 

were performed after assembling and annotating a compound database described in Section 2.2. 

 

2.2. Compound database of food and natural product chemicals annotated with epigenetic activity 

Based on the literature search and analysis described in Section 2.1, a compound database herein termed 

“Epi Food Chemical Database” was assembled using Google Sheets. The chemical structures were 

represented using the linear notation Simplified molecular-input line-entry system (SMILES).33 The 

compound database was annotated with the following information: compound name; the International 

Chemical Identifier (InChI); the hashed version of InChI (InChIKey); main food source; if available, link of 

the compound to the FooDB or COCONUT databases (using the corresponding identifiers in those public 

databases); reference to the peer-reviewed paper using the DOI number; activity profile with the epigenetic 

targets for which the given compound has reported activity. To facilitate subsequent analysis and rapidly 

identify trends in the data, the activity profile was represented as a vector of “1”s and “0”s to indicate if the 

compound has or not reported activity with a given epigenetic target, respectively. 

 

2.3. Chemoinformatic analysis of the chemical database 

The content and diversity of the chemical structures of the 187 compounds in the Epi Food Chemical 

Database was analyzed under three main type of analysis: a) scaffold content and chemical diversity using 

structural fingerprints and chemical scaffolds; b) distribution in chemical space, and c) descriptive 

structure-activity relationships based on the concept of activity, or more general, property landscapes.34 

Each of the three types of analysis is described below. 
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2.3.1. Chemical content and diversity analysis 

The scaffold content analysis was based on the definition of Bemis and Murcko,35 which considers a 

scaffold as the rings in a molecule and the connectors of them, the analysis was performed using an in-

house code in Python with the modules MurckoScaffold of RDKit library. Also, the chemical structures of 

the compound database were analyzed using well-established protocols and broadly used to characterize 

or assess the chemical diversity, namely, scaffold contents, and structural diversity using four molecular 

fingerprints: Molecular ACCEs System (MACCS) Keys (166-bits); Extended Connectivity Fingerprints 

(ECFP) radius 2 and 3; and RDKit fingerprints. The similarity analysis was calculated using the Jaccard-

Tanimoto index.36 

 

2.3.2. Visualization of the chemical space  

To visualize the chemical space of the compounds in the Epi Food Chemical Database, we generated a t-

distributed stochastic neighbor embedding (t-SNE). This technique involves nonlinearly reducing 

dimensions by creating Gaussian probability distributions across high-dimensional space and then utilizing 

them to enhance a Student t-distribution within a lower-dimensional space through optimization. The lower 

dimensional space conserves pairwise similarities from the original higher dimensional space, resulting in 

clustering within the embedding space without a notable loss of the structural information.37-38 In the 

present work, a t-SNE was performed for the Epi Food Chemical Database and FooDB. 

 

2.3.3. Structure-epigenetic activity profile 

For the 187 compounds in the Epi Food Chemical Database, we computed all pairwise fingerprints based 

on the structural similarity of the chemical structures and the pairwise epigenetic activity profile similarity 

using the Jaccard-Tanimoto coefficient in both cases. The fingerprint-based similarity was calculated with 

four different fingerprints: ECFP4, ECFP6, MACCSKeys and RDKit fingerprints.39 In total, 17,590 pairwise 

comparisons were computed for each fingerprint (including self-comparisons) and 17,430 pairwise 

comparisons for each fingerprint (excluding self-comparisons). The structure vs. epigenetic activity profile 

similarity was plotted in a scatter plot reminiscent of the structure-activity similarity (SAS) maps.40-43 Figure 

2 shows a prototype plot of a SAS map where the epigenetic activity profile similarity is plotted on the Y-

axis while the fingerprint-based structural similarity is plotted on the X-axis. A SAS map can be roughly 
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divided into four regions as described in Figure 2; in Region I are pair of compounds with very similar 

activity profiles but very different structural similarity, in Region II are pair of compounds with high structural 

similarity as similar activity profiles. Region III identifies pairs of compounds with high structural similarity 

but very different activity profiles. In Region IV are pairs of compounds with very similar activity profiles but 

very different structure similarity, that is activity or property cliffs. 

 

 

Figure 2. Prototype plot of a structure-activity similarity (SAS) map. Pairs of compounds in regions I and III have 

low structural similarity, while those in regions II and IV have high structural similarity. Pairs of compounds in 

regions I and II have a high similarity in their epigenetic activity profiles, although the chemical compounds in 

regions III and IV hold very different epigenetic activity profiles. 

 

3. Results and discussion 

3.1. Literature analysis 

The literature search revealed that the number of peer-reviewed papers found in PubMed and Web of 

Science using the search terms described in the Methods was 7,430 and 5,960 respectively; of which 

4,484 were in both databases and 2,946 were unique for PubMed and 1,476 were unique for Web of 

Science. Table 1 summarizes the major twenty types of diseases associated with epigenetics, and 

chemical compounds present in the food or natural products identified in the current search are listed. 

Table S1 in the Supporting Information summarizes the complete list associated with the respective related 

genes and epigenetic targets. 
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Table 1. Top twenty types of diseases associated with food epigenetic compounds. 

Associated diseases Epigenetic target 

Breast cancer 

DNMT1, DNMT3a, DNMT3b, HDAC1, HDAC2, HDAC3, HDAC 4, HDAC6, 

SIRT1, SIRT 2, SIRT 3, SIRT 4, SIRT5, SIRT6, KDM1B, KDM2A, KDM3A, 

KDM4A, KDM4B, KDM5A, KDM6B, KDM7A, KDM8 

Lung cancer 
DNMT1, DNMT3a, HDAC4, HDAC5, HDAC6, HDAC8, HDAC9, SIRT2, KDM1A, 

KDM3B 

Prostate cancer DNMT1, HDAC, HDAC4, HDAC5, HDAC6, KDM1A, KDM2B, SIRT1 

Colorectal cancer DNMT, HDAC7, KDM6B 

Bladder cancer HDAC6, LSD1, KDM6A 

Melanoma HDAC2, HDAC5, KDM5A, KDM6A 

Oral cancer HDAC6, HDAC8, KDM1A 

Hepatocellular carcinoma DNMT3a, HDAC10, KDM1A, KDM2A 

Alzheimer's DNMT, HDAC3, SIRT1 

Endometrial cancer DNMT, DNMT1, HDAC 3, KDM4A 

Non-small cell lung cancer DNMT3a, HDAC1, HDAC2, KDM6B 

Gastric cancer DNMT1, DNMT3a, HDAC 2, KDM2A, KDM2B 

Cervical cancer DNMT1, HAT/Ep300, HAT2B/Ep300, KDM5C 

Colon cancer DNMT3b, HDAC 1, HDAC 3, HDAC 7, KDM4C, KDM5A, KDM6B 

Diabetes mellitus type 2 DNMT, HDAC, SIRT1 

Glioblastoma LSD1, KDM1A 

Obesity and metabolic 

diseases 
DNMT, HDAC1, SIRT1 

Esophageal carcinoma DNMT, HAT2B/Ep300 

Squamous cell carcinoma HDAC, HDAC5 

Atherosclerosis DNMT, HDAC7, SIRT1 

 

3.2. Compound database 

A total of 436 papers out of 8,906 unique papers from both databases (PubMed and Web of Science) were 

used as the basis to build and curate the compound data set introduced in this work. The current version 

of the data set contains 187 unique compounds, of which; 121 compounds have reported specific activity 
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against at least one of the targets, and 66 compounds have reported general activity against at least one 

target family. The Epi Food Chemical Database contains ten columns with general information plus forty-

nine columns that encode the epigenetic activity profile of the compounds across forty-six epigenetic 

targets. The general information is comprised of structural information in three linear notations, namely 

SMILES, InChi, and InChi keys; name, source of the compound, DOI of the peer-reviewed reference 

reporting the epigenetic activity, and links to FooDB and COCONUT databases through hyperlinks using 

the corresponding ID’s on these two public databases. 

The epigenetic activity profile is encoded as bit vectors of 0 and 1, indicating the absence or presence 

of reported activity, respectively, for each of the 46 targets (see the Methods section 2.2 for details). The 

epigenetic targets are ordered and arranged into three main groups: writers, erasers, and readers as 

follows: 8 writers (DNMT1, DNMT3a, DNMT3b, HAT/Ep300, HAT2B/Ep300, HAT3B/p300, EZH2, 

PRMT1); 37 erasers (HDAC1, HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, HDAC9, 

HDAC10, HDAC11, SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, SIRT7, LSD1, KDM1A, KDM1B, 

KDM2A, KDM2B, KDM3A, KDM3B, KDM4A, KDM4B, KDM4C, KDM4D, KDM5A, KDM5B, KDM5C, 

KDM5D, KDM6A, KDM6B, KDM7A, KDM8) and 1 reader (BET/BRD4). The main sources of the food 

chemicals in the Epi Food Chemical Database are meat, legumes, whole grains, grapes, poultry, acorn, 

acerola, strawberries, nuts, etc. 

The 15 most frequent targets with reported activity of the compounds in the database are shown in 

Figure 3. We can see that the most frequent target is DNMT1 (63), followed by DNMT3B (35) and DNMT3A 

(34), HDAC6 (31) and HDAC1 (28). 
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Figure 3. Histogram showing the 15 most frequent epigenetic targets.  

 

There are 58 compounds with reported specific activity for only one target, being DNMT1 and HDAC6 

the most frequent epigenetic targets with 18 compounds each one, followed by LSD1 with eight 

compounds, BET/BRD4 with four compounds and DNMT3a, DNMT3b, HAT/Ep300, KDM4a, with activity 

vs. two compounds in any case. Furthermor,e there are three epigenetic targets associated with specific 

reported activity vs only one compound each: HDAC1 with phenethyl isothiocyanate (PEITC), SIRT1 with 

pterostilbene and SIRT 5 with glutamate. The five compounds identified in the search with activity vs. the 

largest number of epigenetic targets were: biotin (27 targets), berberine (15 targets), alpha-ketoglutarate 

(13 targets), trichostatin (12 targets), and butein (11 targets). Additional compounds are shown in Figure 

4, including the chemical structure and the number of targets in parenthesis.  
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Figure 4. Top 10 chemical compounds in Epi Food Chemical Database with epigenetic activity.  

 

3.3. Structural contents; diversity analysis and chemical and multiverse analysis 

3.3.1. Diversity analysis 

The total number of unique scaffolds for the 187 compounds was 91. Figure 5 shows the ten most frequent 

scaffolds along with the frequency and percent proportion, which represent 35.54% of the total distribution. 

The most frequent scaffolds were benzene (10.37%), followed by flavone (5.93%) and flavylium (2.96%). 

Other frequent scaffolds are indole (2.96%), pyridine (2.22%), hexane (2.22%), and isoflavone (1.48%).  

 

 

Figure 5. The ten most frequent scaffolds in Epi Food Chemical Database. 
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Figure 6 shows the cyclic system recovery (CSR) curve for the scaffold diversity in the Epi Food 

Chemical Database. This curve illustrates the proportion of molecules within a dataset that belong to a 

specific fraction of scaffolds. In a dataset with high diversity, each molecule in the library would correspond 

to a different scaffold, resulting in a diagonal with an AUC of 0.5. As the range of scaffold diversity 

diminishes, the curve will deviate from the diagonal orientation. Otherwise, the nadir of diversity would 

show in a dataset wherein all compounds share the same chemical scaffold; in such an instance, the CSR 

curve would appear as a vertical line, accompanied by an AUC of 1.0.44 The shape of the CSR curve in 

Figure 6 indicates a large scaffold diversity. 

 

 

Figure 6. Cyclic system recovery curve of Bemis & Murcko scaffold diversity. 

 

3.3.2. Visualization of chemical/molecular and multiverse spaces 

The newly developed/constructed Epi Food Chemical Database with 187 chemical compounds in 

food/natural products was visualized in a graphical t-SNE representation of the chemical space. For 

comparison, FooDB was included as a reference in the visualization. The t-SNE was performed based on 

the physicochemical descriptors of the chemical compounds in the databases with the module 

MoleculeDescriptors of RDKit, such as: Molecular Weight, octanol/water coefficient (logP), number of 

hydrogen donor atoms (HBD), number of hydrogen acceptor atoms (HBA), topological polar surface area 
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(TPSA), number of aromatic heterocycles, number of aromatic rings, number of heteroatoms, number of 

rotatable bonds, etc.  

 

 

Figure 7. t-SNE showing the compounds in the database; in deep pink chemical compounds in Epi Food 

Chemical Database, in lilac chemical compounds in FooDB.  

 

3.4. Structure-epigenetic target activity relationships 

Figure 8 shows the SAS maps for the 187 chemical compounds in the Epi Food Chemical Database with 

the four different fingerprints: A) ECFP4, B) ECFP6, D) MACCS Keys, and D) RDKit fingerprint. The four 

interactive plots of the SAS maps are available in the Supporting information. 
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Figure 8. SAS maps, in pink are compounds in region II of the SAS map: similar structures and similar activity profile, 

in green are compounds in the IV region of the SAS map: similar activity profiles but very different activity profiles 

(activity cliffs). A) SAS map with ECFP4 fingerprint, B) SAS map with ECFP6 fingerprint, C) SAS map with 

MACCSKeys fingerprint, D) SAS map with RDKit fingerprint, E) examples of common compounds that are present in 

region II (pink points) of the four (A-D) SAS maps, F) examples of common compounds that are present in region IV 

(green points) of the four (A-D) SAS maps. 
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The pink data points represent the pair of chemical compounds present in region II of the SAS maps, 

which correspond to compounds very similar in structure as in profile activity. An example of this compound 

pair that is in common in the SAS maps of the four fingerprints is apigenin vs. luteolin (Figure 8)). These 

compounds have reported activity vs. HDAC1 and HDAC3, and some of the principal mains of both 

compounds are parsley, celery, onions, and pepper. Other examples of compounds in this region of the 

SAS maps are the comparisons between cyanidin vs. malvidin vs. pelargonidin; in this case, the 

compounds have reported activity vs. DNMT1 and DNMT3b, and some of the principal sources of the three 

compounds are blackberries, cherries, strawberries, and raspberries. 

In contrast, the green data points represent a pair of compounds in region IV of the SAS maps, 

corresponding to compounds with similar activity profiles but very different structures. Examples of these 

pairs of compounds present in region IV of all SAS maps for all the fingerprints are linoleic acid with 

reported activity vs. DNMT1, DNMT3a, and DNMT3b and oleic acid with reported activity vs. KDM4, and 

their main sources are avocado, nuts, vegetable oils, and seeds. Another pair of compounds is butein with 

reported activity vs. HDAC1, HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, HDAC9, 

HDAC10 and HDAC 11 vs. isoliquiritigenin with reported activity vs DNMT1 and BET/BRD4 in which their 

main sources are soybeans, peanuts, strawberries, and raspberries. 

It is important to remember that the pairwise compounds of this work are based on the reported activity 

in the literature. For this reason, it is better to call them “pseudo activity cliffs” or pro-activity cliffs45 instead 

of activity cliffs to the compounds in region IV. This is because maybe there are pairs of compounds that 

have very similar profile activity but have not been explored yet. Examples of these compounds are 

apigenin and luteolin vs. chrysin. With current data reported in the literature, it is concluded that apigenin 

and luteolin are compounds that have similar structures with the same activity profile with reported activity 

vs. HDAC1 and HDAC3, but both compounds are pseudo activity cliffs vs. chrysin, which have activity 

reported vs. HDAC6. So it is very probable that chrysin could have activity to HDAC1 and HDAC3 but also 

that apigenin and luteolin could also have activity vs. HDAC6. 
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4. Conclusions 

Here we report the construction and curation of the Epi Food Chemical Database, which contains 187 

chemical compounds from dietary and natural products. The database contains structural information and 

the epigenetic activity profile obtained from the literature vs. 46 epigenetic targets. We used 

chemoinformatic tools to compare and analyze the structural content, diversity, and chemical space. 

Scaffold analysis revealed that the most frequent scaffolds were benzene, followed by flavone and 

flavylium. In addition, we identified two main groups of compounds; the first, with continuous structure-

activity relationships, aka, fulfill the similarity principle: compounds with similar chemical structures have 

similar epigenetic activity profiles. The second group of compounds can be considered pseudo-activity 

cliffs (similar structures but very different epigenetic activity profile). We suggest additional experimental 

testing of the compounds that form pseudo-activity cliffs. They may have similar activity to their 

corresponding compounds. This work contributes to the further advancement of a systematic analysis of 

food and natural product chemicals with epigenetic activity using chemoinformatic approaches. 

 

Supporting Information: 

The supporting information is available at GitHub https://github.com/EuridiceJuarez/EpiFoodChemicalDatabase. It 

contains the annotated compound database of food chemicals reported with epigenetic activity (Epi Food 

Chemical Database) in CSV format; Table S1 with the list of diseases/genes obtained in the literature 

search; Table S2 summarizing the list of 436 research papers used to build the Epi Food Chemical 

Database. and the interactive SAS maps plots of compounds in the Epi Food Chemical Database.  
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