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Abstract  
We employ a combination of accelerated molecular dynamics and machine learning 
techniques to unravel the dynamic characteristics of CBL-B and C-CBL, and how 
their configurational changes conferring the binding affinity and selectivity of their 
ligands. We demonstrate that the activity and selectivity against CBL-B and C stem 
from subtle structural disparities within their binding pockets, and dissociation 
pathways. Our predictive model for dissociation rate constants (koff) demonstrates a 
moderate correlation with experimental IC50 values, effectively aligning with two 
available experimental koff values. Moreover, the binding free energies calculated 
using MM/GBSA highlight the ΔG distinction between CBL-B and C-CBL. By 
employing a regression strategy on dissociation trajectories, we identified key amino 
acids in binding pocket and along the dissociation path responsible for activity and 
selectivity. These amino acids are statistically significant in achieving activity and 
selectivity and correspond to the primary structural discrepancies between CBL-B and 
C-CBL. Through microsecond-scale replica exchange molecular dynamics coupled 
with generative model of molecular generation and ensemble docking, we accomplish 
comprehensive simulations of the complete apo-holo-apo transformation cycle. This 
approach provides an enabling first-in-class drug design technology based on apo-to-
holo structure transformation. 

Introduction 
Casitas B-lineage lymphomas (Cbls) proteins are a group of RING finger E3 ubiquitin 
ligases, which contain C-CBL, CBL-B and CBL-c.1–4 Multiple biological processes 
and cellular signal transduction are regulated by Cbls proteins.5  Immune response and 
protein metabolism are closely related by Cbls proteins through their diverse 
functions.6,7 CBL-B regulates Chimeric antigen receptor (CAR) T cell activation, 
immune tolerance, and has a higher activity selectively against T cell receptor 
complexes.8,9 In contrast, C-CBL exhibits higher substrate affinity towards signaling 
proteins such as the epidermal growth factor receptor (EGFR).10,11 The functional 
difference between CBL-B and C-CBL is conferred by their selective activity towards 
different substrates, signaling pathways, turnover rate of enzymatic kinetic property. 
Ubiquitination of the CBLs is effectuated by the phosphorylation of Y363 of CBL-B 
and Y371 of C-CBL in the highly flexible linker helix region (LHR).12,13 The 
conformational changes of CBL-B and C-CBL are controlled by LHR and RING 
domains.14 Moreover, the close or inactive states of CBL-B and C-CBL are 
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unphosphorylated and adopt an autoinhibition conformations, in which the RING and 
TKB domain are in close contact with each other.12,15,16 Upon binding target 
substrates, E2 is recruited by RING domain, and the RING domain brings E2 in close 
contact with the target substrate. Meanwhile, the phosphorylation sites of CBL-B and 
C-CBL are exposed to corresponding kinases and the resulting phosphorylation induce 
a large conformational change.12,13,17 CAR T cell therapies are vital in cancer 
treatment.7,17 CBL-B as a main regulator of T cells and variety autoimmune diseases 
relevant cells is beneficial to corresponding therapies when its gene is knocked down, 
which has been shown in many experiments.5,14 Therefore, CBL-B is a potential and 
significant therapeutic target. CBL-B inhibitors have gained attention as potential 
therapeutic agents in cancer treatment. One study showed that CBL-B inhibition using 
a small-molecule inhibitor enhanced antitumor immunity and improved the efficacy 
of immune checkpoint blockade therapy in a melanoma model18.  

The precise molecular mechanisms of Cbls proteins functions are still not fully 
understood. Several hypotheses have shown that selective CBL-B inhibition  over C-
CBL acts as a key point in solid tumor treatment.19,20 However, high similarities in 
sequence and structure of CBL-B and C-CBL make the design of selective CBL-B 
inhibitors a daunting challenge.7,8,17,21 CBL-B and C-CBL share high sequence 
homology in tyrosine kinase binding (TKB) domain, LHR and RING domain.12–15,17,22 
A study identified a few amino acids difference in the linker region between the N-
terminal TKB domain and the C-terminal RING finger domain with 86% amino acid 
identity of CBL-B and c-CBL, respectively.16,17 Therefore, how to exploit the little 
structural and sequence difference, and their subtle dynamic and kinetic differences 
will be crutuial to achieve selectivity. The binding affinities (Kd values) of known 
CBL-B inhibitors range from low micromolar to nanomolar, depending on assay 
conditions. There are few koff values (dissociation rates) of CBL-B inhibitors in the 
literature, which are key kinetic property of inhibitors. 23,24 Several strategies have 
been applied to design selective CBL-B inhibitors including analyzing and comparing 
structural difference, exploring binding pockets and targeting unique interaction by 
different residues between CBL-B and C-CBL. However, incorporation of kinetics via 
their different dissociation behavior in CBL-B drug design has not been well 
elaborated.  

In this paper, we combine τ-random accelerated molecular dynamics (RAMD), koff 
prediction model and machine learning to decipher the subtle structural differences in 
the binding pocket and binding mode, the key amino acids for the activity and 
selectivity of CBL-B and C-CBL. We also complete the MD simulation for CBL-B 
full cycle apo-holo-apo transformation using replica exchange molecular dynamics 
(REMD), molecule generation technology and ensemble docking to validate our 
ability to identify the novel holo conformations, and demonstrate the capability to 
design novel holo-like drug/CBL-B complex using apo structure. 

Results and discussion  
1. Sequence and structure difference between CBL-B and C-CBL 
The 3D structure of bound CBL-B in its inactive state (PDB ID) is shown in figure 
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1A, the identical amino acids between CBL-B and C-CBL are shown in red and the 
different ones are in blue. It is evident that CBL-B and C-CBL share the same amino 
acids in their binding site. However, the spatial distribution of amino acids outside of 
the binding pockets is not identical as show in figure 1B. Figure 1C shows the 2D 
structure of the bound ligand and the key amino acids around the functional groups. In 
these interacting amino acids, those involved in both CBL-B and C-CBL are shown in 
black, the ones only involved in CBL-B or C-CBL are show in red and blue 
respectively.  Obviously, the amino acids outside of the pockets can influence binding 
kinetics and the ones in the dissociation pathway will have an impact on koff, which 
in turn contribute to selectivity and binding affinity towards to CBL-B and C-CBL. 

 
Figure 1. The cartoon representation of CBL-B protein bound with ligand with the 
important amino acids in the pocket show in licorice mode (PDB ID: 8GCY). (A) 3D 
structure of CBL-B protein, the amino acids different from C-CBL are shown in blue. 
(B) The cartoon representation of the pocket for CBL-B (red) and C-CBL (blue). The 
key amino acids are show in licorice mode with green color of carbon for CBL-B and 
blue color of carbon for C-CBL. (C) The 2D kekule structure of the ligand with the 
surrounding amino acids within 5Å far from the ligand. The amino acids involved in 
both CBL-B and C-CBL are shown in black, and the ones only involved in CBL-B or 
C-CBL are show in red and blue respectively. 

In order to further analyze the structural difference between CBL-B and C-CBL in 
detail. We performed full-atom molecular dynamics for both CBL-B and C-CBL 
starting from the pdb file downloaded from RCSB (PDB ID: 8GCY and 2Y1M). 
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Figure 2. The cartoon representation of the local structure of the pocket for (A) 
LYS145 (C) GLU268 and (E) PHE263 for both CBL-B and C-CBL. The red color in 
the ribbon shows the same amino acids for CBL-B and C-CBL and the blue color 
shows the different amino acids for CBL-B and C-CBL. The key amino acids are 
show in licorice mode with green color of carbon for CBL-B and blue color of carbon 
for C-CBL. The ligand is show in black color for carbon. The distribution of the (B) 
LYS145-LEU222 distances, (D) GLU268-ARG272 distances, and (F) PHE263-
LEU222 distances. 

By analyzing the trajectory of CBL-B and C-CBL, we identified remarkable 
orientation discrepancy of three amino acids, LYS145, GLU268 and PHE263, in their 
spatial distribution in the pocket. First, LYS145 which interacts with functional 
groups X, Y1, Y2 of the ligand has opposite orientations for CBL-B and C-CBL. We 
measured the distance between LYS145 and inner residue LEU222 and found that the 
distance is much longer for CBL-B than for C-CBL. The longer LYS145-LEU222 
distance indicates an “out” conformation of LYS145 while the shorter one indicates 
an “in” conformation. From Figure 2B, CBL-B has more “out” conformation of 
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LYS145 than C-CBL. The “out” LYS145 will have close contact with the group X (-
CF3 in the case of 8GCY) of the ligand. Second, GLU268 which interacts with 
functional group Z of the ligand also has unique dynamic behavior for CBL-B and C-
CBL. The negatively charged GLU268 has more probability to interact with 
positively charged ARG272 for C-CBL than for CBL-B. Although both GLU268 and 
ARG272 are the same for CBL-B and C-CBL, the distal amino acids are different. 
For example, the 276th amino acid is TYR for CBL-B and PHE for C-CBL, which 
leads to stronger interaction between ARG272 and the distal TYR276 and ASP333, 
thus weaken the interaction between ARG272 and GLU268 in CBL-B. Weakening the 
interaction to ARG272, GLU268 will form stronger and more stable interaction with 
the ligand at group Z. Third, PHE263 has stronger interaction with the deeply buried 
LEU222 for CBL-B than for C-CBL, which will also influence the selectivity of the 
ligands for CBL-B over C-CBL. We will discuss in the next paragraph in detail. 
Group Y2 (-CH2 in the case of 8GCY) in the ligand has close contact with MET366 
in CBL-B, but with both MET366 and GLY367 in C-CBL. 

2. RAMD simulation and IFPs analysis 
We have discussed the different structural and dynamic behavior between CBL-B and 
C-CBL in the previous section based on the equilibrium molecular dynamics. To 
further understand the unique binding and unbinding kinetics, we performed RAMD 

25,26 to study the ligand dissociation and the trajectories from which both bound states 
and the dissociation pathways can be analyzed. We collected 49 ligands with various 
activity and selectivity from patents from NURIX27,28, HOTSPOT29,30, 
GENTECH31,32, NIMBUS33,34 and XIANSHENG.35,36 The ligands were prepared 
using RDKIT37 and docked into the binding pocket using LEDOCK38. For each 
ligand, 90 independent RAMD were performed based on six different initial 
structures from 10ns normal MD. The interaction finger prints (IFPs) along the 
dissociation pathway were obtained from the RAMD trajectories and the linear 
regression is used to determine the key amino acids which influence activity or 
selectivity. 
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Figure 3. The key amino acids in the binding pocket and their importance in activity 
and selectivity. (A) The position of the amino acids (carbon in green) in the pocket. 
The carbons of the reference ligand are in black (B) The LR coefficient of top-ranked 
amino acids which has most impact on the activity (red color) or selectivity (blue 
color). 

From figure 3, we identified the key IFPs contributing to the activity or selectivity. 
For example, HY_ILE149, HD_PHE263, HA_PHE263, HY_LEU264, HA_GLU268, 
HY_LEU287, HY_MET366 have positive impact on the activity. HY_ARG141, 
HY_THR144, HY_LYS145, HY_LEU148, HY_LEU222, HD_TYR260, 
AR_TYR260, HA_PHE263, AR_PHE263, HY_LEU264, HA_GLU268, IP_GLU268, 
AR_TYR363, HY_MET366 influence selectivity. Several IFPs which both enhance 
activity and selectivity are HA_PHE263, HY_LEU264, HA_GLU268 and 
HY_MET366. LYS145, PHE263 and GLU268 which has influence on the selectivity 
have also been identified previously when analyzing the different structural and 
dynamic behaviors between CBL-B and C-CBL. In detail, the functional group X has 
stronger interaction with LYS145 in “out” conformation as in CBL-B. Functional 
group Z has stronger salt bridge interaction with GLU268 in CBL-B than C-CBL. 
Hydrogen bond donor of PHE263 has positive impact on selectivity but negative 
impact on activity. An example is the ligand from NIMBUS, in which the carbonyl 
group at Y4 is replaced by nitrogen to increase the selectivity but at the price of losing 
some activity. Amino acids 71 to 74 are different for CBL-B and C-CBL, especially 
PRO71 and PRO72, though far from the binding pocket has positive impact on the 
activity and selectivity respectively through dynamic perturbation. 

3. koff prediction and MM/GBSA calculation 
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After discussion on the impact of sequence and structure difference of CBL-B and C-
CBL to activity and selectivityfrom in the view of equilibrium and non-equilibrium 
molecular dynamics. Next we shift our focus on the contribution of binding free 
energy (ΔG) and kinetic dissociation rate (koff) to their activity and selectivity. 
Applying our ML koff prediction model39, we predicted the koff values of 49 CBL-B 
ligands. The predicted koff values are highly correlated (Pearson correlation 
coefficient rP is 0.71) with the simulated koff values from RAMD for these ligands 
(fig in suppl). To further validate our results, we compared the predicted koff with the 
experimental data. We examined two patents which published the experiment 
retention time (1/koff) using the SPR experiments from NURIX23 and HOTSPOT24. 
The experimental retention time is 90~180 s for NURIX ligand series, and 104 s for 
HOTSPOT series. For comparison, our predicted RT is in the range of 40~315s for 
NURIX ligand series and 0.6~1.2x104 s for HOTSPOT series, which match well with 
the experimental data. Because lack of enough experimental koff data for CBL-B 
inhibitors, we also used the experimental pIC50 instead to compare with the predicted 
koff values. We observed the -log(koff) has some correlation with the experiment 
pIC50, the Pearson correlation coefficient rP is 0.48. (suppl) Considering the rP 
between experimental pkD and pkoff is 0.68,40 and the rP between predicted and 
experimental -log(koff) is 0.73 as reported in our previous work39, so the 0.48 
correlation coefficient between predicted -log(koff) and pIC50 (IC50≈kD) is 
acceptable. From this point of view, the predicted koff can be used to evaluate the 
activity.   

To understand how the koff or the dissociation pathway are associated with the 
selectivity, we applied IFP analysis derived from the dissociation trajectories from 49 
ligands as show in figure 3. Here we present one case to elaborate how the koff  
influences the selectivity. We plot the IFP composition along the dissociation pathway 
of ligands from HOTSPOT patent (refs) for CBL-B and C-CBL, as shown in figure 4. 
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Figure 4. A representative visualization of interaction fingerprints (IFP) composition 
along the dissociation pathway of ligand of CBL-B and C-CBL. Cluster 1 is the 
bound state, and Cluster 8 is the unbound state. The key amino acids make the 
difference for CBL-B and C-CBL were indicated by red arrow. 

From figure 4, we identified some impactful amino acids along the dissociation 
pathway. For example, HY_MET366 has strong interaction with the ligand for CBL-
B until the full dissociation while for C-CBL, it’s HY_THR369 instead whose 
interaction is much weaker. Both HA_GLU268 and IP_GLU268 contribute to the 
binding and increase the retention time of ligand in CBL-B, but they are absent for C-
CBL. At the entrance of the pocket, PRO72 has hydrophobic interaction with the 
ligand in CBL-B, but this interaction comes from PRO74 for C-CBL and it is weaker. 
All these effects lead to longer retention time for ligand in CBL-B than C-CBL. The 
simulated -log(koff) is 2.33 for CBL-B and 1.78 for C-CBL. 
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(或者换成table) 
Figure 5: The calculated binding free energy between CBL-B and ligand (red), and 
between C-CBL and ligand (blue). The selectivity for each ligand is shown below. 

On the other hand, we also calculated the binding free energy using MM/GBSA 
method (41) using gmx_PBSA script42 for ligands with high selectivity, as shown in 
figure 5. As can be seen, these highly selective ligands differ significantly in their 
calculated ΔG for CBL-B and C-CBL. The ΔΔG between CBL-B and C-CBL is in the 
range of 2~9 kcal/mol, in consistent with their respective koff values.  These results 
indicate the kinetic properties are the differentiator of selectivity and binding affinity 
in CBL-B and C-CBL.  

4. Ensemble docking and REMD 
In following section, we discuss the procedure of research from a first-in-class point 
of view. That’s imaging we start without the cocrystal structure or from apo structure 
to design holo-structure-based ligands.  
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Figure 6.  

As shown in figure 6, we first retrieved the native apo structure of C-CBL from RCSB 
website. We then build our homology-model CBL-B structure using I-TASSER 
server.43 This homology-modeled CBL-B structure is an apo state and all docking  
efforts for known CBL-B inhibitors failed due to the undruggable narrow pocket of 
apo conformation. Applying electronic density-based generative molecule generation 
methods44, we obtained 24 AI-generated molecules (AGM) from this narrow pocket 
of the apo CBL-B structure and run 3x24 100ns MD to generate the induced 
conformational ensembles of CBL-B. Then, we applied proprietary ensemble docking 
protocol on the ligand from the cocrystal (PDB ID: 8GCY) and used the clustering 
method to obtain the first ranked docking pose. Based on this docking pose, we 
performed 1µs replica exchange MD (REMD) using 16 replicas in which the 
temperature ranged from 290K to 490K (total 16µs). The conformation by clustering 
the trajectory at 300K has RMSD less than 2A from the cocrystal structure, the holo 
structure of CBL-B. Lastly, we removed the ligand and ran another 4µs REMD using 
16 replicas (total 64µs), the CBL-B conformation reverted to the apo state. Therefore, 
we build a full cycle of apo to holo then to apo using molecular generation, ensemble 
docking and long time REMD. Our overall procedure validates the feasibility of AI 
and simulation based de novo first-in-class drug design. 

https://doi.org/10.26434/chemrxiv-2023-cg4zv ORCID: https://orcid.org/0000-0003-2520-3923 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-cg4zv
https://orcid.org/0000-0003-2520-3923
https://creativecommons.org/licenses/by-nc/4.0/


Conclusion 
In silico drug design from apo structures to give diverse drug-like molecules 
compatible to holo-conformations is a continuous challenge in drug discovery 
process. We integrate accelerated molecular dynamics and machine learning 
techniques to elucidate the distinct structural and kinetic attributes of CBL-B and C-
CBL to their binding modes and selectivity against diverse ligands. These variances in 
activity and selectivity stem from nuanced disparities within the binding pocket's 
structure influenced by distal residues outside of the pocket through kinetic and 
dynamic perturbation via binding and the trajectory of dissociation. 
Our predictive model for koff exhibits a moderate correlation with experimental IC50 
values, closely aligning with both experimental koff datasets. MM/GBSA binding free 
energy calculation reveals the discernible ΔG variation between CBL-B and C-CBL 
even though they share identical amino acids in their binding pockets. Key amino 
acids responsible for activity and selectivity along the dissociation path are identified 
through a regression strategy applied to multiple dissociation trajectories. These 
amino acids correspond to the principal structural divergence between CBL-B and C-
CBL. We applied ms-scale replica exchange MD in conjunction with generative 
molecular generation models and ensemble docking to achieve a comprehensive 
simulation of the complete apo-holo-apo transformation cycle. This approach 
provides a valid approach for first-in-class drug design from apo to holo complexes. 
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