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Abstract

Based on a series of energy minimizations with starting structures obtained from

the Baker test set of 30 organic molecules, a comparison is made between various open-

source geometry optimization codes that are interfaced with the open-source QUantum

Interaction Computational Kernel (QUICK) program for gradient and energy calcula-

tions. The findings demonstrate how the choice of the coordinate system influences the

optimization process to reach an equilibrium structure. With fewer steps, internal co-

ordinates outperform Cartesian coordinates while the choice of the initial Hessian and

Hessian update method in quasi-Newton approaches made by different optimization al-

gorithms also contributes to the rate of convergence. Furthermore, an available open-

source machine learning method based on Gaussian Process Regression (GPR) was
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evaluated for energy minimizations over surrogate potential energy surfaces with both

Cartesian and internal coordinates, with internal coordinates outperforming Cartesian.

Overall, geomeTRIC and DL-FIND with their default optimization method as well as

with GPR-based model using Hartree–Fock theory with the 6-31G** basis set, needed

a comparable number of geometry optimization steps to the approach of Baker using

a unit matrix as the initial Hessian to reach the optimized geometry. On the other

hand, the Berny and Sella offerings in ASE outperformed the other algorithms. Based

on this we recommend using the file-based approaches, ASE/Berny and ASE/Sella, for

large-scale optimization efforts, while if using a single executable is preferable, we now

distribute QUICK integrated with DL-FIND.

1 Introduction

The importance of intermolecular interactions in atomistic simulations of materials, chem-

ical reactions, and biological processes is well known. Optimizing the molecular geometry

to find the stationary points on the potential energy surface, followed by calculation of

molecular properties and characterization of the interactions at a certain geometry, is a core

technique used in theoretical chemistry to analyze molecular structure and intermolecular

interactions.1–3 By taking into account the energy, E(x0), at a point x0 on a potential en-

ergy surface, we can use the Taylor series to form a quadratic approximation to describe the

energy at a nearby point, x = x0 + △x:

E(x) = E(x0) + gT0 △x + 1/2△xTH0△x

where g0 is the gradient vector (dE/dx) at x0, H0 is the Hessian matrix (d2E/dx2) at

x0, and △x = x − x0. Most nonlinear optimization algorithms are based on this local

quadratic approximation of the potential energy surface.4,5 By differentiating with respect

to the coordinates, one could form an approximation for the gradient, which is given by:
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g(x) = g0 + H0△x

On the potential energy surface, the gradient, g(x), vanishes at a stationary point, g(x) ≡

∇E = 0. Hence, in the local quadratic approximation of the potential energy surface, the

displacement to the minimum at the stationary point is given by:

△x = −H−1
0 g0

This is known as the Newton-Raphson step. It is an integral part of almost all quantum

chemistry geometry optimization approaches. The gradient here can be obtained by differ-

entiation of the energy with respect to the coordinates, and the Hessian can be obtained

using numerical or analytical methods of the second derivative of the energy with respect to

the coordinates.

Atomistic studies are of interest for a variety of stationary points, such as minima, transi-

tion states, and conical intersections.6–10 The most effective and extensively used techniques

for identifying these stationary points are Newton and quasi-Newton techniques, which typ-

ically employ a sequential optimization cycle, in which a guess optimal geometry is steadily

enhanced by employing the gradient and either an exact or an approximate Hessian. For

minimization, the Hessian must contain exclusively positive eigenvalues (i.e., positive defi-

nite). If one or more eigenvalues are negative, the step will be in the direction of a first-order

or higher-order saddle point, which can be useful when locating a transition state.

The choice of the coordinate system, the optimization algorithm, the quality of the Hes-

sian, and the algorithm used to determine the step, △x, are four factors that influence the

efficiency of a geometry optimization. Strong coupling between coordinates, narrow gullies,

and curved valleys provide significant hurdles to even the best optimization algorithms, mak-

ing the choice of a suitable coordinate system essential to the efficiency of any optimization.

Since the Cartesian coordinate system is the easiest approach to define the molecular geom-
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etry, it is usually used for the evaluation of the energy and gradient. However, the potential

energy surface is strongly nonlinear and coordinates are coupled, so only small steps can

be taken downhill. Cartesian coordinates perform significantly worse for flexible, acyclic

systems than they do for constrained, cyclic molecules. In Cartesian coordinates, it is also

much harder to impose constraints.11,12 Internal coordinates on the other hand are better at

reflecting the overall atomic motions. Internal coordinates can describe displacements along

curved pathways and decouple various types of molecular displacements. As a result, the

optimization algorithm can proceed with greater efficiency.13,14

It is possible to calculate the entire Hessian matrix analytically15 for each step at the

current point on the potential energy surface. Only one step is needed to get to the mini-

mum of the energy if the local potential energy surface is quadratic. Since actual potential

energy surfaces are rarely quadratic, one must take several Newton-Raphson steps to get at

a stationary point. It is thus often impractical or undesirable to directly calculate the full

Hessian due to the amount of computational work this typically involves. Instead one can

resort to quasi-Newton techniques, whose foundation is a computationally cheap approxima-

tion of the Hessian. At each stage of a quasi-Newton optimization, the Hessian is improved

using the difference between the calculated gradient change and the change anticipated by

the approximate Hessian.

Hnew = Hold + △H

This updated Hessian can be used to determine the step, △x. The Hessian can be updated

in a number of ways, and several algorithmic schemes can be used to determine the step and

the new coordinate system along the minimum to get at the optimized geometry.16–19

Additionally, the initial estimate of the Hessian or second derivative matrix does have

an effect on the performance of geometry optimization with quasi-Newton methods; the

more precise the initial estimate, the faster the convergence.2,20,21 One can use an exact

Hessian, which is expensive. However, often the estimate does not have to be extremely

precise since the Hessian matrix gradually improves in quality as it is updated using gradient
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information during the search for the minimum. The unit matrix is the most basic and

popular approximation, in which case the first optimization step corresponds to a gradient

descent. The nature of the atoms, the bonds connecting them, and other pertinent structural

information about the molecule are all ignored in this case despite the fact that this is

an unbiased choice. All connection between coordinates is initially ignored, and flexible

coordinates (such as torsion and ring deformation) are not separated from stiff modes (such

as bond stretching). At the price of additional optimization steps, this data must be gathered

during the optimization process. For cyclic compounds, whose coordinates are by nature

strongly coupled, this is a poor approximation. Simple schemes to approximate the initial

Hessian based on parameterized values for bond, angle and dihedral force constants have

thus been proposed to reduce the number of required geometry optimization steps.2,22,23

Recently, the integration of machine learning techniques into traditional methods for

calculating potential energy surfaces (PES) has led to even more efficient optimization ap-

proaches. In particular, machine learning can accelerate the location of minima24,25 and

transition states.26,27 One of the most popular approaches in this field is to use surrogate

potential energy surfaces. Surrogates are constructed by fitting a model, such as a Gaussian

process regression (GPR) model, to the data points that have already been evaluated. This

model is then used to suggest new geometries for evaluation, without the need for expen-

sive ab initio calculations. As more data points become available, the surrogate PES is

continuously updated and used to identify the location of the next guess minimum. This

guess point is then subject to single-point energy and gradient evaluations on the true PES

and then added to the dataset. The accuracy of the surrogate PES predicted by a GPR

model heavily relies on the appropriate selection of a kernel function. The kernel function

determines the covariance between the input space points and directly impacts the accu-

racy of the predicted PES. Compared to classical second-order methods, such as the local

quadratic approximation in the quasi-Newton method discussed above, surrogate-based ap-

proaches offer a more accurate representation of the PES, particularly in regions where the
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true PES is highly nonlinear or difficult to sample. The careful selection of the appropriate

kernel function and coordinate system is essential in constructing an accurate GPR model

that can precisely predict the PES and ultimately reduce the number of required geometry

optimization steps.28,29 Further discussion on this topic will be presented later in the paper.

These algorithmic schemes can be found in most electronic structure software packages.

However, many of these packages are either not open source or their optimized geometry opti-

mization algorithms are not generally available for inclusion into other open-source projects.

Here, we discuss the performance of various open-source geometry optimization codes in-

cluding both conventional methods and a GPR-based machine learning method for energy

minimization, coupled with the free and open-source QUantum Interaction Computational

Kernel (QUICK) program30 for energy and gradient calculations. Several of the new GPR

models are not available in open-source software, restricting our exploration to the method

that is available in the development version of DL-FIND. While this model is effective, other

more efficient models have been reported in the literature which, however, are not yet pub-

licly available neither in free and open-source nor commercial software. We compare these

results to the legacy optimizer in QUICK, basing results on the number of iterations it takes

to converge geometries of an established test set of representative molecules.

2 Overview of Open-Source Geometry Optimization

Software

2.1 QUICK–Legacy Optimizer

The QUantum Interaction Computational Kernel (QUICK) program30 is an open-source,

GPU enabled,31,32 ab initio and density functional theory program,33 which has been de-

veloped for QM and QM/MM calculations with Gaussian basis functions.34,35 It contains a

limited-memory Broyden-Fletcher-Goldfarb-Shanno (L–BFGS) optimization algorithm which
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uses a Cartesian coordinate system as input. L–BFGS is an optimization technique from

the family of quasi-Newton methods that limits its memory usage while approximating the

Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS).36,37

In general, the BFGS update of the inverse Hessian is:3

△H−1 =
△x△xT

△xT△g
− H−1

old△g△gTH−1
old

△gTH−1
old△g

where the updated inverse Hessian is used to form the Newton step, △x = H−1△g. The

L-BFGS method avoids the complete Hessian or its inverse from being stored because doing

so would need O(n2) memory for n variables. Since L-BFGS starts with a diagonal inverse

Hessian and only stores the x and g vectors from a few prior iterations, the storage require-

ment is only O(n). The inverse Hessian is expressed as a diagonal Hessian plus the updates

using the saved vectors. The new coordinates, xnew = xold − H−1gold, may be expressed in

terms of dot products between vectors, therefore the product of the updated inverse Hessian

and the gradient only requires O(n) work.

2.2 DL–FIND

DL-FIND is an open-source geometry optimization library that provides methods for lo-

cal minimization, conical intersection optimization, population-based (global) optimization,

reaction path optimization, and transition state search making it a versatile choice for molec-

ular codes.38

Cartesian coordinates, redundant internal coordinates, and hybrid delocalized internal

coordinates (HDLC) are available options for DL–FIND geometry optimizations. To com-

pare the optimizers with the GPR model that uses the Matérn kernel39 to build the surrogate

potential energy surface, the development version of DL-FIND was utilized alongside the sta-

ble version utilizing the L–BFGS method. The stable version of DL–FIND with the L–BFGS

method has been the default geometry optimizer in QUICK since version QUICK–22.03.30
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The common interface between both versions and the QUICK optimizer library is as shown

in Figure 1. The main DL–FIND geometry optimization driver routine is called from QUICK

and does not exit until the optimization is finished. During the optimization, DL–FIND calls

another interface routine when it needs to exchange information with QUICK during an op-

timization step. The input parameters are obtained from QUICK using the initial interface

call. These are the initial coordinates and the user-specified DL–FIND settings that control

the optimization algorithm. The iterative optimization process then starts, and a new call

is placed each time DL–FIND requires an energy or gradient. DL–FIND provides a set of

Cartesian coordinates to QUICK and receives back the required information. During each

optimization step, relevant information on the progress of the optimization is printed, and

at the end of the geometry optimization, the routine reports the optimized set of Cartesian

coordinates back to QUICK. To employ the GPR model in geometry optimization, a new

surrogate PES is constructed incrementally using a specified coordinate system transformed

from Cartesian coordinates after each ab initio calculation. The conventional L-BFGS al-

gorithm is used to iteratively locate the minimum on this surrogate PES (micro-iterations),

and then another ab initio calculation is performed in the Cartesian coordinates obtained

from back-transformation. This entire cycle (macro-iterations) is repeated until the ab initio

gradient is below the preset convergence threshold.40

2.3 GeomeTRIC

GeomeTRIC is an open-source geometry optimization program that takes input in form

of Cartesian coordinates and executes external electronic structure codes through wrapper

functions with file-based data-exchange to obtain energy and gradients. Translation-rotation-

internal coordinates (TRIC), delocalized internal coordinates (DLC), hybrid delocalized in-

ternal coordinates (HDLC), and redundant internal coordinates are all implemented by Geo-

meTRIC.41 The code supports optimizations with constraints and transition state searches.

Translation-rotation-internal coordinates (TRIC) are created by including translations
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and rotations in the primitive internal coordinates set coupled with existing delocalization

techniques. The initial Hessian in the space of primitive internal coordinates is a diago-

nal matrix with a few minor adjustments adopted from Schlegel’s proposed values.42 The

translations and rotations, and atomic Cartesian coordinates are given force constants of

0.05, bonds and angles involving non-covalent distances are given force constants of 0.1, and

dihedral angles have their force constants set to 0.023.

GeomeTRIC uses a wrapper around QUICK, which is unlike DL–FIND as shown in

Figure 1. Cartesian coordinates are used as input by GeomeTRIC, which transforms them

to internal coordinates for optimization. After each cycle of optimization, it updates its

own Hessian estimate using the BFGS algorithm. In order to generate an input file for

QUICK to obtain the energy and Cartesian gradient, internal coordinates are converted to

Cartesian coordinates at the end of each cycle. The Cartesian gradient from QUICK is used

to calculate the internal coordinates gradient followed by Hessian update to estimate the

search direction and step size.

2.4 Atomic Simulation Environment (ASE)

The Python-based Atomic Simulation Environment (ASE) was designed with the goal of set-

ting up, directing, and analyzing atomistic simulations. Numerous features of ASE include

molecular dynamics with various controls, including thermostats, structure improvement uti-

lizing atomic forces, saddle point searches on potential energy surfaces, genetic algorithms

for structure or chemical composition optimization, basin hopping or minima hopping algo-

rithms for global structure optimization, analysis of phonon modes for solids or molecular

vibrational modes.43

Here, we focus exclusively on the geometry optimization methods provided by ASE, in

particular the ASE internal L–BFGS optimizer, and the Sella and Berny algorithms. We will

emphasize the Sella and Berny methods more as the L–BFGS approach has previously been

summarized. The Berny geometry optimization algorithm is based on an earlier program
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written by H. B. Schlegel.44 Sella is an open-source tool used for automating the process of

finding saddle points and minimizing molecular structures.45 It works by converting Carte-

sian coordinates into internal coordinates, automatically replacing pathological linear angles

with improper dihedrals, and introducing necessary modifications like dummy atoms and

constraints to ensure that the dummy atom does not drift unnecessarily over the course of

optimization.46 The algorithm utilizes Hessian diagonalization based on internal coordinates

to determine the direction of minima, leading to a partially-exact Hessian matrix. This ma-

trix guides the optimization process using a state-of-the-art constrained partitioned rational

function approach, effectively steering the system towards local energy minima. The Berny

method utilizes a valence force field to construct an estimate of a Hessian at the start of the

optimization. This approximation is then updated using the energies and first derivatives

computed along the optimization pathway. The update is typically carried out using an iter-

ative BFGS algorithm for minimization and a modified version of the original Schlegel update

process for internal coordinate optimizations. It is ideally suited for optimizing covalently

bound compounds since it is based on a redundant set of internal coordinates.

ASE uses the L–BFGS method as its internal optimization method of choice, while wrap-

pers are used for the Berny optimizer from the PyBerny implementation and for the Sella

optimizer. The actual geometry optimization method as well as the delocalized coordinates,

screening functions, etc. are generated either directly or through PyBerny or Sella by the

ASE program, which functions as a wrapper around the QUICK program with a file-based

interface in the same manner as GeomeTRIC. The ASE program generates all of the QUICK

input files and then runs QUICK to obtain the energy and gradient. The working scheme of

ASE with QUICK is depicted in Figure 1.
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Figure 1: QUICK interface with the different open-source optimizers. The optimization
steps of various optimizers are indicated by green color boxes where the initial Cartesian
coordinates and gradient are transformed to an internal coordinate system (ICS) and in-
ternal gradients respectively for further optimization. The red box denotes the gradient
computation performed by QUICK for various optimizers. The final coordinates obtained,
and the initial coordinates used for calculation are represented by orange boxes. The yellow
box denotes the PyBerny or Sella wrapper used by ASE for optimization. QUICK utilizes
the DL–FIND library for optimization by passing gradient as required at each iteration.
geomeTRIC and ASE carry out optimization independently utilizing QUICK for gradient
calculation at each iteration.
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3 Methodology

We developed calling interfaces for GeomeTRIC and ASE to execute QUICK by passing

Cartesian coordinates, writing a QUICK input file, and retrieving energies and Cartesian

gradients from the QUICK output file. While ASE uses the Cartesian coordinate system

for the L–BFGS method with the unit matrix as the intial Hessian and the internal coor-

dinate system for the Berny algorithm where the Hessian is estimated using Schlegel’s pro-

posed values42 and the internal coordinate system for the Sella algorithm utilises the scheme

of Fischer and Almlof47 to initializes the Hessian matrix; GeomeTRIC uses Translation-

rotation-internal coordinates (TRIC) along with its own Hessian estimate with a few minor

adjustments of Schlegel’s proposed values for geometry optimization using the BFGS al-

gorithm. DL–FIND has been implemented internally within QUICK and makes use of a

non-redundant hybrid-delocalized internal coordinate system and a unit matrix as the initial

Hessian for optimization with the L–BFGS method. The development version of DL–FIND

was used for GPR-based geometry optimizations in either Cartesian or hybrid-delocalized

internal coordinate space. The built-in QUICK–legacy minimizer employs a Cartesian co-

ordinate system with a unit matrix as the initial Hessian for L–BFGS based optimizations.

The tests performed with these optimizers give us a clear understanding of the differences

in performance between various methods that use the Cartesian coordinate system or any

other internal coordinate system along with various Hessian estimations.

All Hartree–Fock (HF) calculations were performed with QUICK using the restricted

Hartree–Fock method with the 6-31G** basis set (HF/6-31G**) for the energy and gradient.

Results obtained with DL-FIND using different basis sets (HF/STO-3G, HF/6-31G, HF-6-

31G*, HF/def2-SVP) as well as a generalized gradient approximation (GGA) and hybrid-

GGA density functional method (BP86/def2-SVP, B3LYP/def2-SVP) are summarized in the

Supporting Information. The convergence criteria for the geometry optimizations were as

follows: a maximum gradient component of less than 0.00045 au, a change in energy from

the previous step of less than 10−6 Hartree, and a maximum predicted displacement of less
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than 0.0018 Å per coordinate. These geometry convergence criteria have been commonly

utilized by the majority of past research that has examined the benchmark being studied,

thus enabling direct comparisons of results. In order to guarantee accurate gradients, we

used the TIGHTINT keyword in QUICK, which requests tight numerical cutoffs and SCF

convergence. With these settings, the root-mean-square (RMS) change in the density matrix

is less than 10−7 au and the maximum change in the density matrix is less than 10−5 au.

Figure 2: Initial geometries for the molecules in the Baker set. Oxygen is depicted in red,
nitrogen in blue, carbon in gray, sulfur in yellow, fluorine in light blue, silicon in dark cyan,
and hydrogen in white.
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4 Results and discussion

In order to compare different geometry optimizers, a test suite of 30 molecules as depicted in

Figure 2, originally suggested by Baker,20 was used as the initial geometry inputs for the cal-

culations. The test suite contains a variety of compounds, including fused bi- and tri-cyclics

like caffeine and difluropyrazine as well as smaller systems like water and ammonia. Input

files containing initial geometries for optimization are available in the Supporting Informa-

tion. Baker used the Eigenvector Following (EF) algorithm48 at the restricted Hartree–Fock

(RHF) level with the STO-3G basis set (HF/STO-3G) for optimizations in both Cartesian

and internal coordinates with a convergence criterion for the gradient of 3.0 × 10−4 au. Ta-

ble 1 lists the number of steps required to reach the minima for each of the molecules for

a number of different geometry optimization algorithms in comparison to Baker’s results.

The sum of optimization steps for all molecules in the test suite and the average number of

optimization steps per molecule is also reported. Given the vagaries of examining the data

on a molecule-to-molecule basis we feel these averages give the best overall assessment of the

performance of the geometry optimization algorithms investigated in this work.

With quasi-Newton techniques Baker reported requiring a total of 765 geometry cycles

(on average 26 steps per molecule) with a Cartesian coordinate system while requiring only

371 geometry cycles (on average 12 steps per molecule) with an internal coordinate system.

In both cases Baker employed the unit matrix as the initial Hessian. Using an initial Hessian

from a molecular mechanics model, Baker managed to further reduce the number of steps to

240 (on average 8 steps per molecule).20 This data is not shown in Table 1 but the numbers

should be kept in mind for the following discussion.

The total number of geometry cycles required to optimize the same set of molecules

using the optimizers tested here ranges from 728 for DL–FIND/GPR-Cartesian, 683 for

QUICK–Legacy, 613 for ASE/L–BFGS, 356 for DL–FIND/ L–BFGS, 326 for DL–FIND/GPR-

Internal, 287 for geomeTRIC, 190 for ASE/Berny, to as low as 187 for ASE/Sella. Ge-

ometry optimization in Cartesian coordinates without sophisticated initial Hessian guess
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(ASE/L–BFGS, DL–FIND/GPR-Cartesian and QUICK–Legacy) thereby required between

20 and 24 steps per molecule on average. Optimization in internal coordinate space is

much more efficient, requiring only 11 to 12 optimization steps (DL-FIND/LBFGS, DL-

FIND/GPR-Internal). Using both internal coordinates and a better initial Hessian re-

duces this further to 6 to 10 optimization steps (ASE/Berny, ASE/Sella, GeomeTRIC).

Here ASE/Berny and ASE/Sella use redundant internal coordinates, while geomeTRIC uses

translation-rotational-internal coordinates, and DL–FIND uses delocalized internal coordi-

nates. Except for ASE/Berny and geomeTRIC, which use a modified version of the original

Schlegel update process, as well as ASE/Sella, all methods initialize the Hessian to be the

unit matrix. These results reconfirm the two well-known observations that i) internal coor-

dinates outperform the Cartesian coordinate system for molecular geometry optimizations,

and ii) good approximations to the initial Hessian are also important to reduce the number

of required steps.

We finally point out that while Baker used the HF/STO-3G method and we are us-

ing HF/6-31G**, the observed overall trends are comparable (see Table 1). To provide a

more comprehensive understanding of the test suite, we used the DL-FIND/L-BFGS imple-

mentation to compare the effect of different levels of theory and basis sets in addition to

HF/6-31G**. The results of this comparison are summarized in Table S1 of the Supporting

Information. While there are differences for individual molecules, the total number of steps

increases only slightly with increasing flexibility in the basis set, from 331 for HF/STO-3G

to 356 as mentioned above for HF/6-31G**. The total number of steps remains very similar

between HF and representative generalized gradient approximation (GGA) and hybrid-GGA

density functional methods. This comparison allows for a clearer and more complete picture

of the observed overall trends, which are consistent with those presented in Table 1.

As mentioned above, the number of geometry cycles required to converge to the optimized

geometry can be reduced with a concomitant increase in computational time depending

on the Hessian used. Bakken and Helgaker, for instance, already addressed this problem,
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where it is noted that utilizing precise Hessians at each step reduces the number of required

iterations while compromising on total computation time. Only 125 and 111 steps are

required for the Baker test set with HF/STO-3G using Cartesian and redundant internal

coordinates, respectively, when using exact Hessians at each step.21

Baker, in Ref. 20, used natural internal coordinates and the initial Hessian provided

by the CVFF force field in combination with an eigenvector following (EF) approach to

reduce the number of iterations required for HF/STO-3G geometry optimization to 240

steps. Bakken and Helgaker managed to optimize the Baker test set in 185 steps using

a combination of extra-redundant internal coordinates, a good approximate initial Hessian

with BFGS updates, and optimized step size.21 A slightly larger number of 198 steps was

reported when using the more flexible 6-31G* basis set. Swart and Bickelhaupt managed to

further reduce the number of geometry optimization steps using the delocalized coordinates

setup of Baker, a combination of quasi-Newton steps with GDIIS,49 and a modification of

Lindh’s force constant model to generate initial Hessians,50 resulting in an impressive 173

steps for the Baker test set using the PW91 density functional and a large triple zeta Slater

type basis set with polarization functions (TZP).2 It therefore stands to reason that replacing

the unit matrix with a better initial Hessian approximation should also reduce the number of

geometry optimization steps required by the L-BFGS optimization employed by DL-FIND.

The use of machine learning models such as GPR with efficient kernel functions24 in con-

junction with different internal coordinate systems can also reduce the number of required

optimization cycles. For instance, Meyer and Hauser achieved 225 steps for the Baker test

set by using reduced redundancy Z-matrix-derived internal coordinates with HF/STO-3G.28

Raggi et al. introduced a restricted-variance optimization (RVO) scheme that utilizes a Hes-

sian model function23 to generate a non-redundant set of internal coordinates for molecular

geometries, making the surrogate model invariant to translations and rotations. With the

HF/6-31G basis set, they achieved 225 steps using RVO, while with DFT(B3LYP)/def2-

SVP, they obtained 241 steps.25 Teng, Huang, and Bao demonstrated that combining the
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gradient-enhanced universal kriging (GEUK) algorithm with an adaptive ab initio prior

mean function, which incorporates prior physical knowledge into surrogate-based optimiza-

tion, and incomplete internal/incomplete Cartesian methods can reduce the number of steps

to 165 as shown for the BP86/def2-SVP level of theory.29

Herein we explored several different open-source quasi-Newton approaches (L-BFGS and

some modified BFGS algorithms) and available machine learning (GPR) models, utilizing

various internal coordinate systems with either the unit matrix as the starting Hessian (as in

the L-BFGS approaches) or a more sophisticated first estimate (geomeTRIC, ASE/Berny,

ASE/Sella). In all cases, not unexpectedly, internal coordinates outperformed methods us-

ing Cartesian coordinates, but the numerical details of the implementation of the internal

coordinate methods make a significant difference (e.g., ASE/Berny versus geomeTRIC).

Furthermore, the use of more sophisticated initial Hessians and geometry update algorithms

resulted in a significant reduction of required steps. Importantly, the open-source imple-

mentations that are currently available require approximately the same number of steps as

the best traditional or machine-learning based approaches that have been reported in the

literature offering the community state-of-the-art optimizers in an open-source offering.

5 Conclusion

We have presented a comparison of different open-source geometry optimization codes avail-

able to the community. The performance of the geometry optimization algorithms imple-

mented in these codes has been evaluated for a test set of 30 molecules that was originally

proposed by Baker. We find results in line with expectations for the various optimization

algorithms. While there are differences for individual molecules, when Cartesian coordinates

are used, the optimization algorithms take at least 20 and in the worst case 24 steps on aver-

age per molecule of this test set. For internal coordinate optimization algorithms, the number

of steps is greatly reduced requiring about 12 steps per molecule when using a unit matrix as
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initial Hessian and as little as 6 steps per molecule when using more sophisticated initial Hes-

sians and geometry update algorithms. Overall, the best performing open-source software

was Sella and the Berny algorithm as implemented in PyBerny, both offered through ASE

interfaces, closely followed by the BFGS method as implemented in geomeTRIC. Addition-

ally, the release version of DL-FIND, utilizing a conventional L-BFGS algorithm along with

delocalized internal coordinates, also demonstrated commendable performance. Given this

analysis, we are using the release version of DL–FIND as the default optimizer in QUICK for

simplified distribution within a single binary executable and usage without requiring Python

wrappers. This integration enhances the inherent optimization framework and introduces

supplementary features like conical intersection optimization, reaction path optimization,

and transition state search. Additionally, it is worth noting that the development version

of DL-FIND will incorporate GPR optimization for both local minima and transition state

optimization. This upgrade will be incorporated into QUICK once it becomes the release

version. While DL-FIND combined with QUICK offers substantial capabilities, we highly

recommend utilizing the Berny algorithm as implemented in PyBerny or the Sella geometry

optimization software for large-scale production optimization efforts due to their exceptional

performance (e.g., in the creation of large synthetic data sets for ML/AI efforts). These

optimizers are accessible for usage with QUICK through the ASE interface as mentioned in

the Supporting Information. The powerful combination of QUICK with the latest version of

DL-FIND, ASE/Berny or ASE/Sella provides a reliable and robust open-source solution for

efficiently optimizing molecular geometry based on ab initio and density functional theory

methods, combined with the computational capabilities of graphics processing units (GPUs).

6 Data and Software Availability

The features described here are available in QUICK-22.03. The latest version of QUICK and

all previous releases are available on GitHub (https://github.com/merzlab/QUICK). Input
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files used for geometry optimizations are available in the Supporting Information.
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