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ABSTRACT: A telescoped continuous flow process is reported for the enantioselective synthesis of chiral precursors of 1-aryl-

1,3-diols, intermediates in the synthesis of Ezetimibe, Dapoxetine, Duloxetine and Atomoxetine. The two-step sequence 

consists of an asymmetric allylboration of readily available aldehydes using a polymer-supported chiral phosphoric acid 

catalyst to introduce asymmetry, followed by selective epoxidation of the resulting alkene. The process is highly stable for at 

least 7 h and represents a transition-metal free enantioselective approach to valuable 1-aryl-1,3-diols. 

MAIN TEXT: 
1-Aryl-1,3-diols of type 1 are important synthetic building blocks for the pharmaceutical industry.1 They are key intermediates 
in the synthesis of numerous drugs, including ezetimibe (treatment of high blood cholesterol),2 dapoxetine (premature 
ejaculation),3 atomoxetine (attention deficit hyperactivity disorder)4 and duloxetine (major depressive and anxiety 
disorders)5 (Figure 1). 

 

Figure 1: Relevant drugs synthesized from 1-aryl-1,3-diols 1. 

Several synthetic routes have been developed to access optically active 1-aryl-1,3-diols using transition metal-mediated 
enantioselective reactions5,6 or organocatalysis.7 While asymmetric catalytic methods are more atom-efficient and produce 
less waste, the high cost of chiral ligands and organocatalysts often makes the of use chiral auxiliaries the preferred option.2,3,8 
In order to maximize the efficiency of existing catalytic enantioselective transformations, there has been a growing interest 
in the development of recyclable catalysts during the last decade.9 In particular, chiral phosphoric acids (CPAs) have seen 
widespread adoption due to their versatility.10 Numerous applications of immobilized chiral CPAs have been reported to date, 
highlighting their significant potential to facilitate catalyst recovery.11  
With regard to CPA-catalyzed enantioselective reactions with potential to synthesize optically active precursors of 1,3-diols 
1, Antilla and co-workers reported a highly enantioselective approach for allylboration of aldehydes using a 2,4,6-tris-
isopropyl-derived CPA,12 known as TRIP13 (Scheme 1, A). A few years later, a copolymerization-based strategy was employed 
to immobilize TRIP onto a polystyrene resin, and the resulting supported catalyst (PS-TRIP) was successfully applied to 
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enantioselective allylboration reactions as a highly recyclable organocatalyst.11j Even though some of the immobilized CPAs 
have been shown to be exceptionally active and robust,11b,d,j they have not been widely utilized for the enantioselective 
synthesis of active pharmaceutical ingredients (APIs) and related compounds.14  
Due to improved productivity, easier scalability, and waste reduction compared to more conventional batch procedures, 
telescoped continuous flow processes involving immobilized chiral catalysts have proven to be particularly useful for the 
multistep synthesis of optically active targets.15 Building on our previous efforts in flow synthesis of chiral APIs and their 
advanced intermediates,16 we hypothesized that merging PS-TRIP-catalyzed asymmetric allylboration with selective 
epoxidation of the resulting chiral alkene in an uninterrupted flow process would open a simple and efficient entry to optically 
active 1,3-diols as key intermediates of atomoxetine, dapoxetine, duloxetine and ezetimibe. The planned two-step process 
would produce enantioenriched epoxy alcohols 5 from readily available non-chiral aldehydes, which can then be easily 
transformed into the desired chiral diols 1 (Scheme 1B).17 By carefully selecting reaction conditions, we aimed to eliminate 
the need for any chromatographic purification thereby facilitating larger-scale syntheses.  
 

 

Scheme 1: A) CPAs used in the enantioselective allylboration of aldehydes. B) Proposed synthetic route to 1-aryl-1,3-
diols. C) Continuous flow set up used for the allylboration step. 

Our study began with optimizing the parameters of individual reaction steps. The activity of the PS-TRIP catalyst for 
asymmetric allylboration was explored in a flow set-up consisting of two separate reagent feeds: solutions of benzaldehyde 
2a (1.0 equiv.) and allylboronic ester 3 (1.2 equiv.), respectively. The reagent streams were pumped at a flow rate of 100 
µL/min each and were combined before entering a packed bed reactor containing 0.8 g of the supported catalyst (Scheme 1, 
C). This corresponded to a residence time on the catalyst bed of approx. 15 min. Several solvents were evaluated with the 
purpose of making the overall process greener.18 The effect of substrate concentration was also explored in order to 
maximize the productivity. The best results for obtaining alkene 4a were achieved in 97% yield and 90% enantiomeric excess 
(ee) using a substrate concentration of 0.15 M in toluene as solvent (see the Supporting Information for details). 
Next, various strategies were explored for the subsequent epoxidation, initially under batch conditions (Table 2). We found 
that hydrogen peroxide as oxidant resulted in overoxidation of the desired chiral alcohol (5a) to the corresponding ketone 
6a, making the process unsuitable for further development (Table 2, Entry 1). Dimethyldioxirane (DMDO), generated from 
acetone and Oxone® (2KHSO5·KHSO4·K2SO4) in a buffered aqueous solution,19 showed high conversion and selectivity (Table 
2, Entry 2), but involved miscibility issues with toluene. In order to avoid solubility problems that could affect the reactivity 
in flow, we next evaluated organic peracids. Commercially available solutions of peracetic acid (PAA) showed high selectivity 
but only poor conversion (Table 2, Entry 3-4). Although the in situ generation of peracids under continuous flow conditions 
is well-known,20 preliminary tests showed significant overoxidation to ketone 6a, probably due to the large excess of H2O2 
required in these reactions. Therefore, we finally tested m-chloroperbenzoic acid (mCPBA) as epoxidation agent. Gratifyingly, 
excellent conversion and selective epoxidation was achieved in the presence of 4.0 equiv. of mCPBA making it the preferred 
oxidant for further development (Table 2, Entries 5-7). The mCPBA-mediated selective epoxidation was then transferred to 
continuous flow using a simple coil reactor, ensuring conversions of ≥90% within residence times of around 10 min at 85 °C 
(see the Supporting Information for details). 
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Table 2: Optimization of the epoxidation of 4a under batch conditions. 

 
Entry Ox (equiv.) Solvent 5a(%) 6a(%) 

1 H2O2 (1.2) Acetone/H2O 2:1 54 26 

2 DMDO (2.0) Acetone/H2O 2:1 96 1 

3 PAA (4.0) Toluene 25 n.d. 

4 PAA (8.0) Toluene 30 n.d. 

5 mCPBA (2.0) Toluene 62 n.d. 

6 mCPBA (3.0) Toluene 80 n.d. 

7 mCPBA (4.0) Toluene 93 n.d. 

General conditions: 4a (0.1 mmol, 1 equiv.), oxidant (see Table), solvent (1.0 mL). Yield was determined by HPLC area %. 
n.d.: not detected. 

Following step-by-step optimization, we combined the PS-TRIP-catalyzed asymmetric allylboration of benzaldehyde (2a) and 
the subsequent epoxidation in a telescoped flow sequence to access epoxy alcohol 5a, chiral intermediate of atomoxetine 
and dapoxetine (Scheme 2, A). Downstream to the packed bed reactor, the mCPBA feed served a double role. Apart from 
functioning as an epoxidation agent, it also quenched any unreacted allyl pinacol ester, thereby preventing racemic 
background reactions in case of uncompleted allylboration. In order to safely quench any excess oxidant, the  
 
 

 
Scheme 2. A) Optimal set-up for the telescoped asymmetric allylboration/epoxidation process. B) Yield (blue) and ee 

(red) of 5a over the time (HPLC). C) Chiral intermediates for the synthesis of APIs. 
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outlet of the reactor was directed into a stirred solution of Na2S2O5. With the optimized set-up in hand, we 
performed a continuous long run for 7 h. The overall process was followed by off-line HPLC with samples taken 
and analyzed in every hour. We were pleased to find no decrease in either the conversion or in the 
enantioselectivity, showing the robustness of the process (Scheme 2, B). Contrary to previous reports on 
enantioselective allylboration reactions,11j,12,21 the present process did not require any a chromatographic 
purifiction but a simple acid/base extractive work up to isolate the desired chiral adduct in sufficiently pure 
form. 
In order to also obtain potential precursors of ezetimibe and duloxetine, the two-step flow synthesis was next 
attempted using 4-fluorobenzaldehyde (2b) and 2-thiophenecarboxaldehyde (2c) as substrate, respectively 
(Scheme 2, C). Epoxy alcohol 5b was smoothly produced from aldehyde 2b during a continuous 3 h run (90% 
yield, 92% ee) under conditions identical to those applied in the synthesis of 3a. In the targeted synthesis of 
oxirane 5c from aldehyde 2c, the epoxidation step resulted in a complex mixture, probably due to the 
polymerization of the thiophene ring.22, In this case, the process was stopped after the allylboration step 
(performed using the set-up shown in Scheme 1, C; see also the Supporting Information for details) to afford 
alkene 4c in 99% yield and 66% ee.  
In order to illustrate the applicability of epoxides 5 in the synthesis of 1-aryl-1,3-diols 1, we performed the 
ring opening of epoxide 5a in acidic media, obtaining triol 7a in high yield (Scheme 3). Further transformations 
of triols 7 to the corresponding diols 1 are known in the literature.14,58  

 

Scheme 3: Formal synthesis of 1-aryl-1,3-diols 1. 

In summary, we have developed a telescoped continuous flow process using an immobilized CPA-mediated 

enantioselective allylboration as the key step followed by mCPBA-mediated selective alkene epoxidation. 

Our strategy consists of a transition metal-free catalytic method to access triols 7 and diols 1 in high yield 

and enantiocontrol by using a robust immobilized organocatalyst. By exploiting an uninterrupted flow 

process, chiral epoxides 5 were attained in a simple and efficient manner, without the need for any 

chromatographic purification. With a cumulative residence time of less than 30 min, the protocol enabled a 

notable chemical intensification compared to earlier methodologies. 
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