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Abstract 

Exceptional molecules and materials with one or more extraordinary properties are both 

technologically valuable and fundamentally interesting because they often involve new physical 

phenomena or new compositions that defy expectations. Historically, exceptionality has been 

achieved through serendipity, but recently, machine learning (ML) and automated experimentation 

have been widely proposed to accelerate target identification and synthesis planning.  In this 

Perspective, we argue that the data-driven methods commonly used today are well-suited for 

optimization but not for realizing new exceptional materials or molecules. Finding such outliers 

should be possible using ML, but only by shifting away from using traditional ML approaches that 

tweak the composition, crystal structure, or reaction pathway. We highlight case studies of high-

Tc oxide superconductors and superhard materials to demonstrate the challenges of ML-guided 

discovery and discuss the limitations of automation for this task. We then provide six 

recommendations for the development of ML methods capable of exceptional materials discovery: 

(i) Avoid the tyranny of the middle and focus on extrema; (ii) When data is limited, qualitative 

predictions that provide direction are more valuable than interpolative accuracy; (iii) Sample what 

can be made and how to make it, and defer optimization; (iv) Create room (and look) for the 

unexpected while pursuing your goal; (v) Try to fill-in-the-blanks of input and output space; (vi) 

Do not confuse human understanding with model interpretability. We conclude with a description 

of how these recommendations can be integrated into automated discovery workflows that should 

enable the discovery of exceptional molecules and materials.  
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I. Introduction 

Machine learning (ML) is contributing to many areas of chemistry and materials research, 

as diverse as solar cells,1 photoresist,2 high-entropy alloys,3 drug design4,5 and formulation6 

discovery, and biomedical polymers.7  Many introductory texts8–10 and review articles11–15 provide 

tutorials and explications of applications of ML to chemistry and materials (and scientific 

discovery more generally16). However, these applications have been demonstrated mainly in the 

context of incremental improvement and optimization. Incremental does not mean easy, and ML 

optimizations are often in high-dimensional spaces that would have otherwise required months or 

years of traditional experimentation to achieve the same results.17–20 However, transformative 

discoveries are seldom achieved by this approach.  

In this perspective, we suggest that there are fundamental limitations hindering the 

application of ML to the discovery of exceptional materials that shift the research paradigm (in 

the Kuhnian sense21).  We highlight some current state-of-the-art examples in ML, iterative-

optimization, and high-throughput/autonomous experimentation approaches. We also focus on 

limitations of using these methods with regards to exceptional materials discovery by considering 

historical challenges in high-Tc superconductor and superhard materials discovery, and how 

existing ML methods have contributed to these efforts. We then provide six recommended research 

directions for ML that can address this challenge. Finally, we conclude with a vision of a future 

materials research process implementing these research directions. 
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II. The Challenge of the Exceptional  

II.A. What is Exceptional?  

We define an exceptional material or molecule as one that enables new scientific 

exploration because it is out of the prior distribution of properties, composition, or application.   

These are black swan events — unpredicted surprises that have a significant effect on the field but 

are only rationalized only after the first observation.22 For example, the discovery of high-Tc 

cuprate superconductors rejected the conventional wisdom of condensed matter physics; even 

though the initial Tc was not exceptionally high, it achieved modest values with an unusual 

composition and had a synthetic toolbox that allowed for further exploration which would rapidly 

transform the field (vide infra). Similarly, organic chemistry has had numerous scientific 

discoveries that have gone against deep-seated textbook notions, transforming our molecular 

control and greatly enhancing our synthetic toolbox.23  

Many technologies require materials that can withstand coupled extremes, such as 

simultaneous mechanical, thermal, radiation, and corrosive attack for next-generation nuclear 

reactors15,24 or simultaneous high photoconversion efficiency and mechanical durability for 

photovoltaics.25 Exceptionality may thus comprise not just one, but a constellation of potentially 

mutually exclusive properties.15,26  These tradeoffs can be purely empirical trends observed within 

a materials class, expressed as Ashby plots (solid mechanics) or Robeson plots (in membrane 

separation materials); in this case, exceptionality is merely a novel observation. Alternatively, the 

trade-offs may be first-order approximations to underlying rigorous theoretical relationships, such 

as the Wiedemann-Franz proportionality of electrical and thermal conductivity.  An exceptional 

thermoelectric material requires simultaneously high electrical conductivity and low thermal 

conductivity, and thus violating the underlying physical assumptions that contraindicate these 
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relationships. This is a distinct problem from multi-objective optimization,27–29 discussed in 

Section III.C. 

 

 

FIGURE 1: (a) Structure entries in the ICSD and Materials Project as a function of time, plotted 

on a logarithmic scale, adapted from Ref. 30; (b) Space group frequency for high-entropy alloys, 

adapted from Ref. 31. 

 

 

Genuine surprise would not be possible or necessary if we already had an adequate sample 

of all possible materials. However, an empirical analysis suggests that humans have barely 

scratched the surface of possible compositions. If one considers only stoichiometric quaternary 
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solid-state inorganic compounds satisfying conservative valency and electronegativity constraints, 

there are approximately 1010 compositions,32  greatly exceeding the 105 compounds in the entire 

Inorganic Crystal Structure Database (ICSD).  Similar estimates exist for the chemical space of 

synthesizable organic molecules.33 The reported number of new structures deposited in the ICSD 

shows exponential growth (Figure 1a),30 and thermodynamic stability network calculations 

indicating an increasing trend in the discovery rate of new materials.34  ‘Interesting’ materials are 

often not distributed evenly across parameter space. For example, an investigation of possible 

high-entropy alloys found wide disparities in compound space group  (Figure 1b).31 Even 

knowledge of what materials can be made is limited, as many observed materials are metastable,35 

and computational thermochemistry datasets have biased distributions of formation energies for 

different structure types.36 Furthermore, nearly all experimental and computational data considers 

low-pressure systems, yet chemical bonding and periodic trends are radically different at high 

pressures relevant to materials under extreme conditions.37 There remains plenty of room to 

discover new materials and molecules, and we are far from the regime of pure interpolation.  

 

II. B. Why is Finding an Exceptional Compound Difficult?  

Finding an exceptional compound is intrinsically a low probability event, as the 

compositions and combination of synthesis and processing conditions needed to produce them are 

rare and unique.  But rarity alone is not the problem.  Consider a golf course: the probability of a 

randomly placed ball occupying the hole is small, yet golfers regularly guide the ball to the hole 

with (ideally) few attempts by taking advantage of the landscape and “reading” its many properties. 

Similarly, research problems are easy if there exists a clear gradient towards the goal (by analogy, 

this may arise from the inherent topography which causes balls to roll toward the hole or the 
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golfer’s mental map of the course). It is harder if there are many traps where these gradient-based 

heuristics fail.  More formally, mathematicians have devised many ways of characterizing the ease 

and difficulty of finding optima on high-dimensional response surfaces.  For example, cases where 

the inputs are continuous can be characterized in terms of smoothness (the number of continuous 

derivatives a function has over its domain) and convexity (continuous functions where values at 

the midpoint of every interval do not exceed the values of the function at its endpoint).38 Cases 

where the inputs are discrete can be characterized in terms of elementariness (those which can be 

realized as an eigenvector of the Laplacian of the neighborhood diagraph).39 Whether the inputs 

are discrete or continuous, the underlying idea is to characterize functions for which local 

information gathered from stepwise changes can find optima efficiently.38,40 Practical algorithms 

can efficiently find solutions even when the response surface only approximately obeys these 

criteria.   

  Empirically, many successful materials ML problems are approximately smooth and 

convex response surfaces, with a broad basin of attraction towards a few local optima,41 like the 

schematic example plotted in Figure 2a. Thus, it is unsurprising that ML-based approaches for 

representing the landscape can be successful and iterative optimization is an efficient strategy.  In 

contrast, exceptional materials are often comprised of much harder "needle in a haystack" 

problems,42 where the response surface behaves as shown in Figure 2b. The response function is 

no longer smooth, and any approximate information about a local environment is no longer a good 

guide to the behavior of new candidates. A mathematician would precondition the problem into a 

more suitable form, but experimental scientists typically lack prior knowledge about the nature of 

the response function, needed to apply an a priori transformation.  Acquiring more data about the 
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system (either by physics-based simulation or by high-throughput experimentation) or improving 

the nature of the search process is one of the few solutions. 

 

 

 

Figure 2: Iterative versus exceptional materials. (a) Previous work has focused on optimizations 

on smooth, convex response surfaces; (b) Exceptional material properties are often characterized 

by very sharp discontinuities in as composition and reaction conditions are changed. Adapted 

from Ref. 41. 
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III. The State of Current Machine Learning Approaches 

III.A. Computational Property Screening and Early ML 

Multi-agency funding efforts like the Materials Genome Initiative (MGI),6 and similar 

efforts worldwide,44 were premised on combining physics-based computation, data resources, and 

high-throughput experimentation to provide more data and accelerate the discovery of new 

materials.  Many early efforts used high-throughput density functional theory (DFT) calculations 

to create databases (e.g., Materials Project, AFLOW, OQMD, etc.) To expedite this process, 

researchers began using ML to perform preliminary regression or make classification predictions 

to screen known crystal structure databases for materials with superb properties.45 The efforts have 

since expanded dramatically using experimental datasets, autonomous experimentation, multitask 

and transfer learning, among numerous other approaches. New tools, such as large-language model 

(LLM)-based code generators eliminate technical barriers for non-experts to perform routine data 

analysis tasks.46 Surprisingly, general purpose LLMs can even be used to directly predict 

molecular and material properties using small amounts of example data.47  But while predictions 

are numerous, experimental validation is quite rare.45 Nevertheless, in nearly every example, the 

ML predictions are modest improvements of known systems rather than new state-of-the-art, 

transformative materials. 

 

III.B. ML as an Experimental Optimization Tool 

Many current demonstrations of ML for chemistry and materials are essentially 

optimizations of the composition, reaction conditions, and processing conditions to maximize or 

minimize a desired property. ML is used as a low-cost proxy for experimental input-output 

relationships. For example, the design of catalysts for chemical reactions has involved performing 
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density functional theory (DFT) calculations to determine the optimal catalyst composition and 

reaction conditions. ML models can be trained on this data to accelerate the screening process, 

thereby reducing the time it takes to map the response surface and achieve the desired result.48 

Incorporating model uncertainty with the predicted outcome enables an algorithmic guide to 

achieve the experimental goal. One classic illustrative example comes from the seminal 2016 work 

of Nikolaev et al. on ML-optimized carbon nanotube growth in an autonomous system.49 A random 

forest model trained on a small initial dataset served as a proxy for the dependence of observed 

nanotube growth rate as a function laser heating and the partial pressures of four gases. Active 

learning methods were used to sample uncertain new experimental conditions, and the algorithm 

was then employed to select the optimal set of input parameters to rapidly achieve a desired growth 

rate. Other illustrative ML-enhanced materials optimization examples include nanocrystal growth 

and optical properties in a microfluidic system,50 mechanical properties of 3d-printed structures,51 

crystal growth conditions,52–54 and halide alloy stability20,55, and superconductivity.56  See Refs. 45 

& 57 for a more comprehensive review.  

Limitations of data-driven strategies have been noted in the literature, with the need for 

more data or higher-quality data being stressed.58  Algorithmic performance can also depend on 

the initial dataset (the “cold start” problem), and available datasets often exhibit sampling biases.59 

This problem can be partially mitigated by adding additional constraints to maximize the explored 

input space54 or by incorporating human expertise in the loop.60 While previous research articles 

have benchmarked computational methods and metrics for this task,61,62 and a recent perspective 

discussed types of machine-learning guided iterative experimentation towards this goal,15 a more 

critical view of the field is that regardless of the accuracy produced by these methods, they will 

not generate the materials necessary to enable paradigm shifts. 
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ML-based organic (retro)synthesis prediction and planning face similar issues.2,63 There is 

a tremendous power (and computational complexity) associated with selecting a sequence of 

known reactions into a new arrangement. This presents an immense combinatorial challenge where 

ML-derived heuristics can make the problem tractable,64,65 with recent reviews discussing these 

efforts.66,67 Although it has been suggested that deep-learning-based template-free methods can 

propose genuinely inventive new reactions,68 performance can be poor outside the training set 

(even for undergraduate textbook reactions69) and predictions often reflect the most common 

reactions in the training set rather than optimal reactions.70 Increasingly these make use of LLMs, 

which some AI researchers characterize as “stochastic parrots” because of a tendency to generate 

outputs that merely have the same statistical local structure as the training corpus (and thus 

perpetuate or amplify training set bias) without incorporating long-term structure or meaning.71 

Regardless, empirical evidence suggests that suitably trained LLMs can learn meaningful internal 

representations of a variety of problems.72,73  Within the context of chemistry, there is evidence 

that transformer-based LLMs models learn relevant atom mapping rules, implying that the learned 

representations are physically meaningful.68 Yet the problem of optimizing the reaction conditions 

and stoichiometries remains. Again, the tremendous technical challenges and practical benefits of 

this are immense—as demonstrated by exciting recent work on the optimization of heteroaryl 

Suzuki-Miyaura reactions74 and reviewed more comprehensively in Ref. 75. But again, this is in 

the domain of incremental optimization.  

 

III.C  High-throughput Experimentation and Autonomous Operation to Discover 

Exceptional Compounds 

The importance of high throughput experimentation (HTE) for data generation that will 

enable materials discovery has a long history.76–79 Increasingly, this takes the form of closed-loop 
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autonomous research systems or “self-driving laboratories57,80–82 like the ARES system49 

mentioned above. Whether fully autonomous or not, each step in the workflow of design, 

synthesis, characterization, and optimization (also referred as design/build/test/learn) can be 

accelerated by incorporating ML tools.83 

The synergies between ML and HTE are illustrated with a simple statistical model, 

depicted schematically in Figure 3a. The probability that at least one successful material results 

from an ensemble of N independent trials, each of which has a success probability p, is 1 −

(1 − 𝑝)𝑁. HTE increases N and ML increase p. As depicted in Figure 3b, these have a 

complementary effect on the overall probability of success and one can compensate for a lower 

value of p by increasing N and vice versa.  Autonomy generalizes this in several ways:  First, p is 

no longer constant, but ideally increases as a function of time as new data is acquired to improve 

the model, i.e., dp/dt is positive. The improvement  is problem-dependent; at best, iterative active 

learning requires only a logarithm of the number of experiments required by random sampling, 

but at worst may require the full number of sample points.84 Empirical materials science studies 

have observed that poorly implemented active learning can decrease p.85 The need for model 

updates in active learning can also interfere with parallelization of N. Second, autonomy reduces 

the delay between data acquisition and use of the improved model to acquire the next experiment; 

this is analogous to compounding interest more frequently. Third, these systems increase the 

volume and quality of experimental (meta)data, which facilitates its use for ML. By eliminating 

(unrecorded) human variations, automated processing can potentially improve the reproducibility 

of experiments, thus increasing the signal-to-noise ratio in the dataset.  Such unrecorded 

unintentional variations in background conditions are also minimized by performing more 

experiments in a smaller span of time.  
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Although HTE is an essential enabling technology for discovering exceptional materials, 

it is not enough. A historical analogy is provided by combinatorial chemistry in drug discovery.86 

The lack of clinical successes from initial high-throughput synthesis in the 1980s suggests that 

merely increasing N is insufficient.  The incorporation of computational chemistry methods and 

informatics modeling in the 1990s increased p was needed for success. Ultimately, p depends on 

how the problem is framed and will determine where we look. Section V describes paths towards 

ML models that increase p for exceptional materials, rather than being limited to local 

optimizations. 
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Figure 3: (a) The probability of at least one success in an experimental campaign can be 

increased by using ML to increase the probability that an experiment is successful, (increasing 

p), or by making more attempts (increasing N); (b) Contours showing the probability of at 

least one success, as a function of changing p and N. Increasing p and N have a synergistic 

effect, but a large value of one can compensate for a smaller value of the other.  
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III.D.  Limitations of Pareto-front Multiobjective Optimization Strategies 

For many applications, exceptionality requires not just a single property, but a balance of 

multiple, possibly conflicting, objectives. When the objectives do not have an intrinsic priority, 

there is no single “best” solution but rather a set of optimal solutions, described in terms of a Pareto 

frontier.15,26 (& Ref. 38 pp. 177-184), depicted schematically in Figure 4. Multi-objective 

optimization methods attempt to move the Pareto front forward, and have been applied recently 

across materials science ranging from solid-state battery electrolytes87 to magnetic high-entropy 

alloys3 to additive manufacturing28 to polymer design,88 and recent reviews discuss multiobjective 

optimization for organic molecules89 and chemical reaction optimization.75 

A wide variety of methodologies focus on different aspects of the problem; for example 

Chimera27 handles constrained design spaces, and  𝜀-PA,88 uses active learning to identify Pareto 

points in fewer evaluations. The strengths and limitations are nicely illustrated by a recent study 

which optimized the combustion synthesis (fuel source, fuel-to-oxidizer ratio, precursor solution 

concentration, and annealing temperature) of metal thin films to simultaneously maximize the 

film’s conductivity and minimize the combustion temperature using a self-driving laboratory.90 

The differential expected hypervolume improvement (qEHVI) algorithm91 employed allows to 

monitor the exploration progress; in this study the normalized hypervolumes increase smoothly as 

the property response is explored, indicating stepwise advances. This type of stepwise, continual 

advances of an objective that balance tradeoffs, does not lend itself to the necessary “leaps-and-

bounds” advances required for transformational discoveries, and may have difficulty scaling. 
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FIGURE 4: The Pareto front is a plot of optimal solutions for a multi-objective optimization 

problem. The x-axis represents one objective, the y-axis represents another objective. Points on the 

plot are Pareto-optimal solutions, with no other solutions better in both objectives. The Pareto front 

connects all these solutions and shows trade-offs between objectives. Points above the front are 

dominated by at least one other solution, while points on the front are non-dominated. The Pareto 

front moves forward with each iteration making it a useful tool for decision-making and 

optimization, but not for identifying exceptional cases. 

 

IV. Case Studies in the Discovery of Exceptional Materials 

To illustrate how exceptional materials are discovered with and without ML, we present 

two case studies: the discovery of High-Tc superconductors and superhard materials. In addition 

to allowing us to review applications and limitations of current ML tools, it provides concrete 

examples upon which to base our subsequent recommendations. 
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IV. A Case study:  Serendipity and the Discovery of High-Tc Superconductors 

Unexpected outcomes or applications are often the first step in scientific discovery. 92 The history 

of high-Tc superconductors illustrates the role of serendipity in exceptional material discovery. 

Research in superconductivity, from its initial report in 191193 to 1986 was dominated by metallic 

systems.94 Conventional wisdom suggested that superconductors should be metallic, have high 

symmetries and electronic density of states, and be structurally unstable or metastable, leading to 

a focus on vanadium and niobium alloys. However, investigation of systems for which BCS 

theory95 did not work, such as intermetallics96 and Chevrel phases,97 motivated wider exploration, 

even if their critical temperatures were modest.   

Parallel efforts in the early 1980s were critically important for the emergence of cuprate 

perovskite high temperature superconductors.  First, Raveau,98,99 Poeppelmeier,100,101 and 

Thomas102,103 were developing a synthetic toolbox to control oxygen stoichiometries in 

perovskites, enabling mixed valencies that are critical to the existence of superconductivity in 

perovskites.  Second, the broad investigations led to the observation of superconductivity in a 

series of non-metallic systems pre-1986 oxides,104 including NbO105 (which contains square 

planes, much like all cuprate superconductors), spinels (LiTi2O4)106 a series of perovskite adjacent 

tungsten bronzes,107 Ba(Pb1-xBix)O3
108 and even the perovskite SrTiO3.109   

Reports of oxide superconductors intrigued Bednorz and Müller, coupled with both 

Raveau’s synthetic advances and discovery of metallic conductivity in a copper-containing oxygen 

deficient perovskite,110 inspired their discovery of superconductivity in the LaBaCuO systems (Tc 

= 28 K).111 Ceramics are generally insulators, but this anomalous case provided a new solution to 

an established problem via an unexpected route. The initial announcement motivated a decade of 

incremental optimization, during which superconductivity above the temperature of liquid 
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nitrogten was quickly achieved in an YBaCuO oxide,112 as well as the discovery of the reigning 

HgBaCaCuO cuprate superconductor.113 

Could ML models have assisted in this discovery?  Undoubtedly, ML can help optimize 

materials once examples are known.  For example, Pogue et al. recently used a ML model trained 

on >16,000 compounds in an iterative fashion to guide the synthesis of new superconductors, and 

found a new Zr-In-Ni superconductor with modest Tc = 9 K, as well as rediscovering a few known 

superconductors not in their training set.56 But if one only had experimental knowledge of pre-

1986 superconductors, would ML predict the existence of high Tc cuprates? The answer appears 

to be “no”. In 1988, Villars and Phillips performed what would now be called feature selection 

and clustering using the known data of approximately 60 high-Tc materials (including YBaCuO); 

however, their analysis (Figure 2 in their paper) does not predict BaCaCuO,114 and it is unclear to 

what extent many other materials would be  false positives.  Two decades later, Stanev et al. used 

the SuperCon database of over 16,000 compounds to train random forest models for predicting the 

Tc based solely on composition.115 While they did not consider a time-separated holdout, Figure 

4b in Ref. 115 shows that a model trained on low-Tc (primarily pre-1986) materials predicts all 

cuprates as erroneously low-Tc. (The failure to extrapolate could be a consequence of using a 

random forest model.) On the other hand, their results suggest that a few initial discoveries suffice 

for ML to identify other examples—indeed, once cuprates are included in the training dataset, they 

comprise the vast majority of candidate superconductors. Meredig et al. also observed that ML 

models trained without cuprate examples predict cuprates to be below-average superconductor116 

(See Figure 2 in Ref. 116) Alternatively, Ling et al. used ML to quantify the uncertainty of Tc (rather 

than predict its value);  iterative sampling materials guided by maximum uncertainty found high- 

Tc superconductors (including cuprates) in about a third of the experiments required by a random 
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search.117 These previous ML studies may have focused too narrowly on superconductivity; 

perhaps a broader study of metallic conductivity (rather than limiting to superconductivity), 

informed by earlier reports of metallic conductivity in LaSrCuO, would have served as the bridge 

from classical BCS superconductors to these new compounds.118 Overall, this supports the claims 

made in Section III: existing ML approaches can assist materials optimization, but do not identify 

new exceptional materials. 

 

IV.B Case study:  Machine Learning and the Discovery of Superhard Materials 

Similar strengths and limitations of current ML apply to the discovery of superhard 

materials, defined as those having Vickers hardness (Hv) exceeding 40 GPa. Diamond is the 

hardest known naturally occurring substance (Hv ≈ 100 GPa) and significant efforts have gone into 

making synthetic diamonds. In 1954, scientists at General Electric (GE) Research Laboratory 

developed the first approach involving subjecting graphite to intense heat and pressure using a 

diamond press. GE continued to refine the process through inventions in the 1970s like high-

pressure, high-temperature (HPHT) synthesis, which subject a carbon source to extreme pressure 

and heat in the presence of a metal catalyst. HPHT synthesis allowed GE to create larger, higher-

quality diamonds more efficiently than ever before. The company began selling synthetic 

diamonds for use in industrial applications, such as cutting tools and abrasives. At a similar time 

(1957), synthesis efforts were also focused on making the isostructural, isoelectronic cubic boron 

nitride (c-BN) using high-pressure, high-temperature synthesis. Superhard c-BN's unique 

properties, including its extreme hardness (HV ≈ 60 GPa) and thermal stability, make it an ideal 

material for use in ferrous cutting tools, grinding wheels, and other industrial applications. Today, 

c-BN is used extensively in the aerospace, automotive, and manufacturing industries. Given the 
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tremendous application space, it is no surprise researchers have expended significant effort, with 

only moderate success, trying to emulate these properties. 

However, it has not been easy. An analysis by Brgoch and co-workers provides insight on 

why so few superhard materials have been identified. They constructed a boosted machine learning 

regression model capable of predicting Vickers hardness. Using this model to predict the hardness 

of more than 60,000 inorganic compounds in Pearson’s Crystal Dataset revealed that only 0.1% 

of known crystalline compounds surpass the superhard threshold at 0.5 N applied load, and only 

0.01% meet this criterion at 5N applied load.119 Not only is superhardness rare, the total dataset of 

experimentally hardness measurements is relatively small (about 500 unique compositions).119,120 

Moreover, the dataset is biased to low hardness values and certain compositions (such as boron-

containing compounds) are disproportionately present in this limited training data,119 attributable 

to the same types of anthropogenic research biases observed in other experimental materials 

datasets.59 

 The limited experimental data might suggest that physics-based simulations could be a 

more appropriate path towards materials discovery. However, atomistic DFT is unable to directly 

calculate the hardness, as it is a property that involves multiple length-scales exceeding what can 

be achieved by direct simulation. One could instead use properties that are readily calculated by 

DFT (such as bulk and sheer moduli) as either initial selection criteria120 or as inputs to 

semiempirical expressions for hardness.121 Researchers have further paired these methods with 

crystal structure prediction algorithms (USPEX122, CALYPSO123, XtalOpt124) to predict new 

promising superhard compounds. ML can also be used to expand the search space enabled by DFT 

calculations.120 These physically-motivated models provide some guidance but are generally 

worse at quantitative hardness predictions than direct ML methods.119,121  ML models are accurate 

https://doi.org/10.26434/chemrxiv-2023-x23s9-v2 ORCID: https://orcid.org/0000-0002-2071-1657 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-x23s9-v2
https://orcid.org/0000-0002-2071-1657
https://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

21 

enough to be used to screen for interesting compounds in the Sc-Os-B phase space as a 

demonstration of their quantitively accuracy. The model captured hardness changes in a solid 

solution system (Sc2–xYx)OsB6 and the highly disordered borosilicide, YB41.2Si1.42.  Additionally, 

Sc2OsB6 was determined to be nearly superhard (Hv ≈ 38 GPa). Nevertheless, the hardness values 

of these systems falls far from diamond or c-BN.  

A more recent approach to the problem embraces the rarity of superhardness by treating it 

as an unsupervised anomaly detection problem.125 In this work, an autoencoder model was trained 

to find low-dimensional latent representations of crystal structure. Compounds with anomalous 

bonding motifs will be poorly described in this learned representation, and this can be used to 

identify anomalous structures for further investigation. While such structural anomalies do not 

directly indicate superhardness, the hypothesis is that these materials often contain unusual 

bonding motifs, which is substantiated by an empirical correlation between reconstruction error 

and superhardness. The methodology could be expanded to include a generative approach that can 

predict new crystal structures where the loss function (reconstruction error) is maximized and 

premised on the previous correlation, having a correspondingly higher hardness. Nevertheless, 

there is no guarantee that any combination of elements in any given crystal structure would surpass 

diamond as the hardest single-phase material.  

 

V. Recommendations towards ML for Exceptional Materials 

There is no single “scientific method” and scientific advances often involve rejecting 

established norms.126 In that spirit of epistemological anarchism, we offer six maxims for guiding 

the research community, depicted schematically in Figure 5.  While   these recommendations focus 

primarily on experimental discovery, many are equally applicable to autonomous computational 

discovery.127  When possible, we illustrate these points with applications in chemistry and 
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materials science, but in many cases, we draw instead upon examples from finance, oceanography, 

computer science, and evolutionary biology.  

 

 

Figure 5: Six recommendations for research toward machine learning for exceptional 

materials. 

 

 

Avoid the tyranny of the middle and focus on extrema. By definition, there is less 

training data at the extremes, resulting in greater model uncertainty associated with those regions. 

Typical metrics for ML training and evaluation emphasize performance on an average over the 

data, but this will be dominated by typical materials rather than the exceptional extrema. Common 

ML metrics (accuracy, R2, etc.) do not express the intended goal when in the presence of such 

outcome imbalances,128 nor do they measure an algorithm’s ability to guide iterative discovery.62 

Solving this problem may simply correspond to choosing different loss functions when training 

ML models. A possible analogy is to the use of Conditional Value at Risk (CVaR)—expected loss 
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in the worst q% of cases—in portfolio optimization,129 which corresponds to a 1-norm of q% 

largest magnitude entries.130 Alternatively, it may require modifications of existing algorithms. 

Typical reinforcement learning (RL) formulations  maximize cumulative reward rather than the 

best possible result found.131  Alternative problem formulations, such as the Max-k-arm bandit 

model,132 better align with the goals of scientific discovery, as demonstrated with in silico 

numerical experiments of exploring molecular SMILES strings to maximize the boiling point and 

other thermophysical properties described by an empirical proxy.131 In the context of Bayesian 

optimization type strategies, an appropriate approach is the output-weighted optimal sampling 

introduced by Blanchard and Sapsis and co-workers,133–135 which has been recently applied to 

extreme event discovery in epidemiological models, rogue waves, and structure mechanics.136  

 

When data is limited, qualitative prediction of direction to the goal is more valuable than 

(interpolative) accuracy. If you are blindfolded, it is better to know the approximate direction to 

the goal than it is to know the exact distance to the goal. Focusing on accuracy in the early stages 

can be detrimental; for example, Random Forest models tuned to maximize only cross-validation 

accuracy may produce low-quality models.116,137 But collecting just any data results in the “tyranny 

of the middle” problem discussed above.  Rather, we want simple qualitative models that guide 

extrapolation (and data collection efforts) to collect relevant data, rather than quantitative 

interpolative accuracy.  Don’t build a perfect model with limited data—the important thing is to 

collect more data, and the right data. An example of the importance of direction over accuracy 

exists in the initial reports of YBaCuO.  Chu and co-worker’s initial report of superconductivity at 

93 K contained neither the formula nor structure of the new famous phase.112,138 This report did, 
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however, provide more than enough direction for solid state chemists and ceramists to quickly 

identify the phase in question and initiate a decade of intense research. 

The evolution of astronomy from Ptolomy to Kepler provides an insightful historical 

analogy. Kepler’s model was neither more accurate nor significantly simpler than Ptolomy’s.139 

Kepler himself noted in the introduction to Astronomia Nova “the [models] are for practical 

purposes equivalent to a hair's breadth, and produce the same results.”140 Mathematically, the 

system is underdetermined, as the limited set of data can be fit by an arbitrarily complex model.  

The strength of Kepler’s model was the ability to extract qualitative hypotheses about individual 

planets and sufficient quantitative accuracy to guide observation.141 Specifically, Kepler’s model 

contained a latent hypothesis that Venus should have phases, and enabled a sufficiently accurate 

calculations to direct Galileo’s experimental observations disproving the Ptolemaic model.142 

(Ruling out the Tychonic model required improved instrumentation and data collection to enable 

the observation of stellar aberration,143 analogous to HTE for exceptional materials discovery.) 

The general strategy for underdetermined problems is to introduce a priori constraints. 

Classically, this was done by devising physical models in terms of the relevant variables and 

admissible functional forms of their interactions.  Physics-based computer simulations serve a 

similar role,127 although the examples above indicate their limits for exceptional materials.58,121  

We will focus purely on data-driven approaches. Strategies of physics-informed machine 

learning144–146 are one approach for this problem. A recent application of this approach to 

determining the structure of oxide glasses is described by Bødker et al.147 However, this is less 

applicable to exceptional materials which involve new physics precluded by using existing models 

as constraints (e.g., using BCS theory95 to inform your ML model will hinder discovering cuprate 

superconductors). Feature selection corresponds to an implied constraint that only a small subset 
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of the input variables determines the system performance. The identified features are combined 

with simple models to make predictions.  Some examples include the aforementioned synthesis of 

superhard materials,120 but other examples include discovery of antimicrobial conjugated 

oligoelectrolytes148 and perovskite crystal growth modifying additives.149  Once hypothetically-

relevant features correlated to the output are selected, then relatively simple models can be 

constructed to make extrapolations. Even simple linear models can be quite effective for this 

purpose.128 The features themselves need not have an interpretable relationship to the property 

being studied (vide infra)—they merely serve as a proxy for guiding the experiment selection. 

There is also no reason to restrict consideration to a predefined ML-model function type. More 

broadly, symbolic regression corresponds to the ansatz that a relatively simple combination of 

mathematical functions describes the behavior. There are a variety of applications of symbolic 

regression methods to problems in chemistry150 and materials science.151,152 In practice, symbolic 

regression is often combined with various feature selection methods, with examples including VS-

SISSO153 and transformer-based approaches for symbolic regression.154 

Emphasizing qualitative direction has consequences for the design of HTE systems. Early-

stage validation might emphasize rapid (but potentially noisy) experimental methods, rather than 

the types of rigorous methods used in subsequent stages of research in the interest of increasing 

coverage.  This also suggests the need for appropriate data sharing and interoperability formats 

(such as the specification of experiments) to facilitate the hand-off between high- and low-

throughput synthesis and characterization processes, especially when they occur in different 

laboratories. On the other hand, many historical examples of exceptional material discoveries 

resulted from comprehensive characterizations which were unnecessary to the immediate goals of 

the project, but which nonetheless revealed an unanticipated outcome.92 For example, conductivity 
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measurements in the LaBaCuO system revealed metallic behavior, foreshadowing Bednorz and 

Müller’s discovery. This suggests measuring as many different properties as possible, even if not 

directly related to the current research theme, and storing the results in public databases to allow 

for retroactive retrieval of surprises or the use in training ML models for different properties.  

 

Sample what can be made and how to make it — defer optimization.  As it is impossible 

to exhaustively enumerate all of the possibilities in these problems, one must instead sample the 

possibilities, which corresponds to the task of generative ML; methods and applications of 

generative ML to chemical problems have very recently been reviewed in Ref. 155.  We advocate 

that these methods be used to cast a wide net. As noted by Herbert Simon, finding a global optimum 

to real-world problems often requires an intractable amount of time, effort, and computation, but 

finding a solution that satisfices—i.e., is feasible and meets or exceeds a baseline aspiration level—

is often tractable.156,157 This is marked in the case of combinatorial optimizations—like those 

involved in materials discovery—in which the number of possibilities grows exponentially in the 

problem variables, each of which must be checked. In these cases, we argue that merely sampling 

the solutions to find a satisficing solution should be our goal. Evolutionary theory suggests that 

introducing high levels of selection pressure restricts the scope and direction of exploration to a 

small neighborhood near high fitness individuals, and in turn delays or prevents innovation by 

inhibiting a series of slightly deleterious intermediate steps that are needed to find new optima.158 

For this reason, a collection of satisficing solutions can be more useful for our purpose than a few 

highly optimized examples. 

To be more than a theoretical curiosity, it must be possible to synthesize the material. This 

may be subdivided into the question of whether the material can exist (i.e., fundamental 
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thermodynamic constraints) and how it can be brought into existence (the sequence of practical 

operations and feasibility of required conditions). The former is partially addressed by the plethora 

of ML models for predicting ground state thermochemistry, along with a proper accounting for 

metastability.35 The latter is partially addressed by ML approaches that use natural language 

processing on the literature to extract experiment plans (for training) and then generate plans based 

on that data.159 (A parallel discussion of these ideas as they apply to organic and medicinal 

chemistry can be found in Refs. 155 & 160.)   

More broadly, one can think of two extreme versions of this task. At one extreme, 

synthesizability is applied as a filter to a list of generated candidates. For example, using ML 

models to make predictions of superhardness, then applying a formation energy filter to identify 

the feasible compositions.119 At the other extreme, synthesizability is imposed to generate 

candidates by enumerating (or defining) a state space of experimentally feasible composition and 

process conditions points and then allowing property prediction models to select within them. A 

more efficient approach would combine these extremes to avoid the need to evaluate candidates 

which are ultimately discarded by the subsequent process. This might range from including 

physics-based symmetry contraints,161 directly incorporating a learned formation energy constraint 

into the generative process,162 or by restricting the generating samples to obey compositional 

“grammatical” rules.163 The combination of empirical synthetic accessibility metrics, fragment- 

and synthesis- based constraints, and forward- and reverse synthesis prediction to constrain 

generative models for drug design160 can serve as a model for materials chemists.  Fundamentally, 

the limits of synthesizability are defined in terms of the operational capabilities of the autonomous 

experiment system and what actually happens in the lab. Thus, an extreme version is simply to 

allow an algorithm to guide the HTE system directly. An example of this approach is a genetic 
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algorithm optimization of gold nanoparticle synthesis experimental parameters to match a 

specified UV/vis spectra.164  

The important thing is that the ML model leads to samples in the right neighborhood. One 

framework is similarity-based kernel learning, in which one can define a cost function associated 

with acquiring a desired (but difficult) data point versus several similar (but more easily acquired) 

data points, and then use a model trained on the local environment to infer the desired point.165 

The ease of acquisition can be computed by combining materials, labor, and time constraints.166 

Another framework is provided by the Multi-dimensional Archive of Phenotypic Elites (MAP-

Elites) algorithm, an evolutionary algorithm used in reinforcement learning, which samples and 

stores multiple candidate solutions (“elites”) on a grid to preserve a diverse set of characteristics for 

possible solution.167  Zooming-based Bayesian optimizations have a similar alternation between 

global sampling and local optimization.41 This is also reminiscent of Lévy flight models of animal 

foraging behavior, in which the search process is characterized as a random walk with a heavy-

tailed distribution of step sizes, and which in practice looks like local exploration in a region 

interspersed by large jumps to new regions.168  

 

Create room (and look) for the unexpected while pursuing your goal.  Scientists are 

trained to minimize the variance in their laboratory procedures. There is even a new ACS journal, 

Precision Chemistry,169 focused upon this goal. In contrast, we advocate the opposite approach—

Max Delbruck’s principle of limited sloppiness: “If you are too sloppy, then you never get 

reproducible results, and then you never can draw any conclusions. But if you are just a little 

sloppy, then when you see something startling you … nail it down.”92 Epsilon-greedy approaches 

in reinforcement learning provide a theoretical justification170—one should mostly take the 
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putative most profitable action, but also allocate some fraction of effort to random new actions in 

case they are better. This is synergistic with our previous recommendation to avoid premature 

optimization.  Sloppiness can be active (e.g., adding randomness to materials experiment plans59 

or using an additional cost function to experiment generation that maximizes experiment 

diversity54) or passive (e.g., taking advantage of uncontrolled changes in laboratory temperature 

and humidity as natural experiments171).  Variations in parameter values (“micro-sloppiness”) is 

more easily achieved, but less likely to lead to large improvements; variations in reagent identity 

or steps (“macro-sloppiness”) typically must be deliberately programmed. 

Despite advocating for deliberately “sloppy” reaction designs, we emphasize that this 

requires complete data capture of what actually transpired. HTE provides a natural synergy, as it 

enables complete, machine-readable data collection of meta-data and “failed” experiments which 

might not otherwise be recorded, but which are essential for ML training.172 Furthermore, allowing 

for sloppier outcomes might simplify the design tolerances when constructing an HTE system.14 

Once the data is collected, ML methods for anomaly detection enable automated serendipity. The 

role of structural anomaly detection in the discovery of superhard materials was discussed in Sect. 

IV.B,125 and similar opportunities have been discussed for computer-vision-based scanning 

electron microscopy characterizations173 and surface-enhanced Raman.174 The simplest form may 

be detecting whether an unexpected change has occurred in one or more spectra, a strategy used 

to discover new organic synthesis reactions.175,176 Coupling the observation of change in the 

spectra to neural network models of molecular structure has been used to steer the experimentation 

towards less predictable reactions.177  

Data-reuse and sharing can also enable finding unexpected trends within and between labs 

by data sharing.178   There are many examples of scientific serendipity, in which a prior solution 
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(for example, a compound that was made and characterized for a different purpose) is found to 

solve a later problem because of some new insight.92 For example, lead titanate was proposed as a 

stable photocathode for dye sensitized solar cells based on band structure similarity to known 

photocathodes.179 Requirements by funders and publishers around FAIR (findable, accessible, 

interoperable, reusable)180,181 and TRUE (Transparent, Reproducible, Usable by others, 

Extensible)182 data practices can help create such a resource for retroactive discovery.  

 

Try to fill-in-the-blanks of input and output space. There is a great opportunity to 

develop ML methods that enable untargeted search.92 Closely related is the importance of 

uncertainty quantification—fill in the portions of the map with the greatest uncertainty. The 

obvious way to frame this is in terms of the types of inputs (e.g., compositions and structure) that 

have not been observed before. Identifying where these gaps exist can be done by using databases, 

such as the identification of compositional gaps in the Materials Projects database discussed in 

Section III and Figure 3(b). Proactively, a strategy is to identify these unexplored compositions, 

use constraints (such as ML-based formation enthalpy estimators of stability) to determine which 

compositions are feasible, and then target experimental searches to fill in those blanks.183  For 

example, the discovery of the many high-temperature cuprate superconductors was guided by the 

Goldschmidt tolerance factor184 which enables the determination of feasible compositions likely 

to result in the formation a perovskite.  This, coupled with the solid-state literature and nascent 

Inorganic Crystal Structure Database,185 resulted in a host of experiments targeted at potential 

novel materials that were both feasible and unreported. More recently, ML-based approaches have 

been applied to better explore the space of cuprate-like compounds.186,187 However even simple 

database queries and linear regressions (combined with DFT estimates of stability) suffice to 
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identify potential compounds that fill-in the gaps in the distribution of observed apical and in-plane 

Cu-O distance distributions for this class of compounds.188 

Alternatively, one can focus on previously unobserved outcomes. The information entropy 

of the observed property distribution can be useful for identifying outcome imbalances, and active 

learning used to prioritize new samples to correct these imbalances, recently demonstrated in the 

context of formation energy/structure biases of intermetallic compounds.36 To understand how 

properties are coupled to one another, it might even be useful to fill in equally rare contraindicated 

regions with undesirable tradeoffs (“anti-exceptional materials”). Learning general ways to reach 

arbitrary outputs, can serve as steppingstones to the desired solution. An extreme version of this 

approach explicitly rejects objective-based search, and focuses solely on output novelty.189 

Empirical evidence suggests that novelty-only strategies (which ignore any type of fitness 

objective function) can be highly effective in complex environments, such as video games.190 

Random goal exploration algorithms191,192 select a random target defined in the space of possible 

outcomes and then infer the necessary inputs needed to achieve that goal. The process can be 

repeated iteratively until the target is reached, refining the model’s knowledge of the input-output 

relationships. These methods have been demonstrated in the context of identifying novel protocell 

lipid formulations.193 Blending the distinction between input- and outcome- oriented approaches, 

the diversity is all you need reinforcement learning strategy suggests simultaneously optimizing 

for novel outcomes and synthetic paths (inputs), without imposing other types of fitness objective 

functions.194 Regardless of the specific optimization strategy, appropriate data sharing (vide supra) 

is a pre-requisite for identifying the underexplored input and output spaces. 
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Do not confuse human understanding and model interpretability. Is knowledge more 

than a merely true belief?195  Suppose you have an oracle (e.g., an LLM-based chemical property 

predictor47) that tells you where you can get lucky—does it matter how the prediction is made, 

provided you can verify the outcome? Once the initial discovery is validated experimentally, the 

traditional scientific method can be unleashed to understand underlying causes systematically. We 

saw this pattern in the case study of high-Tc superconductors discussed previously, and there is no 

reason to hold ML-assisted discoveries to a higher standard. Essentially, we argue that the initial 

discovery stage should prioritize a form of reliabilism (defining knowledge as a reliably-formed 

true belief), with an emphasis placed on knowledge-how (in contrast to knowledge-that).  This 

neither requires an explanation of the workings of an arbitrary black-box ML model, nor is it 

recognizable as constituting a proper “scientific” explanation. (Whatever “explanation” means in 

practice.126)  

Leo Breiman famously contrasted model culture, which uses data to estimate the values of 

physically meaningful parameters, against algorithm culture (what we would now call ML) which 

views model parameters as meaningless apart from prediction quality. 77 The confusion between 

these two cultures leads to misapplication and misinterpretation about the scope of explainable AI 

(XAI) methods for communicating the inner workings of ML algorithms to humans. For a very 

recent review of trends in this field more broadly, see Ref.196; for reviews of interpretable and 

explainable methods applied specifically to materials science, see Refs. 197–201. XAI is motivated 

by the desire to have the right answer justified by acceptable reasons, but in  practice common 

XAI methods can be misleading; Lei et al. provide a case study of the limitations of SHAP and 

ensemble feature importance measures in experimental materials science problems.137 At best, 

XAI methods generate low-dimensional descriptions of how the model outputs behave based on 
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changes to the inputs.  That is, they only indicate features correlated to the model's output, with no 

claim of physical meaning or causality.  Determining whether these features are meaningful 

requires human input.  Practically speaking, XAI methods may be unnecessary for the initial 

discovery of exceptional materials.  Model explainability in these early stages is unnecessary 

because the models will be based on limited data, and thus prone to overfitting and 

oversimplification. Moreover, the most appropriate models for initial discovery—for both 

interpretability and extrapolation—may be the types of feature-selected linear models discussed 

above,128 obviating the need for more sophisticated black-box model interpretability methods.  In 

fact, empirical studies have found XAI detrimental in uncertain environments, as humans are more 

likely to reject helpful recommendations because of overconfidence in their troubleshooting 

abilities.202  In many cases, automatic identification of anomalies (vide supra) for review by a 

human operator suffices, so long as the anomalies are rare. The human scientist can then invoke 

their own reasoning, statistical evidence, or other forms of investigation to study the problem.  

ML can certainly also play a role in building scientific understanding after initial discovery 

of an exceptional material.  Most scientists associate science with a knowledge of causes.203  This 

can be automated by modern causal influence methods204 which have recently been applied to 

catalysis205 and scanning probe microscopy.206–208 Ultimately, causal explanations must go beyond 

merely the brute details of the experiments (such as the input settings on a particular instrument), 

and draw upon deeper semantic relationships underlying structure, property, processing, and 

characterization encoded in an explicit and machine-readable way. Ideally, this information is 

incorporated into interoperable knowledge graphs that would allow scientists (and automated 

inference engines) to operate on fully linked concepts and data instances.209  In contrast to the 

statistical inference methods that constitute most of the applications of ML, semantic 
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representations allow for logical inferences characteristic of symbolic AI (so called “good old 

fashioned AI”) en vogue during the 1950s-1990s.210 Progress towards semantic representations of 

chemistry and materials data and their applications are discussed in Refs. 209,211,212. 

Even without model interpretability or causal explanations, merely having access to 

“superhuman” AI improves human decision-making.  The board game Go provides a case study: 

Human decision quality remained roughly constant and human decision novelty decreased in the 

60 years of tournament data preceding AlphaGo, but access to AlphaGo increased human decision 

quality and novelty by inspiring players to depart from traditional strategies.213  This suggests the 

novelty-enhancing recommendations suggested above may suffice to improve human scientific 

understanding, even without model explainability, per se.  

 

VI. Conclusion: Integrated Workflows for Exceptional Material Discovery  

 

Traditional “manual” and autonomous materials discovery is based on a synthesize, 

characterize, learn, plan loop, depicted schematically in Figure 6a. (Similar process loops, with 

slightly different names, occur in a variety of scientific fields and the automation thereof, as 

discussed in Ref. 83.) Existing ML approaches accelerate this process by assisting in various 

optimization subtasks,14 such as fine-tuning of synthesis and testing operations when dealing with 

new precursors, reducing the need for skilled labor in operating tools. For example, 

characterization can be accelerated by automating spectral interpretation200 and efficiently 

planning sample characterization campaigns.214  ML can extract additional information from 

existing spectroscopy and microscopy methods.215,216  As discussed in Section III.B, existing ML 

approaches excel at the variety of research-related optimization tasks. 
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Figure 6: (a) Block diagram of typical autonomous workflow; (b) Block diagram of an autonomous 

workflow oriented towards exceptional materials. 
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How might the workflow change to discover exceptional materials? A schematic is 

depicted in Fig 6b. As discussed in Section III.C, it is necessary to increase both p (corresponding 

to the learn and plan phases) and N (corresponding to synthesize and characterize). Section V 

presented examples and suggestions of how new types of ML can increase p. Given the low 

probability of exceptional materials, one might introduce an intermediate constrain phase to limit 

the possibilities. While this may include the types of thermodynamic and synthetic feasibility 

determination methods discussed in Section V, it is potentially broader in scope.  For example, Liu 

et al. described how to merge human observation of sample quality into an ML acquisition function 

using soft constraints,20 and Zubarev et al. recently described software to assist in eliciting human 

expertise about prioritization, level-of-knowledge, and risk assessments used as input to ML-

assisted discovery of new photoacid generator for EUV lithography.217   

Given the rarity of exceptional materials, it is also crucial to increase N, the number of 

unique material compositions tested per unit time by HTE methods, discussed in Section III.C. 

Broadly, this can be accomplished by either automating existing laboratory processes or 

developing new types of miniaturized processes. An extreme version of the former is a mobile 

robotic arm that uses the same equipment as a human chemist,218 but it might consist of a dedicated 

“ChemPU” device219,220 or a collection of modified equipment orchestrated by a central sample 

management system.221 This has the advantage of using well-understood synthesis and 

characterization techniques, but limits opportunities for acceleration and scaling.  Alternatively, 

new types of miniaturized and high-throughput synthesis and characterization methods—e.g., 

microfluidics systems,222,223 direct writing from liquid precursors,224,225 combinatorial deposition 

of sample libraries,226 and atomic scale dip-pen nanolithography227,228— can potentially increase 
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N by orders of magnitude, but introduce doubt whether the resulting products are representative 

bulk samples. (Given their novelty, the design of the devices themselves are a subject for 

traditional ML-based optimization.229) Faster synthesis makes characterization the rate limiting 

step, requiring a shift to faster optical or electrical proxy measurements. For example, computer-

imaging-based methods can be used as a fast proxy for indenter-based hardness measurements, 

within certain bounds of materials composition and accuracy.230 The open challenge is to define 

the limits within which proxies are valid or fail, and how to dispatch the discovery process across 

these different types of modalities. Research efforts demonstrating equivalence between standard 

and novel synthesis and characterization techniques would initially take the form of explicit trust 

building experiments conducted on both sets of instruments, but ideally could also be automated. 

At the level of understanding, this might take the form of knowledge-graph approaches to represent 

semantic relationships between the results of different types of methods applied to a sample.209   

Finally, at the level of planning and coordination between these different types of 

modalities, the use of LLM-based intelligent agents can be used to direct guide more purpose-

driven planning and design tools, and automate aspects of the reasoning process across multiple 

facilities with different capabilities.231,232 Putting these recommendations into the form of an 

integrated workflow should better enable the discovery of exceptional materials.  
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