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Abstract

Dynamic interactions between peptides and lipid membranes are crucial in many

biological processes and biomedical applications However, monitoring of peptide dynam-

ics in a membrane environment has been limited by the lack of experimental methods

that could directly detect the fast (picosecond to nanosecond) timescale dynamics of

peptides in this environment. Spin relaxation times from nuclear magnetic resonance

(NMR) experiments are sensitive to such motions, but their applications are often lim-

ited by complications in sample preparation and interpretation of the data. Here we

show that the detailed dynamic landscape of peptide-membrane mimics can be deter-

mined by a synergistic combination of solution state NMR experiments and atomistic

resolution molecular dynamics (MD) simulations. Solution state NMR experiments are

straightforward to implement without an excessive amount of sample, while direct com-

bination of spin relaxation data to MD simulations enables detailed interpretation of

the dynamic landscapes of both peptide and membrane mimics. The interpretation of

NMR data from transmembrane, peripheral, and tail anchored peptides indicate that

peptides and detergent molecules do not rotate together as a rigid body. Instead, pep-

tides appear to rotate when placed in a viscous medium composed of detergent micelle.

On the other hand, spin relaxation times also provide indirect information on peptide

conformational ensembles. This work gives new perspectives on peptide conformational

ensembles and dynamics in membrane environments.
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Introduction

Dynamic interactions of peptides with membranes and other lipid aggregates are crucial in

many biological functions and biomedical applications. For example, fusion peptides play an

important role in virus entry into host cells,1 antimicrobial peptides can be used as thera-

peutical agents,2,3 signal peptides regulate protein translocation in cells,4 and apolipoprotein

mimetic peptides stabilize nanodiscs with potential pharmaceutical and other applications.5,6

However, peptides are small and their dynamic interactions with membranes are difficult to

capture by most experimental methods that access atomistic resolution data of biomolecular

systems, such as crystallography or electron microscopy. Nuclear magnetic resonance (NMR)

experiments are sensitive to fast (ps to µs) timescale motions of small molecules, but their

applications are often limited by complications in sample preparation and in interpretation

of the data.

Solid state NMR experiments have been useful in the detailed characterization of peptide

interactions with membranes, yet they are inherently insensitive and thereby require large

amounts of sample.7–10 This combined with the lack of generally applicable straightforward

and robust sample preparation protocols complicates many practical applications of solid-

state NMR experiments. On the other hand, preparation of samples with peptides interacting

with detergent micelles or more realistic membrane mimics, such as bicelles or nanodiscs, for

solution-state NMR experiments is often more feasible and requires less material.11 Even so,

the interpretation of peptide-membrane interactions from solution state NMR experiments

is often tedious because (i) reference direction defining the membrane plane that enables

direct determination of order parameters is not well defined in solution state samples, and

(ii) methods to interpret conformational ensembles and dynamics of aggregates of lipid-like

disordered molecules from solution state NMR data are not available.

Spin relaxation times, T1, T2 and heteronuclear NOE relaxation (hetNOE), measured

with solution state NMR from isotopically labelled 15N atoms in peptide backbone are often

used to determine protein dynamics by exploiting their connection to rotational dynamics of
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N-H bond vectors via Redfield equations.12,13 Spin relaxation times from proteins are typi-

cally interpreted using Lipari-Szabo formalism or its extensions, where bond vector rotational

motions are assumed to compose of overall motion and one or more independent modes of

internal motions, and parameters describing these motions are then solved by fitting to the

experimental data.13,14 However, for peptides embedded in disordered lipid-like aggregates,

it is not clear which kind of rotational modes should be used in these calculations, and if all

molecules in aggregates rotate together as a rigid object or if peptides rotate independently

from other molecules. In addition, the number of molecules in each aggregate and the po-

tential formation of dimers or higher multimers of peptides may affect rotational dynamics.

To resolve all these free parameters by fitting would require a large amount of experimental

data. On the other hand, complex heterogeneous dynamics of disordered molecules can be

resolved by interpreting spin relaxation data directly using molecular dynamics (MD) simu-

lations.15 However, this approach requires careful exploration of MD simulation models that

reproduce experimental spin relaxation times with sufficient accuracy for the interpretation

of experimental data.15,16

Here we present an approach to resolve the dynamic landscape of complexes formed by

disordered biomolecules by interpreting spin relaxation data from solution state NMR ex-

periments using MD simulations. This is demonstrated for six different types of peptides

embedded in SDS micelles, a standard anionic membrane-mimicking environment.11 For the

references, we resolved the dynamic landscape of two widely characterized peptides in the

micellar environment: a model transmembrane GWALP peptide17 and an antimicrobial Ma-

gainin 2 peptide that is known to settle in a peripheral orientation parallel to membranes.2 To

further demonstrate the usefulness of our approach, we studied tail-anchored peptides shown

to target the mitochondrial outer membrane in yeast [eElaB(TA), eYqjD(TA), yFis1(TA)] or

human [hMff(TA)] cells. The mechanism by which these tail-anchored peptides are inserted

into lipid is still poorly understood.18–20 For these six peptides, we predicted experimental

spin relaxation times directly, without any further fitting, from the MD simulation force field
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based on physical interaction parameters between atoms. Our predictions allowed detailed

interpretation of the dynamic landscapes of peptides and a better understanding of their

behaviour in lipid-like environments. Most importantly, the approach presented here can

be generally applied to characterise dynamic landscapes of complexes formed by disordered

biomolecules, including not only more realistic membrane mimicking systems, such as bicelles

or nanodiscs,5,6,11 but also to other systems such as lipid droplets21,22 or membrane-less or-

ganelles.23

Results and discussion

Backbone 15N spin relaxation times of peptides in micelles from

NMR experiments

To experimentally characterize the dynamics of the selected six peptides in SDS micelle

systems, we measured T1, T2, and hetNOE spin relaxation times of 15N atoms that were

specifically labelled in peptide backbone in positions shown in Fig. 1 a. All the labelled

residues were visible in HSQC spectra with the exception of labelled N-terminal residues of

hMff(TA) and yFis1(TA). HSQC spectra with the assignments and resulting spin relaxation

times are shown in Figs 1 b and c, respectively.

For T1 spin relaxation time, we observe an increasing trend in the order of eElaB(TA)

< eYqjD(TA) < Magainin 2 < hMff(TA) < yFis1(TA) < GWALP, while the trend in T2

is exactly opposite. Mitochondria-directed tail anchor proteins, eElaB(TA) and eYqjD(TA)

derived from E. coli proteins have lower T1 values and higher T2 values than hMff(TA) and

yFis1(TA) from humans and yeast. For peripheral Magainin 2 peptide, T1 and T2 times

lay between values for tail anchors, while transmembrane GWALP has higher T1 and lower

T2 values than any other peptide. HetNOE values lie between 0.4-1.0 for all the studied

peptides, and systematic differences between peptides are not observed.

Spin relaxation times of 15N are mostly sensitive to dynamics of N-H bonds in ps to
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a)

b) c)

Figure 1: Experimental results for peptides in SDS micelles. a) Amino acid sequences with
15N labelled residues shown in red for transmembrane GWALP23, peripheral Magainin 2,
and mitochondria-directed tail anchor (eElaB(TA), eYqjD(TA), yFis1(TA), and hMff(TA))
peptides. b) 1H - 15N HSQC spectra and c) T1, T2 and hetNOE spin relaxation times
measured from the peptides in SDS micelle and sodium-phosphate buffer at 310 K with 850
MHz spectrometer.

ns range in magnetic field dependent manner.12 However, the interpretation of molecular

dynamics from spin relaxation times is not straightforward, particularly for peptides in

micelles where the detergent environment affects peptide dynamics in a non-trivial manner

and standard models for protein dynamics may not be valid. Therefore, we rely here on

interpretation fromMD simulation models with detergents explicitly included in the following

sections.
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Predicting spin relaxation times of micelles from physical interac-

tions between atoms using MD simulations.

To interpret the molecular dynamics from the measured NMR spin relaxation times, we

set out to perform MD simulations that reproduce the experimental spin relaxation times

without any further fitting, and thereby directly provide interpretation for the experimen-

tal data. Because Amber-based force fields with water models derived from TIP4P were

previously successful in such tasks for partially disordered proteins,15 we first simulated an

SDS micelle in water with parameters from AmberTools.24 However, this micelle proceeded

to a gel-like phase with slow dynamics and deuterium spin relaxation times diverging from

experimental data obtained from the literature25 (Fig. 2). On the other hand, another popu-

lar protein force field with SDS parameters available, CHARMM36,26 is parameterized with

the TIP3P27 based water model, which suffers from low water viscosity and overly rapid

dynamics, leading to incorrect spin relaxation time values that do not relate well to data ob-

tained by experiments.16 This is indeed observed also in our simulations in Fig. 2. Therefore,

we proceeded to use CHARMM36 parameters with OPC water model28 that has a viscosity

value in good agreement with experiments.29 This combination has been previously shown to

give reasonable results for bilayers and monolayers.30,31 Indeed, SDS micelles simulated with

CHARMM36 parameters and the OPC water model remain in a fluid-like phase and pre-

dict deuterium spin relaxation times that are in good agreement with experiments (Fig. 2).

Therefore, we proceeded to simulations with peptides in micellar environments using the

CHARMM36 parameters with the OPC water model.

Predicting spin relaxation times of peptide-micelle complexes from

physical interactions between atoms using MD simulations.

Besides the force field parameters, the number of SDS molecules per micelle has to be set

manually in molecular dynamics simulations, because simulations of spontaneous aggregation

8

https://doi.org/10.26434/chemrxiv-2023-684br ORCID: https://orcid.org/0000-0002-8728-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-684br
https://orcid.org/0000-0002-8728-1006
https://creativecommons.org/licenses/by/4.0/


CH3
OO

S
O O- α γ ω 

a)

b)

c) d)

Figure 2: Spin relaxation times of SDS micelles in water at 307 K. a) Snapshots from
MD simulations showing the gel-like phase for Amber simulations and liquid-like phase for
CHARMM36 simulations. b) Deuterium T1 and T2 spin relaxation data from experiments25
and MD simulations for isotopically labelled α, γ and ω segments. c) Chemical structure of
SDS with the assignment of labelled segments. d) Effective correlation times, τeff , of each
C-H bond in SDS molecules from MD simulations.

9

https://doi.org/10.26434/chemrxiv-2023-684br ORCID: https://orcid.org/0000-0002-8728-1006 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-684br
https://orcid.org/0000-0002-8728-1006
https://creativecommons.org/licenses/by/4.0/


in large systems are not feasible at atomistic resolution. For preliminary screening, we

simulated each peptide in a micelle with the sizes of 40, 45 and 50 SDS molecules for about

300 ns. In this quick scan, systems with 50 SDS molecules reproduced the experimental

spin relaxation data quite well for all the peptides except GWALP. Due to the substantial

computational cost, we performed a more systematic study on the micelle size dependence

only for hMff(TA) which indicated the strongest size dependence in the initial screening. For

this, we simulated hMff(TA) in micelles with 40, 45, 50, and 60 SDS molecules. Each system

was simulated for at least 3µs and repeated 3 times from different initial configurations.

The results in Fig 3 a) show systematic but weak dependence of T1 on micelle sizes, while T2

and hetNOE spin relaxation times from differently sized micelles are mostly within the error

bars. Based on these results, we ran three independent simulations of each peptide except

GWALP with 50 SDS molecules for at least 3µs each. Spin relaxation times from these

simulations were close to experimental values with the exception of eElaB(TA) for which T1

was slightly overestimated and T2 slightly underestimated (Fig. 3). Therefore, eElaB(TA)

simulations were repeated also in micelles with 40 SDS molecules, which indeed gave T1 and

T2 values significantly closer to experiments, see Figure 3 d).

To understand the origin of large T1 and small T2 values in GWALP experiments, we

screened the dependence on micelle size up to 80 SDS molecules per micelle for this peptide.

Furthermore, we investigated whether dimerization could explain distinct spin relaxation

times for GWALP by simulating two peptides in micelles with different numbers of SDS

molecules. Results in Fig. 3 show that we can reproduce the experimental T1 spin relaxation

data either with one GWALP peptide in a micelle with 80 SDS molecules or with two GWALP

peptides in a micelle with 70 SDS molecules. For systems with two GWALP peptides in an

SDS micelle, we observe two different scenarios: peptides either strongly interact with each

other, creating a dimer that rotates in the micelle as one entity, or the two peptides continue

to rotate independently, see Figs. S1 a) and b) in the supplementary information. We

observe slight differences between these two scenarios in terms of T1 spin relaxation times.
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d)

a) b)

c)

Figure 3: Effect of micelle size and dimerization on spin relaxation times. a) Spin relaxation
times of hMff(TA) peptide as a function of SDS micelle size. The dashed line shows the
average over 3 replicas simulated with 1 peptide per micelle. The shaded region is the
standard error of the mean calculated from the 3 simulations. b) Spin relaxation times of
GWALP peptide as a monomer or dimer as a function of the SDS micelle size. c) Spin
relaxation times of yFis1(TA) peptide in a micelle with 50 SDS molecules as a monomer or
dimer. For the dimer, a solid line shows the average over the 2 peptides in a micelle in one
simulation. For the monomer, the dashed line is the average taken over 3 replicas. Shaded
regions are the standard errors of the mean. d) Spin relaxation times of eElaB(TA) peptide
in a micelle with 50 SDS molecules as a monomer or dimer, and in a micelle with 40 SDS
molecules as a monomer.
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While two independently rotating GWALP peptides in a micelle with 70 SDS molecules

reproduce the experimental results slightly better, peptides rotating in a correlated manner

would probably reproduce the experimental data equally well after a slight decrease in the

number of SDS molecules. To also check the effect of dimerization on spin relaxation times

in other peptides, we run simulations with two eElaB(TA) or yFis1(TA) molecules in one

micelle. Differences between systems having one or two peptides in a micelle were smaller for

eElaB(TA) and yFis1(TA) than for GWALP (Figs. 3 b)-d)), and interactions between two

peptides were observed neither for yFis1(TA) nor eElaB(TA), see Figure S1. In conclusion,

our results suggest that distinct spin relaxation times for GWALP systems in experiments

can be explained by their presence in larger aggregates, yet we cannot distinguish with the

current data whether there are one or two peptides in each micelle. However, GWALP

dimers seem slightly more probable than for other peptides as they sometimes dimerize

spontaneously and dimers remain stable in simulations.

Spin relaxation times and representative snapshots from the systems that predict values

closest to experiments are shown in Figs. 4 a) and b), respectively. These simulations re-

produce the main experimentally observed differences in spin relaxation times between the

peptides, particularly the increase of T1 values in the order of eElaB(TA) . eYqjD(TA) .

Magainin 2 < hMff(TA) . yFis1(TA) < GWALP. Notably, after selecting the force field

parameters and the number of molecules in the simulation system, no further fitting is made

to reproduce the experimental data. Therefore, the selected simulations predict experimen-

tal spin relaxation times directly from physical interactions between atoms with relatively

good accuracy, which justifies their further usage in interpreting the dynamic landscape of

peptides in micellar environments performed in the next sections.

Dynamic landscape of peptide-micelle complexes

To provide detailed interpretations of dynamic landscapes of peptide-micelle complexes, we

describe the relevance of different timescales for the protein rotation by determining how
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a) b)

Figure 4: Spin relaxation times from the best simulations compared with experiments. a)
Spin relaxation times from the best simulations and experiments. Experimental values are
in the middle of the shown rectangles and the edges represent the experimental error. The
lines represent an average over 3 simulation replicas and the shaded region shows the error
of the mean. b) Representative snapshots of the studied peptides in SDS micelles.

much each timescale contributes to the rotational relaxation of each bond. To this end,

we exploit the weights of different timescales resulting from the fit of exponential functions

(Eq. 2) to the rotational correlation functions of N-H or C-H bonds (Eq. 1) calculated from

simulations that give the best predictions for experimental spin relaxation times in Fig. 4.

Because the resulting combination of weights and timescales reproduce experimental spin

relaxation times, they can be considered as an interpretation of the dynamic landscape

detected by the experiments. Notably, this direct approach (i) is free from the assump-

tions about the number of relaxation processes or their timescales, (ii) does not require the

re-scaling of inaccurate simulation data that is required when using common methods to

interpret dynamics from spin relaxation data,13,14,32–34 and (iii) provides a higher resolution

and intuitively more comprehensible interpretation than the dynamical detector analysis.35

We have previously reported similar analyses for pure protein15,16 and lipid36 systems.

The full dynamic landscapes for proteins with all observed timescales and their weights

are shown in Fig. S2 in the supplementary information, while a more comprehensible pre-
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sentation where the weight of each timescale is represented by the point size is shown in

Fig. 5 for peptides and SDS molecules. For all the peptides, we observe dominant rotational

timescales between approximately 5 and 9 ns, with weights above approximately 0.5 for

most residues. These dominant timescales can be interpreted to correspond to the overall

rotational dynamics of peptides. The fastest dominant timescales around 5 ns are observed

for eElaB(TA) and eYqjD(TA), and Magainin 2, although the C-terminal half of Magainin

2 has even faster timescales around 4 ns. Dominant timescales of hMff(TA) and yFis1(TA)

are slightly slower with values just above 6 ns, while GWALP exhibits significantly slower

rotational dynamics than other peptides with dominant timescales of approximately 8 ns.

Because the differences in dominant timescales between peptides correlate with the differ-

ences in T1 times, we conclude that the experimentally observed differences in T1 values arise

from differences in overall rotational dynamics between peptides.

Similar analysis of dynamic landscapes of SDS molecules in Fig. 5 b reveals substantially

different behaviour than for peptides: Dynamics is dominated by timescales below 100 ps,

and nanosecond timescale motions related to overall rotation of peptides are not observed

for detergents. This suggests that the motions of peptides and SDS are not concerted,

but peptides rotate independently from detergent molecules in a viscous media formed by

the micelle. We further investigated the coupling between micelle and peptide dynamics

by comparing the peptide dynamics observed in MD simulations to the prediction from

the Stokes-Einstein equation, assuming that the peptide-micelle complex rotates as a rigid

body with a fixed radius in an environment having the viscosity of water. The Stokes-

Einstein equation predicts significantly faster peptide dynamics and stronger dependence on

the micelle radius than is observed in simulations, as shown in Fig 6. For example, in the

case of the hMff system in 50 SDS molecules, the gyromagnetic radius calculated from the

simulations is 1.6 nm. However, to obtain the rotational timescales observed in simulations

from the Stokes-Einstein equation, the radius of the micelle would have to be 3.0 nm, which is

almost twice as large as the value from the simulations. On the other hand, the viscosity value
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a)

b)

Figure 5: Dynamic landscape of a) peptides and b) SDS molecules from the simulations in
the best agreement with experiments in Fig. 4. The point sizes represent the weight of each
timescale in the rotational relaxation process.

in Stokes-Einstein equation should be 7.5mPa s to obtain the same dynamics as observed

in simulations, which is approximately ten times larger than the viscosity of water at 310K

(approximately 0.69mPa s).

In conclusion, our results indicate a dynamic conception of peptide-micelle complexes

where the rotation of peptides is dominated by nanosecond timescale dynamics related to

their overall motion that can be experimentally detected by T1 values. Because peptides

rotate independently from detergents in a viscous media formed by the micelle, the rotation

of the peptide-micelle complex cannot be described by the Stokes-Einstein equation that

assumes that peptides and detergents rotate together as a spherical rigid body.

Correlations between spin relaxation times and biophysical proper-

ties of peptide-micelle complex

Spin relaxation times measured here are sensitive to the rotational dynamics of peptide

backbone N-H bonds, yet these dynamics depend indirectly also on conformations sampled

by the peptides. Therefore, spin relaxation times are potential proxies also for conformational
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Figure 6: Rotational dynamics of peptides as a function of micelle size (radius of gyration)
from Stokes-Einstein equation (green line), and from MD simulations of hMff(TA) as a
monomer and GWALP as a dimer in micelles with different numbers of SDS molecules.

ensembles of peptides which is the case for example for partially disordered proteins.15 To

investigate if spin relaxation times could be useful to characterize peptide conformations

also in the micellar environment, we analyzed correlations between peptide helicity and spin

relaxation times in Fig. 7.

In simulations of individual systems, such as yFis1(TA) peptide in a micelle with 50

SDS molecules shown in Figure 7 a), helical regions have high hetNOE values and lower T2

values than non-helical regions, while the changes in T1 values are less clear. To investigate

the generality of such correlations, we plotted the spin relaxation times as a function of

the peptide helicity from all simulations listed in Tables S2 and S3 into Figure 7 b). This

analysis reveals that helicity correlates with T2 and hetNOE values with Pearson correlation

coefficients of -0.57 and 0.79, respectively, while the correlation with T1 values is weaker with

a Pearson correlation coefficient of -0.15. However, spin relaxation times depend also upon

other properties besides helicity that vary between systems, such as micelle size. Therefore,

we also calculated Pearson correlation coefficients between helicity and spin relaxation times

separately for each individual simulation in Fig. 7 c). In all individual simulations, correlation

coefficients between helicity and hetNOE values are above 0.5, with p-values below 0.05. In

the case of T2 values, all the systems have correlation coefficients with helicity below -0.45

with p-values below 0.05 except for three systems (two replicas of hMff(TA) with 45 SDS

molecules and a GWALP monomer with 50 SDS molecules) for which significant correlation

was not found (correlation coefficients around -0.25 with p-values around 0.2). In the case
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of T1 values, negative correlation with helicity with correlation coefficients below -0.5 and

p-values below 0.05 are common, yet significant correlation is not found in many systems

and some systems have also significant positive correlation.

In conclusion, our results suggest that the residues with large hetNOE and small T2

values have a higher tendency to form helices with respect to other residues within the same

peptide. Similar correlations are observed also across different peptides, yet they are weaker

because also other factors, such as micelle size, play a role. On the other hand, correlations

of T1 values with the helical tendency is less straightforward.

Conclusions

We show that MD simulations based on physical models can predict experimental 15N spin

peptide backbone relaxation times in detergent systems without any further fitting. Our MD

simulations with the correct number of molecules and realistic force field parameters capture

experimental spin relaxation times for peptides with different sequences within experimen-

tal error bars for almost all labelled residues in the tested systems. Therefore, our results

suggest that MD simulations can be used as a highly powerful tool to interpret experimental

spin relaxation time data from lipid-protein aggregates with high spatiotemporal resolution.

Our direct combination of MD simulation models and NMR data avoids indirect compar-

isons between two different models, i.e., a model used to interpret spin relaxation data vs.

MD simulation model, that is done in many currently used methods.38 On the other hand,

our approach is free from assumptions about the number and timescales of rotation modes

present in the system, as well as from arbitrary scaling of simulation results that are required

to interpret spin relaxation time data and reproduce experimental results when deploying

other methods.14,32–34,38 These advances enable the interpretation of spin relaxation times

for systems that are beyond the scope of current approaches due to the large amounts of

data required for parameter fitting, such as complex protein aggregates containing lipids or
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Figure 7: Correlations between helicity and spin relaxation times of peptides. a) Three
most abundant secondary structures detected by DSSP37 analysis and spin relaxation times
from a simulation of yFis1(TA) in a micelle with 50 SDS molecules. b) Scatter plot and
Pearson correlation coefficients between helicity and spin relaxation times from individual
residues in all simulations listed in tables S2 and S3. The local environment helicity on
the x-axis is the average over the given residue and the left and the right neighbouring
residue if these exist. The colour of a point then encodes for the helicity of the given residue
without neighbour averaging. c) Pearson correlation coefficients and their p-values between
the residual local environment helicity and spin relaxation times calculated separately for
individual simulations. d) Average helicities over three replicas with representative snapshots
from MD simulations.
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detergents.

To demonstrate the practical advances of our approach, we determined the dynamic

landscape of peptide-detergent aggregates for the first time. Our findings support a view of

peptide dynamics within a detergent matrix in which peptides and detergent molecules do

not rotate together as a rigid body in solvent. Rather, peptides rotate in a viscous medium

composed of detergent micelle. Based on our interpretation of peptide backbone 15N spin

relaxation times, the rotation of analyzed peptides in detergent aggregates was dominated by

timescales between approximately 4-8 ns which we interpret to arise from the overall rotation

of peptides. We explain the substantially slower overall rotation observed for transmembrane

GWALP peptide, with the timescale of∼8 ns, by its preference for larger detergent aggregates

than peripheral Magainin 2 or mitochondria tail anchor peptides having overall rotational

timescales of ∼4-6 ns. This result supports previous studies suggesting that mitochondria tail

anchor peptides are more similar to peripheral peptides than transmembrane peptides.19,39–41

On the other hand, the rotational dynamics of SDS molecules forming the detergents is

dominated by timescales faster than 100 ps while ns timescales dominating in embedded

peptides are absent.

Furthermore, we used our approach to understand indirect relations between peptide

backbone 15N spin relaxation times and conformational ensembles. We found significant

correlations of helical propensities of peptide residues with large hetNOE and low T2 values,

particularly when compared with the other residues within the same peptide. On the other

hand, T1 values mainly correlated with the overall rotation of peptides. These relations enable

rapid interpretations of peptide conformations in detergent aggregates from spin relaxation

times even when MD simulation data is not available.

The advantages of our direct combination of NMR experiments and MD simulations

are demonstrated here for peptides in SDS detergent micelles, yet the presented approach

can be applied to any biomolecular aggregate for which experimental spin relaxation times

are accessible and realistic MD simulations can be performed. This includes many systems
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that are difficult to characterize by currently available experimental methods, such as fully

or partially disordered proteins,15 bicelles or nanodiscs,5,6,11 membraneless organelles,23 and

lipid droplets.21,22 In addition to the interpretation of experimental NMR data, the presented

approach will be useful also for the evaluation and improvement of MD simulation quality. In

the era of data science and machine learning, such benchmark data is becoming increasingly

important and endeavours to define such data for proteins and lipids are ongoing.42–44

Materials and Methods

NMR experiments

Peptides with the selected alanine, phenylalanine, glycine, or leucine having 15N labels in

the backbone (positions shown in Fig. 1) were purchased from Peptide Protein Research

Ltd (United Kingdom) in a powder form with the purity above 95%. Approximately 0.3mg

of each peptide was weighed in an eppendorf vial using an analytical balance (Precisa,

XT 120A). The powder was then dissolved with deuterated sodium dodecyl sulfate (SDS,

Sigma Aldrich) to obtain a solution with 0.3mM peptide in 30mM SDS and 20mM sodium-

phosphate buffer. 5% D2O was added for the lock in the NMR spectrometer. The solvent

was prepared dissolving approximately 4.2mg of SDS with 337.5µl of milli-Q water, 90µl

sodium-phosphate buffer (pH 7.4, 0.1M) and 22.5µl of D2O. The samples were transferred

into 5mm NMR tubes and all the NMR measurements were performed at 310K using on

Bruker Avance IIIHD 850 MHz spectrometer equipped with a cryogenically cooled probe

head at the Institute of Biotechnology, University of Helsinki.

To assign the peaks from labelled amino acids, we measured [1H,15N]-HSQC (2048 points

in the F3 domain, 128 points in the F2 domain, 16 scans, and recycling delay of 1.1 s between

scans), [1H,1H]-TOCSY (1536 points in F3 domain, 512 points in F2 domain, 16 scans, mixing

time of 60ms), and [1H,1H]-NOESY spectra (1536 points in F3 domain, 512 points in F2

domain, 16 scans, mixing time of 280ms). A recycling delay of 2.1 s was used between scans
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and the 1H carrier frequency was positioned at 4.703 ppm for both TOSCY and NOESY

measurements. The spectral widths were 14.0 ppm (1H, F1) and 10.2 ppm (1H, F2) for

[1H,1H]-TOCSY and 10.2 ppm (1H, F1) and 10.2 ppm (1H, F2) [1H,1H]-NOESY. For HSQC

spectra, the 1H carrier frequency was positioned at 4.703 ppm, the 15N carrier frequency

at 119 ppm, and the spectral widths were 12.0 ppm (1H, F2) and 33.0 ppm (15N, F1). All

these experiments were processed and analyzed using CcpNmr Analysis software (version

3.0.3).45 For the assignment, the complete spin systems of the amino acid residues were

first identified using their proton-proton J-couplings ([1H,1H]-TOCSY) combined with their

proton-nitrogen J-coupling ([15N,1H]-HSQC). These spin systems were then located within

the peptide sequence by means of through-space, sequential NOE connectivities between

adjacent residues.46

Spin relaxation times were acquired with standard pulse sequences12,47,48 using 1664

points in the F3 domain, 300 points in the F2 domain, and 8 scans. Delay times were set

to 20, 50, 100, 200, 300, 500, 700, and 900 ms for T1, and 34, 51, 68, 85, 119, 153, 187, 220,

and 254 ms for T2. The recycling delay of 3.5 s between scans was used for both T1 and T2,

and 5 s for heteronuclear NOE. The spectral widths were the same as in HSQC experiments.

The T1 and T2 relaxation data were processed and analyzed using Bruker Dynamic Center

software (version 2.7.2). For the analysis of hetNOE spin relaxation times, peak heights

were determined by TopSpin software from spectra with and without NOE. To determine

the errors for hetNOEs, signal to noise ratio was first determined from the region without

any peaks, and the limiting extremes of the noise values were then added to or subtracted

from the peaks to estimate the largest effect of noise to the ratio between the peaks in the

two spectra.
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MD simulations

Simulated systems

SDS micelles in water without peptides were simulated using Amber parameters from Amber-

Tools24 and CHARMM3626 parameters from CHARMM-GUI.49,50 Following the electronic

continuum correction (ECC) to implicitly include electronic polarization, atom charges were

scaled by factor 0.75 in Amber simulations51 and compatible ion parameters were used.52

Amber simulations were ran with TIP4P27 and CHARMM36 simulations with TIP3P27

(CHARMM version), OPC,28 or TIP4P27 water models. We first simulated SDS micelles

at 298K and 307K with the standard saving frequency of 10 ps for coordinates for 362-

1809 ns. Because SDS molecules had a substantial amount of rotational dynamics with

faster timescales than the saving frequency, we initiated simulations with the saving fre-

quency of 0.01 ps using conformations at different timepoints from the first simulations as

the starting configurations. Simulated systems of SDS micelles without peptides and their

starting configurations are listed in Table S1.

To construct the initial configurations of peptides in micelles, peptide PDB files were first

generated using ProBuilder server https://www.ddl.unimi.it/vegaol/probuilder.htm,

and then embedded to SDS micelles using CHARMM GUI.49,50 Systems were hydrated

with approximately 24 000-40 000 water molecules and the total charge was neutralized with

sodium ions. To test the potential dependence of the results on simulation box size, we ran

hMff(TA) simulations with different box sizes, see Fig. S4 in the supplementary information.

We observed mild dependence on simulation box size with systems less than approximately

39 000 water molecules. This should be taken into account when planning the simulations,

or concluding optimal micelle sizes from simulations with less amount of water than this.

Simulation replicas were initiated from different time points of the first simulation for each

system with a new random set of starting velocities. Further details are given in Table S2.

Starting configurations for simulations with two GWALP, yFis1(TA), or eElaB(TA) pep-
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tides within the same micelle were prepared by (i) removing water molecules from an equi-

librated snapshot of a monomeric system, (ii) adding a second peptide to close proximity

of the micelle, (iii) solvating the system again. For the GWALP peptide, such simulations

were run with 40, 45, 50, and 60 SDS molecules. In the simulation with 50 SDS molecules,

two GWALP peptides started to interact with each other and created a dimer where the two

peptides rotated together in the micelle, see Figure S1 d). Therefore, with the optimal mi-

celle size of 70 SDS, we ran replicas starting from conformations with (together) and without

(separate) mutual interactions of two GWALP peptides. In all of the "together" simulations,

peptides stayed in the form of the dimer for the whole length of the simulations. One of the

systems with a "separate" starting configuration indicated potential dimer formation at the

end of the simulation, while peptides retained independent motions otherwise. Simulations

with systems having two peptides in the same micelle are summarized in Table S3.

The convergence of systems was monitored by calculating the number of SDS molecules

in each micelle as described below, for example of equilibrated system see Fig. S3. We also

ensured by visual inspection that all peptides were incorporated into micelles. Only the

converged parts of trajectories were used for the analyses.

Simulation details

All simulations were performed using Gromacs versions 2021.1, 2021.5, and 2022.2.53,54 Pa-

rameters from AmberTools were converted to Gromacs format using ACEPYPE.55 Standard

CHARMM-GUI equilibration procedure was used for all systems with the initial structure

generated using CHARMM-GUI.49,50 Replicas and other simulations initiated from already

equilibrated configurations were started using randomly generated velocities without any

further equilibration. Energy for Amber simulations with initial structures from CHARMM

simulations were minimized before starting the simulation whenever required.

For CHARMM36 simulations, timestep of 2 fs was used, the temperature was coupled

using a NosÃľâĂŞHoover thermostat,56,57 the pressure was set to 1 bar with isotropic Par-
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rinelloâĂŞRahman barostat,58 particle mesh Ewald (PME) was used for electrostatic inter-

actions at distances longer than 1.2 nm,59,60 and Lennard-Jones interactions were cut off at

1.2 nm.

For simulations with Amber parameter, the timestep of 2 fs was used, the temperature

was coupled using v-rescale thermostat, the pressure was set to 1 bar using isotropic Parrinel-

loâĂŞRahman barostat,58 PME was used to calculate electrostatic interactions at distances

longer than 1.0 nm,59,60 and Lennard-Jones interactions were cut off at 1.0 nm.

Calculation of spin relaxation times from MD simulations and interpretation of

underlying timescales

To couple spin relaxation times and molecular dynamics, we used Redfield equations61 which

connect T1, T2 and hetNOE spin relaxation times to the Fourier transformation (Spectral

density) of the second-order rotational correlation functions of N-H, C-H or C-D bonds.16,25

We calculated the rotational correlation functions, C(t), for peptide backbone N-H bonds

and C-H bonds in SDS molecules using the equation implemented in the gromacs package

(gmx rotacf)62

C(t) =

〈
3

2
cos2 θt′+t −

1

2

〉
t′
, (1)

where θt′+t is the angle between bond vector at the times t and t′. To calculate the spectral

density, we fitted a sum of exponential functions with the large number, N , of pre-fixed

timescales, τi, to the correlation functions from simulations using the Python scipy opti-

mize.nnls solver:

Cfit(t) =
N∑
i=1

αie
−t/τi . (2)

For peptide N-H bonds, N=100 and τi values were equidistantly spaced in logarithmic scale

between 1 ps and 100 ns. For SDS C-H bonds with a substantial amount of dynamics below
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1 ps timescales, N=500 and τi values were equidistantly spaced in logarithmic scale between

1 fs and 1µs. As a result, the fitting gives the weight, αi, for each timescale that represents

the relevance of the given timescale for the rotational relaxation of the bond. Spectral

density, J(ω), is then obtained from the analytical Fourier transformation

J(ω) = 2

∫ ∞
0

Cfit(t)cos(ωt)dt = 2
N∑
i=1

αi
τi

1 + ω2τ 2
i

(3)

and substituted into Redfield equations.16,61 The spin relaxation time calculation is im-

plemented in the python code available at https://github.com/nencini/NMR_FF_tools/

tree/master/relaxation_times.

Correlation functions up to lag times (t in Eq. 1) of one-hundredth of the total simulation

length were used when analysing the N-H peptide bonds, which should provide good statistics

when analysing single molecule simulations.63 For C-H bonds in SDS molecules, averaging

over a larger number of molecules enables usage of lag times up to one-twentieth of the total

simulation length. Small but non-zero weights (below ∼1% in all systems except micelle

simulations with Amber in gel-like phase with the weights below ∼10%) for the slowest

possible timescale (100 ns for peptide N-H bonds, 1µs for SDS C-H bonds) were observed for

some correlation functions. These artificial timescales, arising from incomplete equilibration

of correlation functions to plateau to zero, were not taken into account in the analyses,

although ignoring them did not have major effects on the spin relaxation times.

To comprise dynamic landscapes of peptides and detergent molecules in micelles, we

describe the relevance of different timescales for rotational relaxation processes in different

parts of molecules using the weights (αi) for timescales (τi) resulting from the fit of Eq. 2 to

the correlation functions calculated from simulations using Eq. 1. A similar analysis in our

previous studies15,16 gave dominant weights for the timescales reconciling with the overall

rotation timescales for folded proteins, while most of the timescales had zero weights. For

disordered protein regions, we observed more dispersed timescales without any dominant
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motion.15 These results indicate that the approach can detect relevant dynamic processes

without any further assumptions. Here we interpret dynamic landscapes of peptides and

detergents in micelles using the weights of each timescale that result from the fitting to cor-

relation functions from simulations that give the best agreement with experiments. To better

emphasize the essential timescale ranges, we merged weights of five consecutive timescales

for the plots of dynamic landscapes.

Analysis of other properties

Effective correlation times used to characterize the average dynamical timescales of SDS

molecules in micelles were calculated as an integral over rotational correlation functions

τeff =

∫ ∞
0

C(t)dt ≈
N∑
i=1

αiτi. (4)

To analyze the orientation of two peptides in the same micelle with respect to each other, we

calculated the angle between the principal axes of the two peptides using the MDAnalysis

package.64,65 Rotational dynamics predicted by MD simulations were compared with the

prediction for a spherical rigid body in a water media from the Stokes-Einstein equation

Dr =
1

6πτ
=

kBT

8πηr3
, (5)

where kB is a Boltzmann constant, T is the temperature, η is the viscosity of water, r is

the radius, Dr is the rotational diffusion coefficient, and τ is the timescale of the rotational

dynamics of a rigid spherical object.66 The radii of micelles were approximated using the

radius of gyration. Because not all SDS molecules remain within a micelle throughout the

simulation in some systems, we first determined which molecules are part of the micelle in

simulations separately for each time step. This was done by selecting SDS molecules with

any atom closer to any peptide atom than a cut-off distance of 1.4-1.8 nm. The cut-off

distance was set system specifically to give the most reasonable results as exemplified for
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eYqjD(TA) simulation with 50 SDS molecules in figure S3 where cut-off value 1.8 nm was

used. The radii of gyrations were then calculated using these molecules together with the

peptide(s) first separately for each configuration and then averaged over time. The number

of SDS molecules in a micelle as a function of time was also used to monitor the equilibration

of simulations as exemplified in figure S3. The average number of SDS molecules within a

micelle in each simulation is reported in Tables S2 and S3. These analyses were performed

with Python scripts utilizing the MDAnalysis package.64,65

Propensities of secondary structures in peptides were calculated using DSSP plug-in

in Gromacs.37,62 The propensity of individual secondary structural motives was averaged

over the time of trajectories. The local environment helicity propensity of a residue was

correlated with the T1, T2 and hetNOE value of the residue for all peptides and simulations.

Local environment helicity is defined as an average over a given residue and its left and right

neighbour if these exist (the end residues have either only the left neighbour or only the right

neighbour). The correlation was characterized by the Pearson correlation coefficient and the

corresponding p-value using the Pearson function from the Python scipy.stats package.
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