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ABSTRACT 

Gut-targeted drugs provide a new drug modality besides that of oral, systemic 

molecules, that could tap from the growing knowledge of gut metabolites of bacterial 

or host origin and their involvement in biological processes and health through their 

interaction with gut targets (bacterial or host, too). Understanding the properties of gut 

metabolites can provide hints for the design of gut-targeted drugs. In the present work 

we analyze a large set of gut metabolites, both shared with serum or present only in gut, 

and compare them with oral systemic drugs. We find patterns specific for these two 

subsets of metabolites that could be used to design drugs targeting the gut. In addition, 

we develop and openly share a Super Learner model to predict gut permanence, in order 

to aid in the design of molecules with appropriate profiles to remain in the gut, resulting 

in molecules with putatively reduced secondary effects and distribution issues.  
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INTRODUCTION 

New knowledge emerging from omics technologies is expanding our understanding of 

the molecular mechanisms and pathways involved in biological processes, that result in 

new paradigms for drug discovery requiring new modalities. One of the most important 

of these paradigms stems from the growing knowledge in the last decade about the 

crucial role of microbiota on human health. The human body hosts trillions of microbial 

cells, mainly localized in the gut, that carry a genome (the microbiome) about 100 times 

the size of the human genome.1–3 The evidence for the involvement of the gut 

microbiome in multiple pathologies keeps steadily increasing, in areas like obesity, type 

2 diabetes, cardiometabolic diseases, non-alcoholic liver disease, diverticulitis, 

inflammatory bowel disease, colon cancer, etc.4–11 From this research, a recurrent 

picture that emerges is that of host-microbiome interactions mechanistically mediated 

through metabolites in the gut that bind bacterial or human targets.9,10,12–17 In turn, the 

metabolites can be bacterial, endogenous, or xenobiotics (food, drugs, environmental), 

or modified versions of any of these produced by putative bacterial and/or host 

enzymes. 

Thus, given all this knowledge, the modulation of all these gut metabolite-target 

interactions appears as an interesting new drug modality that would tap from the new 

targets, pathways, and chemotypes appearing from the human microbiome research, 

as has been suggested.18–20 This would create new opportunities for treating diseases 

like the ones mentioned above, plus others like intestinal infectious diseases. Moreover, 

the ability to modulate the bacterial sub-populations in the gut through new chemicals 
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would pave the way for preventive interventions (instead of curative ones) through 

novel nutraceutics.  

This new modality could in addition benefit from much reduced distribution and safety 

issues, as long as the compound is designed to remain in the gut: the administration 

route would be oral, but with a much more efficient access to the target (it would only 

require a minimal metabolic stability), and a reduced probability of off-target effects as 

the compound would not be distributed through the whole body.  

Given all this background, in the present work we aim at characterizing the specific 

features of gut metabolites in order to support the rational design of gut-targeted drugs 

and nutraceutics. These metabolites are the compounds which interactions the new 

drugs would have to modulate, and the characterization done here done here would 

provide patterns and features that these drugs would require. This is akin to the 

observation that systemic drugs have a higher resemblance to systemic metabolites 

than random compounds, which can be rationalized in terms of structural similarity 

allowing them to compete with endogenous metabolites for their interaction with their 

targets, or with their transporters.21–25  

We analyzed a wide range of structural and physicochemical properties of gut 

metabolites in comparison with systemic metabolites and drugs, and found significant 

differences that strongly depended on the chemical class. In addition, in order to predict 

gut permanence from molecular structures, we tested the use of reversed versions of 

oral permeability rules like Ro526 or Veber’s,27 finding a low predictive power. Thus, we 

developed a Super Learner28 model for reliable in silico prediction of gut permanence 
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from molecular structure. This model is available in https://github.com/bbu-

imdea/gutmetabos 
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METHODS 

Data analysis was performed with Python 3.9, and using RDKit 2022.03.2 as 

cheminformatic toolkit. Metabolite structures and information were retrieved from the 

Human Metabolome Database (HMDB);29 both gut and serum metabolites were 

retrieved. Only compounds with “detected and quantified” or “detected but not 

quantified” status were used. Drug structures and information were retrieved from the 

DrugBank30, in particular, the subset of small molecules in approved, not-withdrawn, 

and non-illicit status, ensuring that they acted systemically and were administered 

orally. Molecular structures were processed and normalized with the ChEMBL Structure 

Pipeline31 as described previously.32–34 A few compounds shared between the DrugBank 

set and the metabolites sets were assigned to DrugBank. As a result of this retrieval and 

processing, the compound sets comprised 5008, 1619, and 1419 molecules, respectively 

for gut-only metabolites, gut/serum metabolites, and DrugBank sets. A few analyses also 

considered the set of serum-only metabolites (16243 molecules).  

Ionization class assignment (acid, basic, neutral, and zwitterion) was based on HMDB’ 

strongest-acidic and strongest-basic pKa’s. Each molecule was assumed to have at least 

one acidic group if it had a strongest-acidic pKa < 7.4, and at least one basic group if it 

had a strongest-basic pKa > 7.4. Acid molecules were those with one or more acidic 

groups and no basic groups; basic molecules were those with one or more basic group 

and no acid group; neutral molecules were those with neither acidic nor basic groups, 

and the rest of the molecules were zwitterions.  

Post-hoc analysis of contingency tables was based on adjusted residuals, and cell-

specific p-values were calculated with an exact Fisher method recently described.35 
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Differences between continuously distributed properties in groups of molecules were 

tested through a non-parametric Kruskal-Wallis test, followed (when comparing more 

than 2 classes) by Conover post hoc analysis. The direction of the effect was estimated 

through the Common-Language Effect Size (CLES)36 statistic, which estimates the 

probability than a random observation from one first group would be larger than a 

random observation from a second group; values > 0.5 correspond to distributions of 

the first group shifted to larger values, while values < 0.5 correspond to distributions 

shifted to lower values.  

The Super Learner28 model was implemented in Python using several machine learning 

base models available in the scikit-learn library. Super Learner is an example of model 

stacking where a set of base models are used in k-fold cross-validation to generate a 

matrix of n x m out-of-fold predictions, n being the number of instances and m the 

number of base models. Then, an additional “meta-model” is fitted to this matrix of data 

to predict the n actual outcomes. In parallel, the base models are re-fitted to the 

complete training data. Once presented with a new external data set, the fitted base 

models are used to generate the new predictor variables, which are then submitted to 

the meta-model for prediction. The Super Learner is guaranteed to asymptotically 

perform better or at least the same as the best base model.28 In our case, we used the 

following 9 base machine learning models: Logistic Regression, Decision Tree, Support 

Vector Machine, Gaussian Naïve Bayes, k-Near Neighbors, AdaBoost, Bagging, Random 

Forest classifier, and Extra Trees. For the final model, logistic regression was fitted. The 

data was randomly split into 8 folds, keeping the same proportion of chemical classes in 

each fold, and the first fold was used for external test. The remaining 7 folds were used 

in the 7-fold cross-validation. As predictor variables, the following physicochemical 
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descriptors were used: tpsa, logp, rb, hbd, hba, mw, nring, naring, qed, and fsp3. In 

addition, one-hot-encoded ionization class and chemical class were included. This gave 

a total of 31 predictor variables, that were standardized before use. An alternative deep 

learning model that used graph embeddings concatenated to the 31 predictor variables 

provided worse performance, so the Super Learner was finally preferred. The model and 

dataset are provided for public use in https://github.com/bbu-imdea/gutmetabos. 
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RESULTS 

In what follows, we describe an extensive analysis of gut metabolites, in terms of 

chemical classes, similarity, scaffolds, ionic classes, and a variety of physicochemical 

properties. For that  we will use the set of detected (quantified or not) gut compounds 

from the Human Metabolome Database (HMDB),29 corresponding to the feces 

biospecimen, further processed as described before32–34 (see also Materials and 

Methods), which comprises a total of 6627 molecules. In this set of molecules, there is 

a subset of molecules detected only in the gut (“Gut” set in what follows, 5008 

molecules), plus another one of molecules detected in both the gut and serum 

(“Gut/Serum” set, 1619 molecules).  

For comparison purposes, two additional compound sets are included in the analysis: 

the set of detected (quantified or not) serum metabolites from the HMDB as systemic 

metabolites (16243 molecules only detected in serum, “Serum” set), and a set of orally 

distributed, systemically acting drug molecules obtained from the subset of small 

molecules in approved, not withdrawn, and non-illicit status of the DrugBank 

(“DrugBank” set, of 1419 molecules); both additional sets were processed as before.32–

34 The idea is to identify physicochemical and structural patterns that are specific for gut 

metabolites, as compared to serum ones or oral, systemic drugs. We analyzed the 

distributions of chemical classes, Tanimoto similarity to “DrugBank” set, Bemis-

Murcko37,38 scaffolds, ionic classes, and physicochemical properties.  

Finally, we analyze the problem of gut permanence of molecules, and find specific 

patterns for molecules remaining in the gut that could be used in the design of drugs 

acting only locally in the intestine; in addition, a Super Learner model is provided to 

predict this property from molecular structure.  
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Chemical classes of gut metabolites 

Figure 1 displays the distribution gut metabolites, for both gut-only molecules (“Gut” 

class), and those shared with serum (“Gut/Serum”), in 18 chemical classes based on the 

ClassyFire chemical taxonomy.39 For comparison purposes, the distributions for serum-

only metabolites (“Serum”) and drug molecules (“DrugBank”) are also provided.  

 

 

Figure 1. Distribution of chemical classes (based on the ClassyFire taxonomy) for gut-

only metabolites (Gut), metabolites shared by gut and serum (Gut/Serum), serum-

only metabolites (Serum), and DrugBank molecules (DrugBank).  

These classes are quite diverse from the structural point of view, and include some that 

are not present in the DrugBank set, like “Glycerolipids”, “Fatty acyls”,  

“Glycerophospholipids”, “Hydrocarbons”, “Sphingolipids”, “Saccharolipids” (only in 

“Serum”), and “Endocannabinoids”.  
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A general inspection allows to see that the distribution of chemical classes in the “Gut” 

set (5008 molecules) is largely dominated by the over-represented “Glycerolipids” class, 

that comprises ~77% of the molecules. On the other hand, the “Gut/Serum” set (1619 

compounds) is dominated by “Glycerophospholipids” (~50% of the molecules). The 

distributions of these two compound sets thus differ considerably from that of 

“DrugBank” and “Serum” ones, which in turn display remarkable similarities: both have 

as most populated chemical classes, in the same decreasing order, “Organoheterocyclic 

compounds” > “Benzenoids” > and “Organic acids and derivatives”; in addition, the six 

largest chemical classes are the same in both sets, including (besides the three just 

mentioned), “Organic oxygen compounds”, “Other”, and “Steroids and steroid 

derivatives”.  

Both glycerolipids and glycerophospholipids, together with fatty acyls and sphingolipids, 

are known for being unable to cross the gut wall. They are hydrolyzed by lipases in the 

gut lumen in order to be absorbed by the intestine epithelium, where they are again 

resynthesized and released to the circulation in the form of chylomicrons. Thus, the 

presence of these compounds in the “Gut/Serum” set (and “Serum” as well) can be 

ascribed to de novo generation of these compounds and not to permeation through the 

gut wall. Therefore, in order to better understand the distribution of gut metabolites in 

chemical classes, we assume that the “Gut/Serum” set would basically correspond to 

molecules able to cross the gut wall, while “Gut” metabolites would not be able; then, 

the compounds in the “Glycerolipids”, “Glycerophospholipids”, “Fatty acyls”, and 

“Sphingolipids” chemical classes within the former set would be reassigned to the later 

one, reducing the updated “Gut/Serum” down to 516 molecules, and enlarging the 

“Gut” one to 6111. In turn, we divide the “Gut” set into two subsets: the first one, “Gut-
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FL”, would include all types of “fatty lipid” (FL) chemical classes, namely “Glycerolipids”, 

“Glycerophospholipids”, “Fatty acyls”, and “Sphingolipids” (5447 compounds); the 

second one, “Gut-noFL”, would include the rest of the molecules (664 molecules). This 

later division would avoid all further analyses of the “Gut” set be obscured by the highly 

abundant FL molecules, which are quite different from the structural and 

physicochemical points of view, and show in comparison a much reduced diversity.  

Figure 2 displays the distribution of compounds across the different chemical classes for 

these updated gut sets and “DrugBank”, together with the results of statistical tests of 

the adjusted residuals, in order to better understand over-represented and under-

represented chemical classes in the different compound sets.  

 

Figure 2.  Compound set vs chemical class distributions and enrichments. Adjusted 

residuals were calculated for the contingency table of compound sets vs chemical 

classes (cell numbers), followed by a Fisher exact post hoc analysis. Red cells 

correspond to statistically significant (p-value < 0.05 after Bonferroni correction) 
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under-representation of the compound set vs chemical class, while blue cells 

correspond to statistically significant over-representation. White cells correspond to 

not-significant residuals.  

We can see here a large similarity of the “Gut/Serum” set distribution with that of the 

“DrugBank” set, having similar over-represented chemical classes: e.g. “Organic acids 

and derivatives”, “Organoheterocyclic compounds”, “Organic oxygen compounds”, 

“Benzenoids”, etc. At the same time, the “Gut-noFL” set shows less similarity, with only 

“Organic acids and derivatives”, “Organic oxygen compounds”, and “Prenol lipids” over-

represented as in “DrugBank”, together with “Organosulfur compounds” and 

“Hydrocarbons”, that are absent or not over-represented in the later set. This would be 

expected if both the “DrugBank” and “Gut/Serum” sets have chemotypes prone to be 

readily absorbed by the gut, whether by passive diffusion or through transporters; on 

the contrary, these chemotypes would be absent in both the “Gut-noFL” and “Gut-FL” 

sets, that would remain in the gut lumen. As a matter of fact, it is possible to see a higher 

similarity of the ”Gut/Serum” set with the “DrugBank” set in terms of the distributions 

of maximum Tanimoto similarity to the “DrugBank” set, as can be seen in Figure 3.  
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Figure 3. Distributions of maximum Tanimoto similarity of gut compound sets to the 

“DrugBank” set. For each compound in the gut sets, the maximum Tanimoto similarity 

observed to any compound in the “DrugBank” set is shown.  

This was confirmed by a statistically significant Kruskal-Wallis test followed by Conover 

post-hoc analysis, where the pairwise comparisons between “Gut/Serum” and both 

“Gut-noFL” and “Gut-FL” were statistically significant (p-val < 0.001); in addition, the 

common-language effect (CLE) statistic was of 0.66 and 0.67 when comparing the 

“Gut/Serum” distribution vs the “Gut-noFL” and “Gut-FL”, respectively, indicating a 

shifted distribution towards higher values.   

In the gut sets, the chemical class “Organic acids and derivatives”  is basically composed 

of oligopeptides, short carboxylic acids and derivatives, amino acids and derivatives; 

“Organic oxygen compounds” comprise sugars, oligosaccharides, alcohols, and ketones; 

“Organoheterocyclic compounds” include indoles, pyrroles, lactones, etc., and their 

derivatives; “Benzenoids” comprise derivatives from benzene, benzoic acid, and phenol 

mainly; “Prenol lipids” include terpenoids, quinones, hydroquinones, etc.; “Steroids and 

steroid derivatives” collect bile acid derivatives, cholesterol derivatives, etc.; “organic 

nitrogen compounds” amines and nitriles; and “phenylpropanoids and polyketides” 

present mainly flavonoids.  

The different distribution of chemical classes observed in the gut sets, especially in the 

“Gut-noFL” and “Gut-FL” ones, to the ones typical of oral drugs, does not preclude their 

use in drug discovery; instead, they would point towards alternative chemotypes to use 

for oral drugs when targeted to act locally in the gut in lieu of the typical systemic action. 
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For example, inhibitors like orlistat (see below), an anti-obesity drug with minimal 

absorption in the intestine, act in the gut lumen through the inhibition of triglyceride 

hydrolysis and therefore their intestinal absorption. This drug and other lipase inhibitors 

act through irreversible competitive inhibition of the lipase catalytic center,40 as they 

are substrate analogs of glycerolipids. In a similar vein is acarbose, a substrate analog of 

the highly abundant oligosaccharides in the gut, that is used to inhibit α-glucosidases 

and α-amylases in the intestinal lumen, and has negligible bioavailability (see below). 

These are examples of alternative chemotypes not typical in systemic drugs (analogs of 

glycerolipids and oligosaccharides, respectively) that have been used to design 

successful gut-targeted drugs.  

Scaffold analysis of gut metabolites 

The structures present in the different compound sets were analyzed in terms of Bemis-

Murcko (BM) scaffolds,37,38 which comprise a summarized representation of a molecule 

as a set of rings connected by linkers. Table 1 shows the main feature statistics of 

scaffold distributions in the different compound sets, and Figure 4 displays the scaffold 

distributions and structure for the top-15 scaffolds in each compound set. The analysis 

did not include the “Gut-FL” set as their number of molecules with scaffold was 

negligible (only 46 out of 5447 molecules).  

Compound 
Set 

# mols # scaffs 
scaff 
per 
mol 

% mols 
with 
scaff 

rings per scaff        
(avg (SD)) 

arings per 
scaff 

(avg(SD)) 

hetrings per 
scaff 
(avg(SD)) 

DrugBank 1419 874 0.62 92.9 3.54(1.54) 0.59(0.32) 0.50(0.30) 

Gut/Serum 516 95 0.18 65.12 2.42(1.24) 0.41(0.43) 0.62(0.43) 

Gut-noFL 664 122 0.18 52.41 2.4(1.41) 0.32(0.41) 0.55(0.45) 
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Table 1. Statistics of features of BM scaffolds across different compound sets. For each 

compound set, the number of compounds (# mols), number of unique scaffolds (# scaff), 

number of unique scaffolds by molecule (scaff per mol), percentage of molecules with 

scaffold (% mols with scaff), average and standard deviation (SD) of the number of rings 

per unique scaffold (ring per scaff (avg (SD))), average and SD of the fraction of aromatic 

rings per unique scaffold (arings per scaff (avg (SD))), and average and SD of the fraction 

of heterocyclic rings per unique scaffold (hetrings per scaff (avg(SD))), are shown. 

From this analysis, it can be observed that “DrugBank” is the set with the largest diversity 

of scaffolds, both in absolute numbers (874 unique scaffolds) and normalized by the set 

size (0.62 unique scaffold per molecule). Most of these molecules (92.9%) contain 

scaffolds. In turn, both “Gut/Serum” and “Gut-noFL” have less number of scaffolds (95 

and 122, respectively), and of scaffolds per molecule (0.18 in both cases); in addition, 

the percentage of molecules with scaffold is lower, of 65.12% and 52.41% respectively. 

Another interesting observation is the larger size of “DrugBank” scaffolds, with an 

average of 3.54 rings per scaffold, while the two gut sets show averages of about 2.4 

rings per scaffold. Moreover, the aromatic content of the scaffolds decrease in the order 

“DrugBank” (average fraction of aromatic rings of 0.59 in the scaffolds) > “Gut/Serum” 

(0.41) > “Gut-noFL” (0.32), while the fraction of heterocyclic rings per scaffold is largest 

in “Gut/Serum” (0.62), but lower in “Gut-noFL” (0.55) and “DrugBank” (0.5).  

All these features can be detected in Figure 4, where the DrugBank scaffolds show larger 

sizes and more aromatic character, but intermediate heterocyclic content; in turn, the 

“Gut/Serum” set display smaller rings, with lower aromatic character but higher 
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heterocyclic content. Finally, the “Gut-noFL” set shows smaller rings too, with even 

lower aromatic character but and lower heterocyclic content as well.  

 

Figure 4. Distributions Bemis-Murcko (BM) scaffols across the different compound 

sets; top-15 scaffolds for each set are shown. (a) DrugBank; (b) Gut/Serum; (c) Gut-

noFL. Gut-FL was not included as it contains a negligible number of scaffolds, in spite 

of its large size. The bars with no scaffolds correspond to the molecules with no rings, 

and therefore no BM scaffolds.  

Ionic class analysis  

Another interesting aspect to analyze is the comparative ionization behavior of these 

molecules. Figure 5 shows the distribution of ionization classes (acid, basic, neutral, and 

https://doi.org/10.26434/chemrxiv-2023-2ndlx-v2 ORCID: https://orcid.org/0000-0002-8249-4547 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-2ndlx-v2
https://orcid.org/0000-0002-8249-4547
https://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

zwitterion) in the four compound sets: “DrugBank”, “Gut/Serum”, “Gut-noFL”, and “Gut-

FL”.  

 

 

Figure 5. Distribution of ionization states across the four compound sets: DrugBank, 

and gut metabolites sets.  

It is possible to see differences in the ionic class distributions when comparing the 

“DrugBank” set with the gut sets, and among the three gut sets. In the “DrugBank” set 

the ionic classes decrease in the order Neutral > Basic > Acid > Zwitterion. However, in 

the “Gut/Serum” set the acid class is the most abundant one, followed by the neutral 

class and the zwitterionic class, and the share of basic compounds is the lowest. In the 

case of the “Gut-noFL” set, there are almost no basic compounds, the neutral class is 

the most abundant, and in between there are (in decreasing order) zwitterions > acids. 

The “Gut-FL” set is mainly neutral (~77%), with a small share of acids (19%), a very small 

proportion of zwitterions, and no basic molecules at all. 
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Analyzing the data in terms of chemical classes provide further insights about the 

observed ionic class distributions. Figure 6 displays the compound set X ionization class 

vs chemical class contingency table, together with the statistical tests of the adjusted 

residuals to identify significant over-represented or under-represented combinations.  

  

 

Figure 6. Ionization state enrichment across compound  set X ionization classes vs 

chemical classes. For all the combinations of compound set vs chemical class 

contingency table, adjusted residuals were calculated, followed by a Fisher exact post 

hoc analysis. Red cells correspond to significant (p-value < 0.05 after Bonferroni 
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adjustment) under-representation, while blue cells correspond to over-

representation. White cells correspond to non-significance.  

We see, as expected, a significant enrichment of “Glycerolipids” vs “Gut-FL_Neutral”, 

that is responsible for the large share of neutral compounds in “Gut-FL”. Over-

represented cells are also “Glycerophospholipids” vs “Gut-FL_Acid” (major contribution 

to the acids in “Gut-FL”), “Glycerophospholipids” vs “Gut-FL_Zwitterion” (mainly 

responsible for the zwitterions), and both “Fatty Acyls” and “Sphingolipids” vs “Gut-

FL_Acid” (additional contributions to the acid group).  

In the case of the “Gut/Serum” set, the enrichment in acids can be explained by an over-

representation of acidic “Benzenoids”, “Organic acids and derivatives”, “Steroids and 

steroid derivatives”, and “Phenylpropanoids and polyketides” (instead, in “DrugBank”, 

these chemical classes are predominantly neutral or, in the case of “Organic acids and 

derivatives”, zwitterions are over-represented). The neutral ionic class is mainly the 

result of neutral over-represented compounds in chemical classes “Organoheterocyclic 

compounds”, “Organic oxygen compounds”, “Steroids and steroid derivatives”, 

“Nucleosides, nucleotides, and analogs”, and “Prenol lipids”; this is largely shared with 

“DrugBank”, with the exception of “Organic oxygen compounds” and “Nucleosides, 

nucleotides, and analogs”. Basic compounds result basically from “Organic nitrogen 

compounds”, and zwitterions from “Organic acids and derivatives”.  

Finally, in “Gut-noFL” there are contrasts with both the “Gut/Serum” and “DrugBank” 

sets. For instance, the neutral compounds, the most populated in this set, are in this 

case due to an over-representation of “Organic oxygen compounds” and “Prenol lipids” 

too, but also of “Benzenoids”, “Organosulfur compounds”, “Hydrocarbons” and 
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“Endocannabinoids”, while neutral “Organoheterocyclic compounds”, “Steroids and 

steroid derivatives”, and “Nucleosides, nucleotides, and analogs” are not over-

represented. The acid molecules correspond to “Organic acids and derivatives” and 

“Steroids and steroid derivatives”, as in “Gut/Serum”, but here acid “Organic oxygen 

compounds” are over-represented, in addition to the neutral ones. The basic and 

zwitterionic compounds share sources with “Gut/Serum”: basic molecules are mainly 

due to over-represented “Organic nitrogen compounds”, and the zwitterions to a very 

large fraction of  over-represented “Organic acids and derivatives”, which in this case 

more than duplicates that of “Gut/Serum”. 

Other physicochemical properties 

To get a more complete idea of additional physicochemical patterns present in gut 

metabolites, we analyzed a large set of frequently used physicochemical properties, 

namely: topological polar surface area (tpsa), logarithm of octanol/water partition 

coefficient (logp), number of rotatable bonds (rb), number of hydrogen bond donors 

(hbd), number of hydrogen bond acceptors (hba), molecular weight (mw), number of 

rings (nring), number of aromatic rings (naring), quantitative estimation of drug-

likeness41 (qed), and fraction of sp3-hybridized carbons (fsp3). Figure 7 displays the 

distributions of these properties across the different compound sets.  
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Figure 7. Distribution of multiple physicochemical properties for the different 

compound sets: DrugBank (DB); Gut/Serum (G/S); Gut-noFL (G(noFL)); and Gut-FL 

(G(FL)). Outliers are not displayed for clarity purposes.  

As expected, the “Gut-FL” set displays the largest logP, rb, mw, and fsp3 of all the sets, 

all statistically significant and with CLEs > 0.8 in most of the cases, due to the presence 

of long aliphatic chains in these molecules. This is accompanied by (almost) no rings, and 

hbd, and qed basically equaling zero. It is also the group with the largest hba values, with 

statistically significant CLEs > 0.7 against all of them.  

In comparison, the DrugBank set is characterized by lower logp, rb and molecular 

weight. In addition, it displays the highest qed of all sets (CLEs > 0.6 to the others), and 

the lowest fsp3 (CLEs < 0.4). All these, not surprisingly, are typical features of molecules 

compliant with Lipinski rule-of-five, that describe oral, systemic-acting drugs.42,43  

In between there are the two other gut sets, “Gut/Serum” and “Gut-noFL”. Compared 

to “DrugBank”, the most striking features are statistically significant lower logP, hba, 
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mw, qed, nring, naring, and higher hbd, and fsp3. In the case of rb, “Gut-noFL” shows no 

significant differences with “DrugBank”, while “Gut/Serum” distribution is significantly 

shifted to lower values. On the other hand, tpsa in “Gut/Serum” shows no significant 

differences with “DrugBank”, while “Gut-noFL” displays a distribution shifted towards 

lower values.  

Molecular features associated to in vivo gut permanence 

The development of gut-targeted drugs opens the possibility of developing drugs that 

remains in the gut lumen. In this way, the apparition of side effects and distribution 

issues could be much reduced, as the body and tissues exposure of the molecule would 

be constrained to the gut. In addition, lower doses would be required as there would be 

a much lower dilution of the compound in the gut compartment.  

There are a few cases of drugs that act locally in the gut. A collection of them is shown 

in Table 2.  

NAME CHEMICAL CLASS INDICATION MODE OF 
ACTION 

Structure 

Acarbose Organic oxygen 
compounds 

Type 2 
diabetes 

α-glucosidase 
and α-amilase 
inhibitor 

 

Nystatin Organic oxygen 
compounds 

Antifugal Channel-
forming 
ionophore 

 

Ezetimibe Organoheterocyclic 
compounds 

Hypercholest
erolemia 

NPC1L1 
cholesterol 
transporter 
inhibitor  

Orlistat Organic acids and 
derivatives 

Obesity Lipase inhibitor 

 
  

Paromomycin Organic oxygen 
compounds 

Antibiotic, 
antiamoebic 

Ribosome 
inhibitor 

 

https://doi.org/10.26434/chemrxiv-2023-2ndlx-v2 ORCID: https://orcid.org/0000-0002-8249-4547 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-2ndlx-v2
https://orcid.org/0000-0002-8249-4547
https://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

NAME CHEMICAL CLASS INDICATION MODE OF 
ACTION 

Structure 

Kanamycin 
 

Organic oxygen 
compound 

Antibiotic Ribosome 
inhibitor 

 

Neomycin Organic oxygen 
compounds 

Antibiotic Ribosome 
inhibition 

 

Vancomycin Organic acids and 
derivatives 

Antibiotic Peptidoglycan 
synthesis 
inhibitor 
(transpeptidase) 

 

Mebendazole Benzenoids Antihelmintic Inhibition of 
tubulin 
polymerization 

 

Albendazole Organoheterocyclic 
compounds 

Antihelmintic Inhibition of 
tubulin 
polymerization  

Pyrantel Organoheterocyclic 
compounds 

Antihelmintic Cholinesterase 
inhibition 

 

Niclosamide Benzenoids Antihelmintic Uncoupling of 
oxydative 
phosphorilation 

  
Table 2. Set of gut-acting drugs. Data derived from DrugBank. Drugs were selected if 

they had a low or null bioavailability, together with a well-defined human or bacterial 

target (protein or ribonucleoprotein) located in the intestine. Drugs acting through 

non-specific physicochemical mechanisms (osmotic laxatives, surfactants, ion 

exchange resins, etc.), or with high bioavailability, were discarded.  

These molecules have different chemotypes and targets, but all of them have low or null 

systemic bioavailability. On one hand, we have several aminoglycoside antibiotics that 

act through inhibition of the bacterial ribosome (paromomycin, kanamycin, and 

neomycin). Other antibiotic targeting a bacterial target is vancomycin, a glycopeptide, 
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but in this case the bacterial transpeptidase used for the synthesis of peptidoglycan is 

inhibited. Several molecules, all of them with heterocyclic structures, have 

anthelminthic activity, like mebendazole and albendazole, which target tubulin 

polymerization in the worm; pyrantel, which targets its cholinesterase; and niclosamide, 

which uncouples the parasite oxidative phosphorylation. One aminoglycoside 

compound, nystatin, is an antifungal agent that acts as a pore-forming ionophore. 

Finally, there are three drugs acting upon human targets: acarbose, an oligosaccharide 

that inhibits pancreatic amylases and gut α-glucosidases; ezetimibe, an heterocyclic 

molecule, that inhibits gut NPC1L1 cholesterol transporter; and orlistat, a triglyceride 

analog that inhibits gastric and pancreatic lipases. These are used in the treatment of 

type-2 diabetes, hypercholesterolemia, and obesity, respectively.   

From these examples we see that the concept of drugs remaining in the gut lumen has 

already some exemplars that pave the way for more systematic and extensive drug 

design efforts, including those coming from novel metabolite-target interactions 

relevant to disease identified from gut microbiome research.  

Intestinal absorption vs permanence is a complex problem, in that some molecules can 

penetrate the gut epithelium by passive transcellular or paracellular diffusion, while 

others can through mediated or active transport, and in most cases a mixture of 

different proportions of these occurs. The molecular features required for diffusion are 

different from those of mediated or active transport, and therefore a convoluted 

function of these features would be required to model the whole process for a particular 

molecule.  
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This problem can be seen as a reverse-label version of intestinal absorption, which has 

been thoroughly modeled through the use of in vitro assay data, human or animal 

pharmacokinetic data, permeation data,27,44–46 or by analysis of oral, systemic drugs.43,47 

However, the present dataset can be used to analyze this issue by means of a different 

endpoint, namely in vivo gut permanence, which is a more appropriate label for our aim, 

that includes the result of passive diffusion plus mediated or active transport. In 

addition, it is based on gut metabolites, and therefore provides a better starting point 

for the design of compounds resembling in vivo relevant molecules. As above stated, it 

is well known that molecules in the “Gut-FL” set are not able to cross the gut wall.48–50 

In addition, the ”Gut-noFL” set can be assumed to comprise molecules not able to cross 

the gut wall, as none of them has been detected in the serum compartment. On the 

other hand, by definition our “DrugBank” set is made of molecules well absorbed, since 

all of them are orally administered and act systemically. Finally, the “Gut/Serum” can be 

approximated to a set of molecules able to cross the gut epithelium too, as they are 

detected in both gut and serum by definition. Thus, by merging on one side the 

“DrugBank” set with the “Gut/Serum” set, we would obtain a “Gut-Traverser” set, while 

by merging the “Gut-noFL” and “Gut-FL” sets, we would achieve a “Gut Lingerer” set. 

These two sets will form the basis for our analysis.  

Figure 8 compares the distribution of ionization species for the gut permanence sets. An 

increase of the share in acidic molecules in the “Gut Traverser”, when compared to 

“DrugBank” is observed, and now the decreasing order of ionization classes is Neutral > 

Acid > Basic > Zwitterion. On the other hand, the “Gut Lingerers” show an overwhelming 

majority of neutral molecules (74%), followed by acid ones (18.9%), and zwitterionic 

ones (67%); basic molecules are almost absent (0.1%).   
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Figure 8. Distribution of ionization states across the two gut permanence sets: Gut 

Traverser vs Gut Lingerer.  

In Figure 9 a further statistical analysis is displayed of the chemical classes vs the gut 

permanence sets (in this case, “Gut Traverser”, “Gut Lingerer noFL”, and “Gut Lingerer 

FL”; the latter two corresponding to “Gut-noFL” and “Gut-FL”, respectively, and kept 

separated here to facilitate the analysis of patterns).  
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Figure 9. Distribution and statistical enrichment analysis for gut permeation set X 

ionization class vs chemical class. For all the combinations in the contingency table, 

adjusted residuals were calculated, followed by a Fisher exact post hoc analysis. Red 

cells correspond to significant (p-value < 0.05 after Bonferroni adjustment) under-

representation, while blue cells correspond to over-representation. White cells 

correspond to non-significance.  

As regarding the “Gut Lingerer” subset, combinations over-represented correspond to 

neutral “Benzenoids”, “Organic oxygen compounds”, “Prenol lipids”, “Organosulfur 

compounds”, “Hydrocarbons”, and “Endocannabinoids”; acid “Organic acids and 

derivatives”, “Organic oxygen compounds”, “Steroids and steroid derivatives”, and 

“Nucleosides, nucleotides and derivatives”;  zwitterionic “Organic acids and 

derivatives”; and basic “Organic nitrogen compounds”. In the case of the “Gut Lingerer 
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FL” we see the same over-represented classes as “Gut-FL”. Finally, some new over-

represented combinations are observed when comparing “Gut Traverser” with 

“DrugBank”: acidic “Organic acids and derivatives”, “Phenylpropanoids and 

polyketides”, and “Nucleosides, nucleotides, and analogues”; neutral “Organic oxygen 

compounds”, “Organic nitrogen compounds”, and “Nucleosides, nucleotides, and 

analogues”. In addition, zwitterionic “Benzenoids” stop being over-represented.  

Focusing on the set of physicochemical properties above described the profiles for the 

“Gut-FL” subset have been clarified above: very high logp, rb, hba, mw, and fsp3; and 

very low hbd, qed, nring and naring. However, for the “Gut-noFL” part of the “Gut 

Lingerers” it is interesting to further analyze the presence of differential patterns for the 

remaining chemical classes. Figure 10 shows the statistical analysis of the distributions 

of the different physicochemical properties in the multiple chemical classes when 

comparing the “Gut Lingerers” with the “Gut Traversers”. 
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Figure 10. Statistical analysis for the association between different physicochemical 

properties with gut permeation at the different chemical classes. For all the 

physicochemical property vs chemical class combination, a non-parametric Mann-

Whitney test comparing the distributions in the “Gut Ligerer noFL” set vs the “Gut 

Traverser” set was performed. Red cells correspond to significant (p-value < 0.05 after 

Benjamini-Hochberg false discovery rate correction) with a CLES < 0.5, while blue cells 

correspond to significant test with CLES > 0.5. White cells correspond to non-

significance. Only shown chemical classes present in both gut permeation sets.  
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A variety of statistically significant trends is observed for the different chemical classes. 

For example, in the case of “Organoheterocyclic compounds”, all the properties but fsp3 

are lower in the “Gut Lingerers noFL”. The same pattern is observed for “Benzenoids”, 

although in this case no significant differences are observed for logp; and “Prenol lipids”, 

but here qed is significantly higher. “Organic oxygen compounds” have significantly 

lower tpsa, hbd, hba, mw, nring, and naring, but significantly higher qed. However, 

“Organic acids and derivatives” show significantly higher tpsa, rb, and hbd in the “Gut 

Lingerers noFL” set, while nring is significantly lower. The “Other” chemical class displays 

a mixed pattern, with higher logp, rb, and fsp3, but lower hbd, qed, nring, and naring. 

“Steroids and steroid derivatives” have significantly higher fsp3, “Nucleosides, 

nucleotides and derivatives” significantly higher tpsa, while “Organosulfur compounds” 

have significantly lower tpsa, nring, and nraing.  

In terms of properties, we can see that nring, naring, and hba are significantly lower or 

non-significant for all the chemical classes, while fsp3 is significantly higher in two 

classes but not significant in the others. The rest of properties show a mixture of trends 

(higher, lower, non-significant) depending on the chemical classes.  

Prediction of in vivo gut permanence from molecular structure 

A machine learning model of Super Learner28 type was developed to predict gut 

permanence using this dataset. The dataset was randomly divided into eight stratified 

folds with equal distribution of chemical classes, and 7 of them were used to perform 

cross-validation to generate the out-of-fold predictions from 9 base models (Logistic 

Regression, Decision Tree, Support Vector Machine, Gaussian Naïve Bayes, k-Near 

Neighbors, AdaBoost, Bagging, Random Forest classifier, and Extra Trees). These out-of-
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fold predictions were used to train a final “meta-model” (Logistic Regression here) to 

predict gut permanence in the aggregated 7 folds. Finally, the complete fitted Super 

Learner model was applied to the 8th fold to evaluate its external predictive power. For 

a full description of the model, see Materials and Methods. Table 3 collects the 

predictive statistics of the model: accuracy, precision, recall, F1, area under the receiver 

operating characteristic curve (AUROC), and area under the precision-recall curve 

(AUPRC).  

pred acc prec rec F1 AUROC AUPRC 

ext test 0.96 0.98 0.967 0.974 0.991 0.997 

ext test FL 1 1 1 1 NA 1 

ext test noFL 0.877 0.797 0.702 0.747 0.921 0.833 

ext test stand 0.938 0.899 0.851 0.874 NA 0.916 

 

Table 3. Prediction statistics of model for gut permanence prediction. The statistics 

accuracy (acc),  precision (prec), recall (rec), and F1 (F1), area under the receiving 

operator characteristic curve (AUROC), and area under the precision-recall curve 

(AUPRC) are provided for different predictions:, complete external test (ext test); external 

test for only the “FL” molecules (ext test (FL)); external test for the rest of the fold (ext 

test (noFL)); and standardized external test (averaging over the two above, ext test 

stand). Since the “FL” subset comprises only “Gut Lingerer” molecules, it was not possible 

to obtain an AUROC for it.  

Since a large fraction of the compounds belong to the “Gut Lingerer FL” subset, with 

clearly separated features from the rest of the molecules and large structural 

homogeneity, all of them in the “positive” class, the prediction of this abundant “easy” 

subset could obscure the predictive power of the model on the rest of the molecules. 
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Thus, in Table 3, in addition to the prediction statistics for the whole external set, the 

ones for the “FL” and “noFL” subsets are provided, and “standardized” statistics are 

finally shown as the average of the two subsets, in order to adjust for subset imbalance.  

We see that the fit in the case of the “FL” subset is perfect (all applicable statistics equal 

to one), and remarkably good for the no-FL molecules, with a F1 value of 0.747, an 

AUROC of 0.921, and an AUPRC of 0.833. The whole model standardized accuracy, 

precision, recall, and F1 are 0.938, 0.899, 0.851, and 0.874, respectively, with an AUPRC 

of 0.916.  

For comparison purposes, the same statistics are shown in Table 4 for both the 

Lipinski’s43 and Veber’s27 rules, reversed to predict gut permanence.  

pred Acc prec rec F1 AUROC AUPRC 

lip ext test 0.862 0.966 0.849 0.903 NA NA 

lip ext test FL 0.946 1 0.946 0.972 NA NA 

lip ext test noFL 0.685 0.179 0.06 0.089 NA NA 

lip ext test stand 0.816 0.59 0.503 0.53 NA NA 

veb ext test 0.877 0.946 0.889 0.917 NA NA 

veb ext test FL 0.977 1 0.977 0.988 NA NA 

veb ext test noFL 0.667 0.278 0.179 0.217 NA NA 

veb ext test stand 0.822 0.639 0.578 0.602 NA NA 

 

Table 4. Prediction statistics of reversed Lipinski’s and Veber’s models to predict gut 

permanence. The same predictive statistics as in Table 3 are shown. No AUROC and 

AUPRC are provided, as these models do not provide a probability but just a class 

prediction.  

The reversed (gut permanence is positive class) Lipinski’s rule is: 

Two or more of these: 
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• Mw > 500 

• logP > 5  

• hba > 10 

• hbd > 5 

In turn, the reversed Veber’s rule is:  

• TPSA > 140, or 

• rb >  10 

In this case, while the predictions for the “FL” subset are close to perfect (although with 

a small proportion of false negatives), the prediction for the “noFL” subset is quite poor, 

with F1 values of 0.089 and 0.217, respectively for Lipinski’s and Veber’s. This indicates 

that the use of simple rule-based predictions for this problem is not appropriate, 

especially for the “noFL” part of the gut metabolites. While the “FL” compounds 

complain perfectly with Lipinski’s large mw, logp, and hba for a compound remaining in 

the gut, and Veber’s very large rb, the “noFL” subset contains small, low-logP and low-

hba compounds that remain in the gut, in contradiction with Linpinski’s rule, as well as 

moderate tpsa and rb similar to systemic oral drugs, in opposition to Veber’s. Thus, the 

model here presented appears a more appropriate tool to predict in vivo gut 

permanence when designing drugs targeted to the gut. We openly share the Python 

code and dataset in https://github.com/bbu-imdea/gutmetabos. 
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DISCUSSION 

Gut-targeted drugs and nutraceutics appear as a new drug modality that could exploit 

the new knowledge coming from the human gut microbiome research. The metabolite-

target interactions identified through this research could be modulated by these new 

drugs and nutraceutics,51 in order to provide novel curative and preventive approaches 

for health, in multiple areas such as inflammatory bowel disease,9 cancer,6,52 metabolic 

diseases,5,53 cardiovascular diseases,11 etc. In addition, the option of directing the design 

of these compounds to remain in the gut could reduce the distribution, safety, and 

toxicology problems typical of systemic drugs, the main causes of the high attrition rate 

in this modality.54    

There are some few examples of drugs acting in the gut and with minimal or null 

bioavailability. Some of them act over host targets, in the metabolic diseases area; 

others over bacterial targets, being used as antibiotics; one antifungal, acting as a 

membrane-pore forming ionophore; and the rest of the molecules, acting on parasitic 

worm targets, as anthelmintic compounds. In terms of gut microbiome research, so far 

no commercial drug has been developed based on it, but the use of this research in drug 

discovery has already been pointed out,18–20,51 and in fact some initial successful proof-

of-concepts have allowed to find inhibitors of the pregnane X receptor based on gut 

metabolite mimics.55 This has been followed by the development of the aryl 

hydrocarbon receptor, based on metabolite mimics too.56,57 In addition, in other work a 

combined bioinformatic/cheminformatic analysis based on data from the Human 

Microbiome Project has allowed to suggest several target-metabolite interactions that 

could be useful in drug discovery for inflammatory bowel disease.58    
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Given all this background, the current work provides useful analyses that will help in the 

rational design of gut-targeted drugs based on (host or microbial) gut metabolites. This 

work has identified two subsets of gut metabolites: those present only in the gut (“Gut” 

subset), and those also present in serum (“Gut/Serum” subset). In turn, the former can 

be split in two additional subsets, a very large one with “FL” type of molecules, that is, 

molecules in the “Glycerolipids”, “Glycerophospholipids”, “Sphingolipids”, and “Fatty 

acyls” chemical classes (“Gut-FL” subset), and the molecules with alternative chemical 

classes (“Gut-noFL”). From this analysis it has been possible to identify general 

physicochemical and structural patterns in the gut sets that differentiate them to the 

set of oral, systemic drugs; moreover, it has been possible to see statistically significant 

differences between the “Gut” and “Gut/Serum” subsets too. We describe these general 

patterns in what follow, splitting the “Gut” set into its two very different subsets, “Gut-

FL” and “Gut-noFL”.  

The “Gut-FL” subset of “Gut” is clearly different from drugs and “Gut/Serum” (and “Gut-

noFL”) compounds: they are big, lipophilic, and flexible molecules, essentially devoid of 

scaffolds and with high hba, with very high structural homogeneity, and mostly neutral 

with a reduced shared of acid molecules. They are, as expected by Lipinski’s and Veber’s 

rules, molecules unable to cross the gut wall as they are.  

As regarding shared properties between “Gut-noFL” and “Gut/Serum” that differentiate 

them from the “DrugBank” set, we can say that both gut metabolites subsets are 

characterized by larger proportions of “Organic acids and derivatives” and “Organic 

oxygen compounds”; less scaffolded (more linear) molecules; smaller and less aromatic 

scaffolds; almost no basic molecules, and with an increased proportion of zwitterions; 
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and with significantly reduced logp, mw, hba, qed, nring, and naring, and higher hbd and 

fsp3.  

In turn, the patterns that differentiate the “Gut/Serum” set from the “Gut-noFL” one 

are distribution of chemical classes and Tanimoto similarity closer to “DrugBank”; more 

aromatic and heterocyclic scaffolds; acid is the most frequent ionization class (neutral is 

in “Gut-noFL”); and with significantly lower rb, fps3, and higher hdb, hba, nring, naring. 

Some of these differential patterns are reflected at the level of chemical classes: acidic 

“Benzenoids” are significantly enriched in “Gut/Serum”, while neutral ones are in “Gut-

noFL”; acid and zwitterionic “Organic acids and derivatives” are enriched in “Gut-noFL”, 

while only zwitterions are in “Gut/Serum”; neutral “Steroids and steroid derivatives” are 

enriched in “Gut/Serum”, while in “Gut-noFL” the enriched ionization class is the acid 

one; etc.  

In addition to these patterns, we have developed a novel Super Learner model to predict 

gut permanence. Super Learners28 are a recent approach for stacking multiple Machine 

Learning models, that asymptotically improves or at least performs as well as the best 

base model without overfitting, since the predictive variables of the meta-model are 

out-of-fold predictions of the base models. The model for gut permanence here 

described clearly outperforms typical rule-based predictive approaches for oral 

absorption, like Lipinksi’s or Veber’s, mainly because of their inability to predict the 

“Gut-noFL” subset of “Gut Lingerers”. This new tool can aid in the development of drugs 

based on gut metabolites in order to predict gut permanence for new molecules. It can 

also be used in metabolome research, to predict the compartments where putative new 
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metabolites could be found. The model can be downloaded at https://github.com/bbu-

imdea/gutmetabos. 

We acknowledge some possible imperfections in our dataset, as the collection of gut 

metabolites is based on multiple samples that can be obtained with different depths and 

with different backgrounds, and it is possible that for example, some compound of low 

but not null bioavailability, that in principle would be with more probability in the gut 

set, has by chance been detected in both the gut and the serum set, or even only in the 

later. Alternatively, it is possible that some highly bioavailable compound has only been 

detected in the gut set. Moreover, in some cases detecting a compound in serum could 

be due to de novo synthesis in that compartment, and not to gut wall crossing. We think, 

however, that these chance compartment swaps or misassignments would correspond, 

if present, to a minimal proportion of compounds that otherwise would not change the 

qualitative and quantitative conclusions of this work, given the large number of 

compounds of the sets. 

The thorough analyses of patterns and predictive model for gut metabolites here 

described can illuminate the rational design of gut targeted drugs taping from the 

microbiome research. However, the actual generation of such a drug is a complicated 

process that must address additional issues: target engagement (especially for 

intracellular targets), solubility, chemical stability, etc. In the case of drugs remaining in 

the gut, in principle there would be reduced toxicity and distribution issues, but 

additional complications can appear. For example, a metabolite locally produced in the 

gut, if administered orally could potentially be absorbed in the upper digestive tract, or 

be degraded in the stomach, and this previously unknown fact could affect molecules 
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derived from it too, thus precluding oral administration. All in all, we expect that the 

current work will speed up the generation of the first successful examples of this exciting 

new drug modality.  
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