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Abstract 

 Computational catalyst design requires identification of a metal and ligand that together result in 

the desired reaction reactivity and/or selectivity. A major impediment to translating computational 

designs to experiment is evaluating ligands that are likely to be synthesized. Here we provide a solution to 

this impediment with our ReaLigands library that contains >30,000 monodentate, bidentate (didentate), 

tridentate, and larger ligands cultivated by dismantling experimentally reported crystal structures. 

Individual ligands from mononuclear crystal structures were identified using a modified depth-first search 

algorithm and charge was assigned using a machine learning model based on quantum-chemical 

calculated features. In the library ligands are sorted based on direct ligand-to-metal atomic connections 

and on denticity. Representative principal component analysis (PCA) and uniform manifold 

approximation and projection (UMAP) analyses were used to analyze several tridentate ligand categories, 

which revealed both the diversity of ligands and connections between ligand categories. We also 

demonstrated the utility of this library by implementing it with our building and optimization tools, which 

resulted in the very rapid generation of barriers for 750 bidentate ligands for Rh-hydride ethylene 

migratory insertion. 

 

Introduction 

 While far from routine, quantum-chemical calculations, typically density functional theory (DFT), 

are now being used to design (or redesign) molecular catalysts.1,2,3 Recently there has also been a surge in 

uniting DFT calculations with machine learning and related data science approaches for catalyst 

predictions.4,5,6,7 The key to successful computational catalyst design is identification of a specific ligand 

framework mounted on a transition metal that will result in the desired reaction reactivity and/or selectivity. 

Additionally, for successful theory-to-experiment handoff designs should consider ligand synthesis in the 

context of previously prepared ligands. Stated another way, computational designs with highly exotic or 

likely-to-be unstable ligands are unlikely to be synthesized. 

 With the recognition that homogeneous molecular catalyst design can be framed as a ligand design 

problem, several groups have established methods for ligand property (without the metal center) analysis. 

This viewpoint hinges on the assumption that analysis of ligand properties (or relative properties) will 

translate to reaction reactivity and selectivity when mounted on a metal center and combined with other 

ligands. Additionally, there is the assumption of property transference from one group of ligands to another. 

Harvey and Fey pioneered evaluating ligand properties.8,9,10,11,12,13,14 As a recent example, Fey has reported 

an extension of the ligand knowledge base for new descriptors of bidentate ligands and principal component 

analysis (PCA) provides information about ligand relationships.15,16 Fey also recently reported a database 

of ligand only DFT-calculated descriptors for designing dirhodium ligands.17 

 Alternative to analysis of ligand only properties, DFT calculations can be used to directly evaluate 

reactivity and selectivity of possible catalyst ligands, typically through optimization of transition-state 

structures and intermediates. This type of approach requires mechanistic details to identify key reactivity 

and selectivity controlling intermediates and transition states. An advantage of this approach is that the 

calculations can directly provide qualitative insight into reactivity and selectivity or in certain cases with 

careful modeling can provide quantitatively accurate predictions. Our group recently applied this approach 
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for the design of Cr phosphine imine ethylene tetramerization catalysts.18 However, major limitations of 

this catalyst design approach is the human time required to construct new ligands and the computer time 

required for DFT calculations. Another key limitation is the lack of ligand libraries that would be ideal to 

begin searching chemical space and that would directly translate to a plausible experimental system that 

can be straightforwardly synthesized.  

 There are now programs that automate building, optimizing, and analyzing DFT structures (ground 

state and transition states). For example, our Mason program automates building and optimizing transition 

states using a ligand library.19,20 The most notable general program to obtain transition states through 

automated functionalization of specific ligand sites is the AARON toolkit.21 Wheeler has very recently 

developed a powerful suite of tools for structure building, transition-state optimization, and job control, 

which is called QChASM.22 Pidko and Sinha’s ChemSpaX program can also perform ligand derivatization 

for organometallic complexes.23 There are also a few other programs that can also rapidly build transition-

metal complexes, most notably Kulik’s molSimplify.24,25,26 Other notable programs include Jensen’s 

DENOPTIM that provides the general design of compounds, including organometallic structures.27,28 While 

there are now programs that can automate catalyst building there remains a lack of extensive ligand 

libraries. Therefore, our goal was to develop a ligand library based on experimentally reported ligands that 

when used for catalyst design harmonize the handoff from computation to experiment. Additionally, an 

experimentally based ligand library would enable the comparison of hypothetical chemical space with 

currently reported synthetic chemical space. 

 We were inspired by Balcell’s tmQM database, and more recently the updated tmQMg database, 

that provides a set of >80,000 single transition metal complexes extracted from the Cambridge Structure 

Database (CSD).29,30 We realized that this database of structures contains most of the experimentally 

reported ligands mounted on a single transition metal, which if extracted and classified would provide an 

extremely useful starting point to computationally design new catalysts (Figure 1). While this manuscript 

was in preparation a similar idea was advanced by Corminboeuf who reported the program cell2mol that 

converts crystal structures to individual molecules.31 Here we report the development of a modified depth-

first search algorithm for ligand identification and a machine learning based model using simple quantum-

chemical calculation features for charge assignment. The ligands were sorted based on direct ligand-to-

metal atomic connections and denticity. This experimentally based library of >30,000 ligands is called 

ReaLigands. To demonstrate some of the ligand categories and information provided by the ReaLigands 

library we used dimension reduction techniques to analyze representative tridentate ligand categories. To 

demonstrate the utility of this library for catalyst screening, we used this library in conjunction with our 

automated building and optimization tools to generate 750 bidentate Rh-H ethylene migratory insertion 

transition states and barriers. 
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Figure 1. Diagram showing the workflow that created the ReaLigands ligand library. This involved first 

the development of an algorithm to dismantle experimentally reported mononuclear transition metal 

complexes. Each ligand was then classified according to ligand-to-metal atomic connections and 

denticity. Ligand charge assignment was performed using quantum-chemical calculations combined with 

a machine learning classification model. 

 

Results and Discussion 

 Because computational catalyst design hinges on identifying specific ligands to determine 

reactivity and selectivity it is surprising that there are only a few previously reported ligand library or 

databases, and they are often specific to a particular type of catalyst. For example, Kulik recently 

explored ligand additivity relationships in octahedral Fe mononuclear complexes32 and in doing this 

developed a ligand library from octahedral complexes in the CSD.33 After symmetry analysis this ligand 

library was used to generate ~17,000 octahedral complexes. Kulik has also presented ~5,000 ligands with 

corresponding charges.34,35,36 During the writing of this manuscript, Corminboeuf reported the program 

cell2mol that converts crystal structures to individual molecules.31 Similar to our work, this program has 

the capability of identifying and detaching ligands from a metal center. Cell2mol was able to successfully 

interpret about 75% of the CSD entries with a single metal. With a focus on analyzing ligands from only 

Cr, Mn, Fe, Co, Ni, Cu, Ru, and Re metal centers a ligand database of about 13,000 structures was 

reported. The ligands generated from cell2mol were not classified and we could not easily use them with 

our automated catalyst building program. 

 The most well-known large ligand database is the Kraken library that provides a massive amount 

(~300,000) of mostly hypothetical monodentate PIII structures.37,38,39,40 This ligand database provides both 

structures as well as machine learning calculated properties and was developed based on the philosophy 

of representing the discrete ligands as continuous variables. As an important general demonstration of the 

utility of ligand libraries, Kraken has been used to predict cross-coupling reactions.41 A somewhat related 

virtual ligand-assisted screening procedure using phosphines was recently developed by Matsuoka and 

Maeda.42 

 To begin we developed a program (called Polyjuice) that can identify all ligands coordinated to a 

single metal center of a mononuclear structure. Briefly, Polyjuice first reads the connectivity throughout a 

metal-ligand structure and each molecule is considered as a graph data structure with all atoms as vertices 

and bonds between atoms as edges. A modified depth-first search algorithm was then used to identify and 

extract each ligand. Our modification of the depth-first search algorithm added a condition to handle 

polydentate ligands because the traversal will return to the metal through a different connecting atom. 
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Importantly, Polyjuice was only effective with proper pre-processing of each structure from Balcell’s 

tmQM and tmQMG databases.29 This involved using Openbabel’s molecule class to generate atomic 

connectivities with a modification for several atoms, such as silicon. Duplicate structures were then 

filtered out using the Openbabel CLI. After extraction, Polyjuice categorized each ligand based on direct 

ligand-to-metal connecting atoms and denticity. 

  The assignment of ligand charges is nontrivial because each complex in the tmQM and tmQMG 

databases does not have an assigned metal center oxidation state. To assign a charge to each ligand, which 

is necessary for each ligand to be easily integrated with software that automates building metal-ligand 

structures and performing quantum-chemical calculations, we assumed ligands are closed shell and only 

range in charge from 3- to 1+. Based on these assumptions we then carried out GFN2-xTB43 single-point 

energy calculations for each ligand at each of these five charge states (3-, 2-, 1-, 0, and 1+). Based on 

these xTB calculations, for each charge state, we extracted the HOMO-LUMO gap, internal force, and 

SCF iteration number, which were used as features to build a machine learning model to assign ligand 

charges. These features were selected based on the hypothesis that the correct charge assignment will 

correlated with the largest HOMO-LUMO gap, small internal forces, and small number of SCF iterations. 

To ensure diversity in the training ligand set we used RDkit44 to calculate the circular morgan 

fingerprints45 of all available ligands and then calculate the dice similarity score. Model training was done 

by manual assignment of charge for 838 ligands that were a mixture of monodentate, bidentate, and 

tridentate ligands. In the training ligand dataset, there were four ligands with 3- charge, 112 ligands with 

2- charge, 328 ligands with 1- charge, 391 ligands with 0 charge, and 3 ligands with 1+ charge, which 

represents a statistically relevant relative number of ligands for each type. Ligands were separated by 

charge parity of odd charge and even charge. Several classification models were generated using scikit-

learn,46 and their performance is plotted in Figure 2 (top). The random forest classification model 

performed best. A separate random forest model with cross validation was created for each set charge 

parity ligands. The average accuracy across the cross-validation trials was 90% for even charge ligands 

and 97% for odd charge ligands. We also characterized the accuracy of the random forest classification 

models in different subsets of the data. This was done by using the random forest vote percentage as a 

representation of the assigned charge confidence. Figure 2 (bottom) shows that for even parity charges 

large intervals have accuracy that exceeds the general model accuracy. 
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Figure 2. Top: Performance of several classifier machine learning models for ligand charge assignment. 

RF = Random Forest. GPC = Gaussian Process. MLP = Multi-layer Perceptron. SVM = Support Vector 

Machines. SGD = Stochastic Gradient Descent. Bottom: Graph representing the accuracy of the 

prediction based on the random forest model’s confidence at a given interval. 

 

 We then applied these trained random forest classification models to charge assignment for the 

~30,000 extracted ligands. This was done by calculating the xTB HOMO-LUMO gap, internal force, and 

SCF iteration number for all ligands and then applying the models to determine charge assignment based 

on the feature values. While the majority of ligands have a very high confidence for charge assignment a 

few ligands have low confidence, and these ligands have a flag in the file that enables users to exclude 

these ligands if desired. All ligand files have xyz coordinates, total charge, labeled metal connectivity, 

and the original CSD code. All ligand files are in folders sorted by coordination denticity and the atom 

type for metal connection. 

 It is useful to have a general view of the types of ligands in the ReaLigands library. Nearly 1/3 of 

the ligands are monodentate. The most common monodentate ligand-to-metal connection occurs with a 

carbon atom (5069 ligands). The second and third most monodentate ligand-to-metal connections are 

nitrogen (2625) and phosphine (1145). The top of Figure 3 plots the count of unique monodentate, 

bidentate, tridentate, and tetradentate ligands extracted from each transition metal center from Sc to Hg. 

The middle of Figure 3 plots the number of ligand connecting atoms to the transition metal center and 

color codes the charges. The bottom of Figure 3 plots the denticity and charge for the ligands extracted 

from each transition metal center. 

 Figures 4 and 5 provide an overview of the number of atoms in tridentate ligands. Figure 4 shows 

the total number of atoms (green dots) and non-hydrogen atoms (red dots) plotted versus the originating 

transition metal center. These plots show that for about half of the transition metal atoms there is a nearly 

continuous size of ligands ranging from 10-90 total atoms. Figure 5 provides a similar analysis of total 

ligand atoms and non-hydrogen atoms but plotted versus the type of tridentate ligand (the three atoms that 

directly connect to the metal center) rather than the originating transition metal center. 
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Figure 3. Top: Histogram showing the number of monodentate, bidentate, tridentate, and 

tetradentate/larger than tetradentate ligands of versus transition metal center that each ligand was 

extracted from. Bottom: Relationship between charge assignment, denticity (connecting number of atoms) 

and transition metals each ligand originated from. 
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Figure 4. Top: Green dots represent the total number of atoms in tridentate ligands plotted versus 

originating transition metal center. Bottom: Red dots represent the total number of all non-hydrogen 

atoms in tridentate ligands plotted versus originating transition metal center. 
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Figure 5. Top: Red dots represent the total number of all non-hydrogen atoms in tridentate ligands plotted 

versus the type of tridentate ligand (connecting atoms to metal center). Bottom: Blue dots represent the 
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total number of all hydrogen atoms in tridentate ligands plotted versus the type of tridentate ligand 

(connecting atoms to metal center). 

 

 Dimensionality reduction is often a useful way to visualize property space of ligands. Fey and 

coworkers have shown the value of condensing several molecular descriptors to only a few dimensions 

through PCA, especially to visualize connections and differences between different ligands. Here we used 

PCA and UMAP to analyze several categories of tridentate ligands. Figure 6 shows PCA and UMAP 

plots of 11 different tridentate ligand sets and about 300 total ligands within the ReaLigands library. 

These ligands have C, N, O, and P atom direct connections with the metal center. The PCA and UMAP 

analyses were performed in sci-kit learn46 using features generated by Mordred.47 To visualize the PCA 

analysis, the top of Figure 6 shows a plot of the two most important components and color coded for the 

type of tridentate ligand. The bottom of Figure 6 shows a similar component plot with UMAP. While both 

analyses demonstrate separation between labeled subclasses of tridentate ligands, UMAP provides the 

most segregation. For example, ligands with a metal connection of type NNN or NNO are distanced from 

ligands with connection type PPP and NPP. However, while there is some separation between different 

types of tridentate ligands there is often a smooth connection and overlay between multiple ligand 

subclasses. There are also some ligands that span nearly the entire spectrum. For example, CCC type 

ligands are often found throughout the entire chemical space, which likely illustrates the flexibility for 

designing these types of ligands with different properties. 
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Figure 6. Top: PCA analysis of ~300 tridentate ligands based on features generated with Mordred. 

Bottom: UMAP analysis of ~300 tridentate ligands based on features generated with Mordred. The axes 
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represent the two most important components of these normalized reduced chemical space dimensions. 

Color coding is according to direct atomic connections with a metal center. 

 

 Figure 7 shows the breakdown of feature contributions to the principal components used for PCA 

and UMAP analyses. ATS (autocorrelation of topological structure (moreau-broto)) features dominate the 

first two principal components. The lag 6 weight is likely due to the tridentate ligand scaffold 

connections. The bottom of Figure 6 plots the ATS values versus the PCA and UMAP components. These 

plots demonstrate the variability in ATS values versus components that provides continuous separation of 

ligands. 
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Figure 7. Top: Descriptor importance of for reduced components. Middle: Trends of ATS6 descriptor 

values for PCA components. Bottom: Trends of ATS6 descriptor values for PCA components. The ATS6 

descriptor values have been normalized. 

 

 For us the most important aspect of the ReaLigands library is the ability to use it for rapid 

evaluation of catalysts with quantum-chemical calculations. Therefore, to demonstrate the utility of this 

library we used a subset set of the bidentate ligands to generate many Rh-H ethylene migratory insertion 

transition states and ground states to generate barrier heights. This was done by importing the ReaLigands 

library into our program Mason19 that uses Open Babel APIs to add ligands to a frozen transition-state 

core (one-by-one) and only requires defined connection points between the ligand and metal, which are 
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contained in the ReaLigands files. These built structures are then piped to an automated program to 

handle structure optimization in Gaussian 16.48 

 A diverse random subset of 750 bidentate ligands was generated by calculating the Morgan 

fingerprints and using a dice similarity score. The M0649/def2-SVP method was used to optimize all 

transition-state and ground-state structures using based on the Rh(H)(ethylene) core obtained from the 

fully optimized migratory insertion transition state for (Me2PCH2)2Rh(H)(ethylene) (Figure 8). Ground 

state calculations have ethylene removed and therefore barrier heights are relative to the optimized Rh-H 

intermediate and separated ethylene. All transition states were verified to have a singlet negative 

vibrational frequency with the correct reaction coordinate motion. 

 The middle plot in Figure 8 shows a very large range in barrier heights for these 750 bidentate 

ligands. Barriers range from slightly negative barriers due to a stabilized ethylene π complex to barriers 

>80 kcal/mol. Most bidentate ligands have barriers between 15-55 kcal/mol. The bottom of Figure 8 

shows similar barrier height distribution plots broken categorized by the two atoms from the ligand 

directly coordinated to the Rh metal center. While not elaborated further here, these quantitative barrier 

heights can either be used to design a catalytic cycle or there can be an in-depth qualitative assessment of 

barrier heights with the assistance of machine-learning models.  
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Figure 8. Top: Transition-state structure for migratory insertion involving (Me2PCH2)2Rh(H)(ethylene). 

Middle: Distribution of all 750 bidentate barrier heights for Rh-H migratory insertion. Barriers are in 

kcal/mol. Bottom: Distribution of barrier heights plotted by which atoms of the bidentate ligand directly 

coordinate to the Rh metal center. Barriers are in kcal/mol. X = Si, S, P, or Cl. 

 

Conclusion 

 The ReaLigands library reported here represents an important tool for computational catalyst 

design using quantum-chemical structure and energy calculations. This >30,000 ligand library was 

generated by dismantling ligands from experimental crystal structure followed by classification based on 

denticity. A Random Forest machine learning model was used to make ligand charge assignments. PCA 

and UMAP analyses provided a glimpse at the diversity and range of ligand properties. We demonstrated 

how this library can be used in conjunction with automated building programs to evaluate a large 

collection of ligands for barrier heights. Perhaps most important, catalyst designs based on ligands from 

this library have a direct connection to experiment that will likely facilitate translation to the lab, which is 

the goal of computational-based catalyst evaluation. 
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