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Abstract

Bayesian Inference of Conformational Populations (BICePs) is a reweighting algorithm that

reconciles simulated ensembles with sparse and/or noisy observables, by sampling the full pos-

terior distribution of conformational populations in the presence of experimental restraints. By

modifying BICePs to use replica-averaging in its forward model, BICePs becomes similar to

other MaxEnt approaches, but with the significant advantages of (1) being able to sample over

the posterior distribution of uncertainties due to random and systematic error, with improved

likelihoods to deal with outliers, and (2) having an objective score for model selection, a free

energy-like quantity called the BICePs score. To demonstrate the power of our approach, we

used BICePs to reweight conformational ensembles of the mini-protein chignolin simulated in

nine different force fields with TIP3P water, using a set of 158 experimental measurements

(139 NOE distances, 13 chemical shifts, and 6 vicinal J-coupling constants for HN and H↵. In

all cases, reweighted populations favor the correctly folded conformation. The BICePs score,

which reports the free energy of ”turning on” conformational populations along with experi-

mental restraints, provides a metric to evaluate each force field. For the nine force fields tested

(A14SB, A99SB-ildn, A99, A99SBnmr1-ildn, A99SB, C22star, C27, C36, OPLS-aa), we ob-

tain results consistent with previous work that used a conventional �2 metric for model selection

for small polypeptides and ubiquitin (Beauchamp et al 2012). These results suggest a powerful
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role for BICePs in future applications requiring ensemble reweighting and model selection.

Keywords Bayesian inference, maximum entropy, molecular simulation, force fields, chig-

nolin, conformational populations, model selection

Significance Statement

Reconciling molecular models of conformational ensembles with ensemble-averaged ex-

perimental measurements is a central problem in biophysical chemistry. Bayesian and maximum-

entropy approaches for this purpose are state-of-the-art, but uncertainty in both models and

measurement still make it challenging to integrate these two kinds of information, much less

select optimal models. An improved version of the Bayesian Inference of Conformational

Populations (BICePs) algorithm addresses both these issues by sampling distributions of con-

formational states with restraints to replica-averaged observables. BICePs has the ability to

learn uncertainties directly from the data, using improved likelihoods to deal with outliers, and

computes a score to objectively assess model quality, called the BICePs score. As demonstrated

for the mini-protein chignolin, the combination of maximum-entropy reweighting and model

selection makes BICePs a uniquely powerful tool.

Introduction

A central problem in molecular modeling is constructing accurate models of conformational

populations that agree with ensemble-averaged experimental measurements. While molecular

simulation models can provide valuable microscopic insight, they are limited by the accuracy

of the chosen force field, and must be validated by comparing experimental measurements (e.g.,

NMR observables) with theoretical predictions of those measurements from the simulated en-

sembles (the “forward model”). In doing so, however, one is faced with several complications.

First, the forward model has some error due to the approximate description of the measurement.

Second, ensemble-averaged experimental measurements may be sparse and/or noisy, subject to

random and systematic errors, which are often unknown a priori. Comparing different models
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thus requires some way of integrating these multiple sources of uncertainty to perform objective

model selection.

Numerous methods have been developed to address these challenges, most of which use ei-

ther a maximum entropy (MaxEnt) approach, Bayesian inference, or some combination of the

two to reconcile simulation predictions with ensemble-averaged experimental observables.1–9

Bayesian inference methods estimate a posterior model of conformational populations by treat-

ing simulation predictions as prior information, weighted by a likelihood function constructed

from the experimental measurements and their uncertainties. MaxEnt methods aim to max-

imize the relative entropy of population distributions with respect to predicted distributions,

given constraints to ensemble-averaged observables. Both approaches often utilize a replica-

based sampling approach, where replica-averaged forward model predictions are restrained

against ensemble-averaged experimental observables; in the limit of large numbers of replicas,

this produces the maximum entropy distribution.10–14

Proper consideration of the sources of error and their unknown uncertainties is a major

challenge. The Metainference method,5 and its combined use with MetaDynamics (M&M),6,15

is a Bayesian inference approach that addresses this challenge by imposing replica-averaged

restraints within a simulation, sampling over various restraint strengths to infer the distribution

of experimental uncertainties. A drawback of this approach–and others like it3,11,13,16,17–is that

dynamic restraints must be implemented within a simulation.

Alternatively, many methods reweight predicted conformational populations as a post-processing

step after simulations.3–5,8,14,18–24 MaxEnt approaches such as BioEn14,25 and BME16,26 reweight

populations to maximize entropy with a constraint on the �2 metric characterizing the expected

error between simulated and experimental observables. A drawback of this approach is the

requirement that the expected error must be specified beforehand, determined using a heuristic

procedure .

The Bayesian Inference of Conformational Populations (BICePs) algorithm19,27–31 is a re-

lated (see SI Text) but unique MaxEnt method that addresses both of these shortcomings: it is

a post-processing reweighting method that does not require knowledge of experimental errors,

and instead infers this from the data.
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The BICePs algorithm. BICePs uses a Bayesian statistical framework, inspired by In-

ferential Structure Determination (ISD),1 to treat the extent of uncertainty in experimental ob-

servables, �, as nuisance parameters. Previous versions of BICePs sampled conformational

states X and uncertainty parameter(s) � from the Bayesian posterior, which takes the form

p(X, �|D)| {z }
posterior

/ p(D|X, �)| {z }
likelihood

p(X)p(�)| {z }
priors

. (1)

Here, the prior p(X) comes from a theoretical model of conformational state populations (typ-

ically from a molecular simulation), p(D|X, �) is likelihood function quantifying how well a

forward model prediction f(X) agrees with the experimental data D, and p(�) ⇠ �
�1 is a

non-informative Jeffreys prior.

When BICePs is equipped with a replica-averaged forward model, it becomes a MaxEnt

reweighting method in the limit of large numbers of replicas.10–14 The posterior takes the gen-

eral form

p(X, �|D) /
NrY

r=1

n
p(Xr)

NjY

j=1

1q
2⇡�2

j

exp
h
� (fj(X)� dj)2

2�2
j

i
p(�j)

o
(2)

where X is a set of Nr conformation replicas, dj is an observable in the set of Nj ensemble-

averaged experimental measurements, and fj(X) = 1
Nr

P
Nr

r
fj(Xr) is the replica-averaged

forward model prediction of observable j. The �j values are nuisance parameters that capture

uncertainty in the measurements as well as the replica-averaged forward model. In (2), a Gaus-

sian model is used for the likelihood, but more sophisticated models can be used to capture

outliers and systematic error with fewer parameters, as discussed below. Markov chain Monte

Carlo (MCMC) is used to sample the posterior.

Model selection using the BICePs score. BICePs evaluates model quality by calcu-

lating a free energy-like quantity called the BICePs score. For a model k with prior populations

p
(k)(X), the BICePs score f

(k) is computed as the negative logarithm of a Bayes factor com-

paring the total evidence of a given model against a well-defined reference, marginalizing over
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all uncertainty,29

f
(k) = � ln

Z
(k)

Z0
, (3)

where

Z
(k) =

Z
P

(k)(X, � | D)dXd� (4)

is the evidence for model k, and Z0 is the evidence for a suitable reference state. To construct

the reference state, we consider a series of priors p�(X) ⇠ [p(X)]� parameterized by � 2 [0, 1]

and likelihoods p⇠(D|X, �) ⇠ [p(D|X, �)]⇠ parameterized by ⇠ 2 [0, 1], and set the reference

state as the thermodynamic ensemble corresponding to � = 0, ⇠ = 0. The BICePs score is then

calculated as the change in free energy of “turning on” experimental restraints with uniform

microstate populations (� = 0, ⇠ = 0 ! 1), and then scaling the prior populations in the

presence of the restraints (⇠ = 1,� = 0 ! 1) (Figure 1). The calculation is performed using

the MBAR free energy estimator, by sampling at several intermediates (see SI Methods).

The above approach is different from previous versions of BICePs, which used the (� =

0, ⇠ = 1) ensemble as the reference, assuming the conformational state definitions are identical

for each model. We have found this criterion very difficult to achieve in practice for biomolec-

ular simulations (for further discussion, see SI Text).

Note that the BICePs score is an extensive quantity that grows linearly with the number of

replicas. For this reason, our results report the reduced BICePs score, f (k)
/Nr .

Likelihoods to better account for systematic error. Systematic error is ubiqui-

tous in both experimental data and the forward model used to predict those same observables.

The problem of accounting for such error can be approached in two ways: 1) assign higher un-

certainties to particular observables, or 2) neglect those affected by systematic error and treat

them as outliers.

Towards the first approach, BICePs can be used with the Gaussian model in Equation (2),

which uses one uncertainty per data point and is able to automatically assign higher uncertainty

to data affected by systematic error. However, as the number of observables grows, sampling

over multiple �j becomes costly. As an alternative, we introduce two different models: 1) the

Good-and-Bad error formulation and 2) the Student’s model. Both approaches marginalize the
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Figure 1: BICePs scores f (1) and f (2) for two theoretical models, p(1)(X,�|D) and
p(2)(X,�|D), are calculated using a common reference state, in which the prior and the
likelihood with experimental restraints are turned o�. To e�ciently and accurately
calculate ratios of model evidences, a free energy perturbation approach is used, in
which posterior sampling is performed for a series of models that scale the likeli-
hood (⇠ = 0 ! 1), and then the prior (� = 0 ! 1). The MBAR estimator is then
used to calculate the BICePs score as the free energy change of this transformation,
f (k) = � ln(Z(k)/Z0).
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uncertainties for individual observables, assuming a uniform level of noise, except for a few

erratic data points. This limits the number of uncertainty parameters that need to be sampled.

Plots of the probability density functions for these likelihoods are found in Figures S1-S6 and

details are given in Methods.

Overview. In this article, we demonstrate how BICePs can now perform robust MaxEnt

reweighting of protein conformational ensembles and select optimal models. Using a simple

toy model, we show how BICePs can better deal with various sources of error than existing ap-

proaches. We test different likelihood models that can efficiently and accurately detect outliers,

and evaluate their performance in reweighting conformational ensembles of the mini-protein

chignolin simulated in nine different force fields, against a set of 158 experimental NMR ob-

servables. In each case, we compute the BICePs score to objectively evaluate the performance

of each force field model.

Results and Discussion

BICePs ensemble reweighting is robust in the presence of unknown ran-

dom and systematic error. First, to demonstrate the performance of BICePs with

noisy experimental data, we use a simple toy model to quantitatively compare our replica-

averaging BICePs algorithm with the previous Bayesian single-replica approach, and existing

MaxEnt approaches that use fixed estimates of uncertainty (Figure 2).

The toy model consists of three conformational states: a folded state S0, intermediate state

S1, and unfolded state S2. Each conformational state is characterized by a collection of 500

intermolecular distances x, normally distributed about means 3.0, 4.5 and 6.0, respectively.

The true populations of each state are set to 65%, 15%, and 20%, respectively. In this toy

example, we assume that experimental observables are directly averaged, such that in an ideal

experiment with no sources of error, the 500 distances would be measured as the population-

weighted average of each distance.

Next, we generate synthetic experimental measurements affected by random and systematic

error, by adding normally-distributed error of standard deviation 0.5, and then systematic error
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Figure 2: BICePs performs better than existing Bayesian or MaxEnt approaches in
the presence of random and systematic error. In this three-state toy model, each
conformational state is characterized by a collection of 500 intermolecular distance
observables x, normally distributed about means 3.0, 4.5 and 6.0. (a) Table describing
ensemble populations (b) Cartoon representation of the three conformational states.
(c) Plots of inferred conformational state populations pi(sim+exp) versus populations
pi(exp) inferred using only the experimental restraints (i.e. a uniform prior). (d) Pos-
terior distributions of the 500 distance observables, with vertical lines denoting the
mean of the distributions. The “true” distribution and its mean are shown in black.
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by shifting 30% of the distance measurements by +3 to +5, resulting in a set of experimental

measurements that vary about a mean value of 4.8. Finally, we generate a prior model of

conformational populations by supposing that some theoretical method predicted populations

that incorrectly estimate the populations as 13%, 41%, and 46%, respectively (an overall RMSE

of 0.363).

With this input data, we proceed to test each method using 100,000 MCMC iterations of

BICePs sampling (see Supplemental Methods). The single-replica approach significantly over-

estimates the population of S2, resulting in an RMSE of 0.601 compared to the true populations.

Due to the lack of replica-averaging in the forward model, the sampled posterior places nearly

100% of the population in this state, as it is favored by both the prior and synthetic experimen-

tal data. The fixed-sigma (MaxEnt) (� = �Exp. = 0.70) method does a better job, achieving an

RMSE of 0.345 compared to the true populations, but is unable to fully account for systematic

error in the experimental data, minimally perturbing the prior, leading to slight over-population

of S1. Both the single-replica and fixed-sigma approaches use a Gaussian likelihood. In con-

trast, BICePs can use the Student’s likelihood model (results shown in Figure 2) or Good-Bad

model (Figure S7) that automatically handle systematic error by sampling an extra nuisance pa-

rameter. BICePs achieves the best prediction of the true populations, with an RMSE of 0.116.

This is because the forward model is able to correctly compare predictions with ensemble-

averaged observables, and better deal with systematic error by sampling the complete posterior

distribution of the expected uncertainty. For more details and results for the three-state toy

system, see the SI.

BICePs reweights conformational populations and ranks the accuracy of

simulation models of the mini-protein chignolin in nine force fields. To

further demonstrate its utility, we apply BICePs to a series of prior conformational populations

derived from all-atom simulations of the beta-hairpin chignolin CLN001,32 using published

NMR measurements as experimental restraints.33 From over 20 µs of aggregate simulation

trajectory data for each force field in TIP3P explicit solvent, Markov state models (MSMs)

of chignolin folding were constructed using various numbers {5, 10, 50, 75, 100, 500} of mi-

crostates defined by conformational clustering (see Methods). For each MSM, microstates
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were assigned forward model predictions for a set of 158 observables (139 NOE distances, 13

chemical shifts, and 6 vicinal J-coupling constants for HN and H↵, shown in Figures S8-S11)

and their populations reweighted according to the ensemble-averaged experimental measure-

ments. For BICePs calculations using the Gaussian likelihood model, all observables are as-

signed individual uncertainty parameters. For other likelihood models, each type of observable

is assigned an uncertainty parameter (e.g. �NOE, �J , �cs).

As shown by others,34–36 MSM microstates can be structurally categorized into three macrostates:

unfolded (U), misfolded (M) and folded (F) (Figure 3a). To illustrate the results of BICePs with

various likelihood models, we show reweighted macrostate populations of a 500-microstate

MSM (Figures S12-S13) of chignolin CLN001 simulated using A99SB-ildn. This force field

overestimates the misfolded population at ⇠70%, and underestimates the folded population at

⇠20% (MSM, Figure 3b); the experimentally measured folded-state population is 61.0 ± 3.4

% at 300 K.33 BICePs-reweighted populations (averaged over five independent trials of 10M

MCMC steps each) are able to correctly up-weight the folded macrostate and down-weight the

misfolded macrostate. While single-replica BICePs puts nearly all the population in the folded

macrostate (maximum parsimony), replica-averaging BICePs (8 replicas) with Good-Bad and

Student’s likelihoods improves this situation, achieving results comparable to the more costly

Gaussian likelihood, which assigns uncertainty parameters to each observable (see Figures S14-

17 for posterior distributions of uncertainties and Figure S18 for reweighted observables). De-

spite the large number of parameters, BICePs sampling is well converged, as shown by traces

of energy (the negative logarithm of the posterior) sampled over time (Figures S19-20) and the

JSD analysis (Figures S21-22) using convergence tools from the BICePs v2.0 software pack-

age.31

A comparison of nine different force fields shows the robustness of the BICePs reweighting

approach (Figure 4). Despite widely varying predictions of macrostate populations, BICePs

correctly upweights the folded macrostate population in all cases. Single-replica BICePs con-

sistently places ⇠100% of the population in the folded state for all force fields, while replica-

averaging (using 8 replicas) correctly achieves maximum-entropy reweighting according to the

ensemble-averaged observables. Even force fields that incorrectly predict chignolin to be en-
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tirely unfolded (CM36) or misfolded (A99) can be “rescued” by BICePs reweighting, provided

that folded conformations are sampled in the input ensemble. The relative entropy difference

between the prior and reweighted populations can be measured by the Kullback-Leibler diver-

gence (DKL); these calculations show that A99 requires the most perturbation, with a DKL

value of 9.3 for replica-averaging BICePs using a Student’s likelihood and 500 states (Figure

S23).

Folded UnfoldedMisfolded

Gly1

a

Tyr2

Asp3

Pro4

Glu5

Thr6

Gly5

Thr8

Trp9

Gly10

a

Gly1

Tyr2

Asp3

Pro4

Glu5

Thr6

Gly7

Thr8

Trp9

Gly10

b

Figure 3: Reweighted macrostate populations of chignolin CLN001 for various data
models. (a) Representative structures of macrostates derived from a 500-state MSM
built from ⇠ 30 µs simulations in A99SB-ildn. (b) Prior MSM macrostate populations
and BICePs-reweighted populations for five di�erent models are compared against
experimental folded-state populations (⇠61% from Honda 2004). Three of the models
use an e�ective uncertainty parameter for each type of observable: Single replica
model, Good-Bad model (8 replicas), Student’s model (8 replicas). The Gaussian model
(8 replicas) uses an uncertainty parameter for each observable. Error bars correspond
to the SEM over five independent rounds of sampling for 10M steps each.
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Figure 4: Triangle plots show that reweighted populations of folded (F), unfolded (U)
and misfolded (M) macrostates (green markers) are shifted toward the native folded
state compared to the prior populations (blue markers). All models enrich the folded
state upon inclusion of experimental data, with the more sophisticated likelihood mod-
els (designed to deal with outliers) showing closer agreement to the experimental folded
state population (highlighted in peach: 0.610± 0.034 at 300 K.)
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Model selection using the BICePs score. In addition to sampling the maximum-

entropy conformational ensemble of chignolin in the presence of experimental restraints, BI-

CePs can objectively rank the quality of each force field model using the BICePs score. As

described in Theory, we calculate the BICePs score by first “turning on” experimental restraints

with uniform state populations (� = 0, ⇠ = 0 ! 1), and then the prior p(k)(x) for each force

field (� = 0 ! 1, ⇠ = 1). For this chignolin system, the first transformation results in a large

positive change in free energy f
(k)
⇠=0!1 (a penalty), because of the large number of experimental

observables. The magnitude of the second transformation is much smaller, and is typically a

negative value f
(k)
�=0!1 (a reward), for force fields whose predicted distribution of conforma-

tional states overlaps well with the experimental restraints. The sum of the two free energies

is the BICePs score; the lower the score, the more the simulated populations agree with the

experimental data.

Since the BICePs score is calculated via stochastic sampling and free energy estimation,

it is important that sampling is converged (Figures S19-22) and that intermediates used in the

BICePs calculation have sufficient thermodynamic overlap (Figure S24). Another factor influ-

encing the accuracy of the calculation is the resolution of the conformational state space. We

tested how BICePs scores values vary using different numbers of MSM microstates (5, 10, 50,

75, 100, 500) and generally find that BICePs scores converge beyond 75 states (Figures S25).

We also tested various numbers of replicas, and found that Nr = 8 replicas achieved a good

balance of accuracy and computational efficiency (Figure S26).

Shown in Figure S34 is a comparison of BICePs scores for the nine different force fields,

using 8 replicas and 500 conformational states (standard errors shown in Figure S27). To make

these results more easily understood, we report relative BICePs scores, f (k) �min({f (k)8k}),

so that the lowest score in each group is set to zero. Replica-averaging with Good-Bad and Stu-

dent’s likelihood models rank A99SBnmr1-ildn as having the best BICePs score when the entire

set of experimental data is used (see Figures S28-30 for individual contributions of f (k)
⇠=0!1 and

f
(k)
�=0!1, and their uncertainties).

This result agrees with work by Beauchamp et al., who used a reduced �2 metric to com-

prehensively rank force fields in comparison with NMR observables for short peptides and
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ubiquitin, and found A99SBnmr1-ildn37 and A99SB-ildn-phi38 to be the most accurate when

coupled with TIP3P aqueous solvent.39 To further compare with Beauchamp et al., we com-

puted reduced �2 values using the MSM populations (see SI Methods) for the six force fields

tested in both studies (A99SBnmr1-ildn, A99SB-ildn, OPLS-aa, A99, A99SB, C27), and find

a strong correlation (R2=0.89) (see Figures S31-33 for �2 analysis).

Single-replica BICePs (which is not a true MaxEnt method) ranks A99SB slightly better

than A99SBnmr1-ildn. We obtain a similar result from rankings computed by reduced �2 val-

ues (Figure S34). The MSM populations for A99SB heavily favor compact states (folded and

misfolded, with less than 5% unfolded population) that are more compatible with the NOE dis-

tance restraints; single-replica BICePs rewards individual conformational states that are most

compatible with the experimental restraints, rather than enforcing the ensemble average.

Using the Student’s likelihood model, we calculated BICePs scores using only one type

of experimental observable (Figure S34d,e,f). Results using only NOE distances are highly

similar to the overall results, indicating that the 139 NOE distance restraints play an outsize role

in the ranking due to their large number. Results using only the 6 J-coupling constant favor

A99 (which incorrectly predicts a large misfolded population), while results using only the

13 chemical shift observables favor CM27. These results underscore the importance of using

multiple observables to evaluate force fields amidst uncertainties in experimental measurements

and forward models.

To further probe the source of variation in BICePs scores for different models, we computed

f
(k)
�=0!1 for single-replica, Good-Bad, Student’s, and Gaussian likelihood models, for various

coarse-grained numbers of conformational states (Figure S35-35). We find similar patterns

of variation across all likelihood models, suggesting that heterogeneity in conformational state

definitions, and their computed forward model predictions, are the main source of variance. We

also tested a single-prior Gaussian (GaussianSP) likelihood, in which one uncertainty parameter

is used each group of observables, by setting � = 1 in the Good-Bad model; we find very

similar results to the Good-Bad model(Figure S36).

Physical interpretation of free energies contributing to the BICePs score.

As mentioned in Theory, a key reason for choosing the (⇠ = 0,� = 0) ensemble as the ref-
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Figure 5: Ranking of force fields for chignolin CLN001 using the total BICePs score f (k)

calculated using various likelihoods and di�erent types of experimental observables.
(500 microstates). Each column reports values relative to the minimum value.

erence state is the general difficulty of defining a unified set of conformational states that can

be used as a uniform-population reference state to compare multiple force fields (see also SI

Text). This is because MSM conformational states are most easily defined using unsupervised

conformational clustering, and distributions of sampled conformations for different force fields

tend to be uneven (Figure S19) and have poor overlap as the number of conformational states

becomes large. In this case, however, we know that the conformational landscape of chignolin

has three main macrostate populations: folded, misfolded, and unfolded. Therefore, we can

construct a nearly-ideal reference state for each force field by reweighting the populations of

microstates in each macrostate by a constant factor, to achieve a prior p0(X) whose macrostate

populations are uniform.

In this way, we can achieve a physically meaningful BICePs score f
0(k)
�=0!1 for just the

(� = 0 ! 1) leg of the transformation, that can be computed as a correction to our previous

result:

f
0(k)
�=0!1 = � ln

Z
(k)

Z 0 = f
(k)
�=0!1 + ln

Z
0

Z0
. (5)

The f 0(k)
�=0!1 scores can be interpreted as the change in free energy of “turning on” a given force

field’s prior p(k)(X) from a reference with uniform macrostates. The calculated results (Table
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S1, Figures S37-39) show that the CM27 force field prior gets a bigger reward (by a slight

margin) than for A99SBnmr1-ildn, suggesting CM27 has the best overlap with a distribution of

conformational populations shaped solely by the experimental restraints. However, the overall

BICePs score for CM27 is over twenty nats larger than that of A99SBnmr1-ildn, suggesting

much more frustration when enforcing experimental restraints. This is reflected in the larger

overall reduced �2 values for CM27 compared to A99SBnmr1-ildn (Figure S34).

Force field rankings using both f
(k)
�=0!1 and f

0(k)
�=0!1 also generally agree with previous find-

ings. We find correlations of R
2 ⇡ 0.8 and R

2 ⇡ 0.76 respectively when comparing with

reduced �2 values from Beauchamp et al. (Figure S40).

Caveats. Our work ranking force field models for chignolin should be considered as a proof

of principle; proper assessments must encompass a diverse set of experimental systems. An-

other important caveat to be considered and improved in future work is the treatment of NOE

observables. While here we treat the observables as (r�6-averaged) distances, the physical

measurement is the NOE intensity, which can be better assessed using improved forward mod-

els . This caveat is important because the large number of distance restraints heavily influences

the outcome of BICePs. Another related issue we do not address is the statistical independence

of measurements included in the set of experimental restraints. Cross-validation (testing and

training with subsets of experimental restraints) may be useful for this purpose.

Conclusion

While several existing methods can perform post-processing MaxEnt reweighting against

ensemble-averaged experimental constraints, BICePs is unique in (1) treating uncertainties as

nuisance parameters that can be inferred from the data, and (2) providing an objective measure

of model quality through the BICePs score. As our results show, BICePs can now perform

sophisticated model selection for biomolecular simulations against large sets of experimental

observables. This opens up new possibilities for automated force field validation against large

experimental data sets, as well as machine learning of optimal parameters for force fields40–43

and forward model refinement,44,45 using the BICePs score as an objective function.
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Methods

Accounting for sampling error in the replica-averaged forward model Replica-

averaging introduces finite sampling error, which must be considered as additional uncertainty

in the forward model. Following Bonomi and Camilloni et al.,5,6 we estimate the standard er-

ror of the mean �SEM
j

for an observable j by taking a windowed average over our finite sample

fj(X):

�
SEM
j

=

r
1

Nr

XNr

r=1
(fj(Xr)� hfj(X)i)2. (6)

This quantity decreases as the square root of the number of replicas.

The Gaussian model. In this likelihood model (see (2)), errors between a forward model

fj(X) and experimental measurement dj are assumed to be normally distributed with unknown

uncertainties �j =
q

(�SEM
j

)2 + (�B
j
)2, which considers both uncertainty in the forward model,

and Bayesian uncertainty �B
j

in the experimental measurements.

The single-replica model. The Gaussian model reduces to the single-replica model

when Nr = 1. In this case, �SEM is ignored, and only the Bayesian uncertainty �j = �
B
j

is

required. This is equivalent to the version of BICePs used in previous work.18,31

Likelihoods to account for systematic error and outliers. We present the

Good-Bad likelihood model and the Student’s likelihood model as approaches to marginal-

ize the uncertainty parameters for individual observables, assuming that the level of noise is

mostly uniform, except for a few erratic measurements. This limits the number of uncertainty

parameters that need to be sampled, while still capturing outliers.

Consider a model where uncertainties �j for particular observables j are distributed about

some typical uncertainty �B according to a conditional probability p(�j|�B). We derive a pos-

terior with a single uncertainty parameter �B by marginalizing over all �j . For a single replica
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(for simplicity), the posterior is given by

p(Xr, �0|D) / p(Xr)

NjY

j=1

1Z

�SEM

p(dj|X, �j)p(�j|�0)d�j (7)

where �0 =
p

(�B)2 + (�SEM)2.

The ”Good-Bad” error model Under the Good-Bad model, we say that the “good”

data consists of observables normally distributed about their true values with effective variance

�
2
0 , while the “bad” data is subject to systematic error, leading to a larger effective variance

�
2
�
2
0 , where � � 1.46,47 By this assignment, p(�j|�0) from equation 7 becomes

p(�j|�0,!,�) = !�(�j � ��0) + (1� !)�(�j � �0) (8)

where 0  ! < 1 describes the fraction of “bad” observables. Since the value of ! is unknown,

it is treated as a nuisance parameter, and marginalized over its range. The resulting posterior is

p(Xr, �0,�|D) / p(Xr)

NjY

j=1

1Z

0

d!

1Z

�SEM

exp

✓
�(dj � fj(X))2

2�2
j

◆

⇥ !�(�j � ��0) + (1� !)�(�j � �0)p
2⇡�j

d�j

= p(Xr)

NjY

j=1

"�
1�H

�
�

SEM � �0

��

2
p
2⇡�0

exp

✓
�(dj � fj(X))2

2�2
0

◆

+

�
1�H

�
�

SEM � ��0

��

2�
p
2⇡�0

exp

✓
�(dj � fj(X))2

2�2�2
0

◆#
,

(9)

where H is the Heaviside step function. After marginalization, we are left with the Bayesian

uncertainty parameter �B

0 , and an additional parameter �. Both parameters are sampled in the

posterior. When � = 1, the model reverts to the Gaussian model. When considering the full

posterior, this extra nuisance parameter is given a non-informative Jeffreys prior, p(�) ⇠ �
�1.
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The Student’s model is an intermediate between Cauchy and Gaussian

distributions Modeling p(�j|�0) as a Cauchy distribution is very useful because its long

tail makes it able to tolerate outliers.5,48 In most cases, however, it is unclear a priori what

distribution is best for modeling the input data. To improve the situation, we introduce a model

with an additional nuisance parameter �, that is able to tune the extent of the distribution’s tail:

p(�j|�0, �) =
�((� + 1)/2)

�(�/2)

2��
�0

2��1

p
��j

2�
exp

✓
���0

2

�
2
j

◆
. (10)

where �0 is defined as above, and 1  � < 1. When this distribution is inserted into the

posterior, and marginalized over all �j , the result is

p(Xr, �0, �|D) / p(Xr)

NjY

j=1

�((� + 1)/2)

�(�/2)

1p
2⇡��0

⇥

1 +

(dj � fj(X))2

2��2
0

���

�

✓
�,

(dj � fj(X))2 + 2��2
0

2 (�SEM)2

◆
.

(11)

Here, the marginal likelihood contains the lower incomplete gamma function, �. We call

this the Student’s model because it is a variation of Student’s t-distribution that can be interpo-

lated between functional forms. When � = 1, the model is equivalent Metainference’s Outliers

model5 . In the limit of � ! 1, the likelihood becomes Gaussian. When considering the full

posterior, this extra nuisance parameter is given a non-informative Jeffreys prior, p(�) ⇠ �
�1.

For more detials regarding likelihood moels, see SI methods.

Molecular dynamics simulations of chignolin. Folding simulations of chignolin

CLN001 (GYDPETGTWG) were performed using GROMACS 2020.449 on the Folding@home

distributed computing platform,50 using nine different force fields: Amber14SB (A14SB),51

Amber99SB-ildn (A99SB-ildn),52 Amber99 (A99),53 Amber99SBnmr1-ildn (A99SBnmr1-ildn),37

Amber99SB (A99SB),51 CHARMM22* (C22star),54 CHARMM27 (C27),55 CHARMM36 (C36),56

and OPLS-AA.57 Chignolin was solvated in a ⇠ 5-nm cubic periodic box with 4000 TIP3P wa-

ters and neutralizing NaCl at 100 nM. After minimization and equilibration, NPT production

runs at 300 K were initiated from folded and unfolded conformations, producing 34 trajectories
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with lengths between 0.2 and 1.6 µs for each force field, and a total aggregate of 200 µs.

Markov State Models. For each set of trajectories performed using a given force field,

pairwise atomic inverse distances for selected atoms (all C↵, Tyr2C⇣ , Trp9C�1, Asp3N, Thr8O

and Gly7O) were used as input for dimensionality reduction using TICA.58,59 Clustering using

k-means was performed after projection to eight principal TICA components. Using these

conformational state definitions, Markov State Models (MSMs) with lag time 20 ns were con-

structed using a maximum-likelihood estimator, with a bootstrapping procedure (randomly se-

lecting 50% of the trajectories as input data over 5 trials) to estimate equilibrium state popula-

tions p(X) and their uncertainties. Full details are described in Marshall et al.32

Six models of varying levels of coase graining of conformational space were constructed for

each force field. Markov state models (MSM) were built , where ensemble averaged forward

model data was averaged over 20 snapshots for each microstate.

Comparison to experimental observables. Forward-model observables for each

MSM microstate were computed by averaging the forward model predictions of twenty ran-

domly selected trajectory snapshots; these values were used as input to BICePs. The simula-

tions were compared against 158 experimental measurements33 (139 NOE distances, 13 chem-

ical shifts, and 6 vicinal J-coupling constants for HN and H↵. Forward model predictions for

chemical shifts were computed using SHIFTX2 version 1.11,60 forward model NOE distances

were computed using MDTraj,61 and forward model J-coupling constants were computed us-

ing the Karplus relation of Vögeli et al.,62 a built-in function from BICePs v2.0.31 For BICePs

calculations using the Gaussian likelihood, all 158 experimental restraints were used. For all

other BICePs calculations, indistinguishable protons were treated as a single restraint, resulting

in a total of 138 experimental restraints.

Data and software The BICePs algorithm is freely available at github.com/vvoelz/biceps

and can be installed using pip install biceps. All chignolin CLN001 data, input files,

Jupyter notebook examples and BICePs analysis can be found here: github.com/robraddi/chignolin.

Detailed documentation and tutorials can be found here: https://biceps. readthedocs.io. For any
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issues or questions, please submit the request on GitHub.
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GROMACS: High performance molecular simulations through multi-level parallelism
from laptops to supercomputers. SoftwareX 2015, 1, 19–25.

(50) Voelz, V. A.; Pande, V. S.; Bowman, G. R. Folding@ home: achievements from over
twenty years of citizen science herald the exascale era. Biophysical Journal 2023,

(51) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison
of multiple Amber force fields and development of improved protein backbone parame-
ters. Proteins: Structure, Function, and Bioinformatics 2006, 65, 712–725.

(52) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.;
Shaw, D. E. Improved side-chain torsion potentials for the Amber ff99SB protein force
field. Proteins: Structure, Function, and Bioinformatics 2010, 78, 1950–1958.

(53) Wang, J.; Cieplak, P.; Kollman, P. A. How well does a restrained electrostatic potential
(RESP) model perform in calculating conformational energies of organic and biological
molecules? Journal of computational chemistry 2000, 21, 1049–1074.

(54) Piana, S.; Lindorff-Larsen, K.; Shaw, D. E. How robust are protein folding simulations
with respect to force field parameterization? Biophysical journal 2011, 100, L47–L49.

(55) MacKerell Jr, A. D.; Feig, M.; Brooks, C. L. Improved treatment of the protein backbone
in empirical force fields. Journal of the American Chemical Society 2004, 126, 698–699.

(56) Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E.; Mittal, J.; Feig, M.; MacKerell Jr, A. D.
Optimization of the additive CHARMM all-atom protein force field targeting improved
sampling of the backbone �,  and side-chain �1 and �2 dihedral angles. Journal of

chemical theory and computation 2012, 8, 3257–3273.

24

https://doi.org/10.26434/chemrxiv-2023-396mm ORCID: https://orcid.org/0000-0002-1054-2124 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-396mm
https://orcid.org/0000-0002-1054-2124
https://creativecommons.org/licenses/by-nc-nd/4.0/


(57) Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. Evaluation and
reparametrization of the OPLS-AA force field for proteins via comparison with accurate
quantum chemical calculations on peptides. The Journal of Physical Chemistry B 2001,
105, 6474–6487.

(58) Schwantes, C. R.; Pande, V. S. Improvements in Markov state model construction reveal
many non-native interactions in the folding of NTL9. Journal of chemical theory and

computation 2013, 9, 2000–2009.
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