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ABSTRACT. With the advent of high-throughput methods for both computation and 

experimentation, data-rich approaches to discovering and understanding chemical reactions are 

becoming ever more central to catalysis research. Organopalladium catalysis is at the forefront of 

these new approaches, providing a rich proving ground for method development and validation. 

This critical Perspective discusses a number of recent case studies from academic and industrial 

laboratories that illustrate how to generate, analyze, and correlate large data sets for quantitative 

predictions of reactivity and selectivity. Both the power and potential pitfalls of these approaches 

are discussed, as are the opportunities for both practical predictions and fundamental mechanistic 

insights. 
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INTRODUCTION 

Organopalladium catalysis, and in particular palladium-catalyzed coupling, continues to 

be indispensable for fragment coupling in organic synthesis. Its success as a catalytic method for 

forming all manner of carbon-element bonds is unparalleled, especially in pursuit of complex 

molecule targets. Pd-catalyzed reactions are (and continue to be) central to the synthesis of 

myriad natural products,1–3 active pharmaceutical ingredients,4–6 agrochemicals,7 and organic 

materials.8 While the data was collected nearly 10 years ago, Brown and Boström’s analysis of 

reaction classes most often used in medicinal chemistry has 3 of the top 20 as Pd-catalyzed: 

Suzuki-Miyaura, Sonogashira, and Buchwald-Hartwig.6 No other examples of homogeneous 

organometallic catalysis are in this set. Certainly, the plethora of excellent research into non-

precious metal catalysis for cross-coupling and related transformations means that these systems 

are emerging as viable alternatives.9–13 However, the sheer number and variety of documented 

examples of Pd catalysis in complex molecule synthesis attests to its enduring importance as a 

reliable and effective means to access new chemical matter. 

As a direct result of its fairly unique combination of wide applicability, highly variable 

reaction conditions, and massive amounts of published data, organopalladium catalysis is also 

one of the most frequently studied reaction classes in emerging data-rich methods for reaction 

discovery, optimization, and prediction. A 2018 survey of practitioners reveals catalytic C–C and 

C–N coupling as 2 of the top 3 most frequently screened reaction types by high-throughput 

experimentation (HTE) groups within (or affiliated with) pharmaceutical R&D.14 And a recent 

comprehensive review of HTE in organometallic chemistry and catalysis from 2006-2020 

reveals cross-coupling (sum of all varieties) as the most frequently reported reaction type 

undergoing high-throughput screening.15 This is a stark contrast to the prior 10 years, where HTE 
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for asymmetric hydrogenation and alkene polymerization were overwhelmingly more common.16 

Finally, due to its clear dominance as a preferred method in medicinal chemistry, the patent 

literature contains millions of unique examples of Pd-catalyzed transformations across a wide 

swath of chemical space. 

Thus, organopalladium catalysis is an ideal proving ground for emerging data-rich 

approaches to solving chemical synthesis problems. The recent ultrafast growth of computing 

and data analysis power combined with significant advancements in laboratory automation, 

miniaturization, and rapid chemical analysis have paved new ways to study and understand 

chemical systems. In organic synthesis specifically, data-driven methods have made a significant 

impact on accelerating the process of reaction optimization17–19 and expanding the applicability 

of multivariate quantitative structure-reactivity/selectivity prediction models for synthesis 

planning.20–25  

Large, accurate, consistent, and comprehensive datasets from reliable sources are the 

foundation of any data-driven methodology, and often the determining factor for overall success. 

The data foundation for studies of organopalladium catalysis is built from a combination of three 

major sources (Figure 1):  

1) Previously reported reaction conditions/outcomes obtained directly from the 

academic/patent literature, and/or from open-source/proprietary reaction databases;  

2) Calculated reaction-based parameters, including structurally and/or mechanistically-

relevant molecular descriptors and computed reaction energy barriers;  
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3) “Do-it-yourself” experimentally determined reaction data, ideally collected via 

automated and/or HTE approaches. 

 

 

Figure 1. Data foundations for building quantitative models in catalyst reactivity and selectivity 

predictions. 

 

This critical Perspective will cover key aspects of these three approaches to data 

collection and analysis, and the resulting outcomes. Illustrative examples from organopalladium 

catalysis show how these approaches are continuing to evolve. There are, of course, advantages 

and challenges specific to each approach; it is clear from the success stories thus far that a 

combination of approaches is the ideal strategy. In addition to accelerating catalyst and/or 

reaction discovery and optimization, taking a data-rich approach to studying chemical synthesis 

has the potential to significantly expand our understanding of the interplay between molecular 

structure, experimental conditions, and reaction mechanisms. 
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DATASETS FROM EXISTING SOURCES 

The power (and pitfalls) of training on the literature. Due to its major role in 

pharmaceutical synthesis for both discovery and manufacturing activities, there is an abundance 

of reported examples for Pd-catalyzed cross-coupling across an extremely broad range of 

chemical space. The details of these reactions are spread throughout the academic and 

(especially) patent literature, and are readily accessible from major chemical databases and 

platforms. From a data science and statistical modeling perspective, this appears to be an ideal 

situation: a large, diverse, and available dataset containing “real-world” reaction systems to feed 

data-hungry but powerful machine learning algorithms. 

Unfortunately, as noted by several experts in the field,26–29 machine learning predictive 

models trained exclusively by literature/patent-derived data can suffer from several issues, 

including low prediction accuracy and lack of generalizability. Reaction outcome data from the 

literature, despite its abundance, is skewed by the objectives of each individual practitioner. A 

medicinal chemist making structural analogues during a lead-optimization campaign is not 

concerned with achieving comprehensive reaction condition coverage or collecting highly 

accurate yield/rate data; their job is to rapidly prepare target compounds by any means necessary. 

Likewise, an academic chemist developing new synthetic methods is not interested in reporting a 

large number of “failed” reactions; their job is to demonstrate the utility and scope of the new 

method. In other words, the experiments that produced the existing data were not designed or 

executed with an eye toward predictive statistical modeling, and thus great care must be taken 

before using these inputs. Glorius and coworkers have nicely addressed the common types of 

errors and biases in literature-based reaction datasets, which include experimental noise due to 

reporting errors, selection biases caused by researchers’ preference for specific reagents over 
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others, and reporting biases toward successful results. A comparison of reported yield frequency 

between the Reaxys database and data obtained from HTE clearly reveals this latter point, with 

literature-derived data skewed heavily toward higher yields (illustrated in Figure 2 for 

Buchwald-Hartwig couplings).27  

 

 

Figure 2. Comparison of frequency of reported yield values for Buchwald-Hartwig coupling 

reactions taken from the literature (Reaxys database) or from an HTE-based dataset. Values from 

ref. 27. 

 

Selection bias is particularly problematic in synthetic chemistry data. This is because 

synthetic chemists have a high tendency to select specific reagents/catalysts/conditions based on 

familiarity, past success on similar systems, and ease of implementation. Such practices are very 

successful in pursuit of new molecules, but gives rise to a highly unbalanced distribution of 

reaction conditions in the reported datasets. Specifically for organopalladium catalysis, the 
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reported cross-coupling reaction conditions reveal a strong selection bias toward specific 

catalysts. Burke, Grzybowski and coworkers highlighted this issue when attempting to generate 

machine learning based models for Suzuki-Miyaura reactions.28 They trained the models using 

>10,000 literature reported Suzuki couplings with an aim to predict conditions that would lead to 

success in a hypothetical reaction. Instead of making any chemically-meaningful predictions 

with respect to catalyst, solvent, or base choice, the models simply captured popularity trends30,31 

in the literature data. For example, >50% of reported Suzuki couplings use Pd(PPh3)4 as the 

palladium source, and therefore Pd(PPh3)4 was the top recommendation in >80% of the test 

cases.  

Selection bias also extends to the specific target reactions being studied. Pd-catalyzed 

coupling reactions benefit from the large number of commercially available substrates: 

organohalides, boronic acids, amines, etc. However, even with myriad readily accessible and 

relatively complex substrates, reported chemical space coverage of the resulting products is 

actually rather limited. Krska, Dreher, and coworkers at Merck revealed a large disconnect in 

molecular properties between the reported products of Pd-catalyzed cross-couplings and many 

approved small molecule drugs.32 The latter class of molecules generally possess more atoms, 

more H-bond acceptors, lower lipophilicities, and an overall higher degree of molecular 

complexity. Thus, prediction models trained exclusively on literature data may not be 

generalizable to late-stage coupling reactions on advanced pharmaceutical intermediates, where 

additional functional groups and molecular topologies can dramatically affect catalytic 

performance. 

Reporting bias is another prevalent issue in the synthetic chemistry literature. 

Methodology studies frequently report univariate optimization within a relatively limited range 
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of conditions, and/or a series of “deviations from standard” conditions as control studies. 

Furthermore, the highest achievable yields of the target products are the key outcome reported, 

with little/no discussion of unsuccessful reactions (though this is changing for the better more 

recently). In addition, other information that is equally important to guide reaction prediction is 

infrequently disclosed. This includes aspects such as extent of reaction, rate of reaction, mass 

balance, and specific byproducts observed. For example, formation of homocoupling-derived 

byproducts is a common concern in Suzuki cross-couplings,33 but the presence and/or quantity of 

these byproducts often goes unreported. This reporting bias results in literature-based datasets 

being skewed and/or incomplete, which is not ideal when applying them as training/test sets for 

statistical modeling.  

Glorius and coworkers investigated the impact of insufficient low yield data on prediction 

accuracy for machine learning models.27 In a case study on Buchwald-Hartwig reaction 

modeling, they established that the literature dataset was heavily skewed toward high yielding 

examples (>50% of data points with >70% yield, Figure 2); the resulting ML model performed 

relatively poorly, with a mean absolute error (MAE) of ±15%. If an HTE-generated dataset was 

instead used, which has a more realistic distribution of yields (>25% of data points with <10% 

yield), the resulting model was significantly more accurate (MAE = ±10%). Similarly, the 

authors simulated the effect of introducing additional experimental data to cover the low yielding 

reaction space, which again led to improved model performance. 

Fitzner, Wuitschik, and coworkers have conducted large meta-analyses on more than 

62,000 Buchwald-Hartwig coupling reactions reported in three databases (CAS, Reaxys, and 

USPTO).29,34 Their aims were to identify and address the common issues in using literature data 

to guide reaction condition optimization, and to generate useful and broadly generalizable 
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predictions. They pointed out that many reactions are reported with very limited reaction 

information. For example, only 75% of the C–N couplings analyzed have reaction yield reported. 

In addition, essential reaction conditions such as temperature, reaction time, reagent scale and 

catalyst loading are significantly underreported. As already discussed in the context of Glorius’s 

study, yields that are reported are skewed toward higher values in both the patent and non-patent 

literature (median yield >60% in recent years).  

Importantly, this meta-analysis revealed reporting biases extend beyond (high) yield and 

(popular) catalyst/ligand to include solvent – nearly 80% of reactions use toluene or dioxane – 

and base – nearly 80% of reactions use NaOtBu or Cs2CO3 (Figure 3). Reporting bias can also 

result from specific target applications becoming more prominent: the authors noted a large 

increase in use of P(tBu)3 and diarylamine nucleophiles beginning around 2014, due to an 

explosion of patent claims around OLED-relevant materials. Thus, while 62,000 reactions may 

seem like an ideal “big data” set, there are huge swaths of homogeneity in reaction conditions 

used, as well as overrepresented substrate/product classes based on commercial need. Thus, 

simply increasing the number of reactions in a dataset may not necessarily expand the 

chemical/reaction space coverage. 
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Figure 3. Diversity analysis of reported reaction conditions for C–N couplings from a combination 

of three databases (CAS, Reaxys, and USPTO). Plots represent % of reported conditions (y-axis) 

that contain the top N settings (x-axis). For example, ~80% of reactions in the complete database 

use just the top two solvents (top N = 2). Reproduced from Figure 4 in ref. 29, which is licensed 

under CC BY-NC-ND 4.0. 

 

These data issues have an obvious impact on model accuracy and applicability. Fitzner 

and Wuitschik’s initial meta-analysis did result in a set of qualitative predictive tools to aid 

condition selection for Buchwald-Hartwig couplings based on substrate type.34 Subsequent work 

from this group on quantitative machine learning models trained on this large dataset revealed 

how such models can be misleading when applied to new synthetic cases beyond the initial 

training set.29 Although their model performs well in training/test splits within the literature data, 

it fails to extend its predictive power to a new reaction dataset obtained by experiment (external 

predictions). They attribute this lack of generality to all of the aforementioned biases in the 

literature data. These hidden biases retained in the literature data make it impossible to account 

for all the important reaction parameters that must be considered and explored when discovering 
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or optimizing a new reaction. By presenting their failed attempt to achieve a general-purpose 

predictive model trained solely on literature data, they have identified a potentially general 

problem with such models: evaluating performance using test data taken from the overall 

literature data set may lead to overestimation of accuracy/generality. Thus, the authors suggest 

that it is important to use lab-generated reaction data (e.g. obtained by HTE) for reaction 

predictive model training and assessment. 

Importantly, expert curation can be a powerful approach in leveraging literature data for 

predictive models. A study by Schleinitz et al. on predicting reaction yield highlights the 

importance of the quality of the data, rather than the quantity, in assembling a robust training 

dataset.35 While this is not specifically organopalladium catalysis, the approach and lessons from 

this work are highly relevant. Among an initial dataset of >2000 Ni-catalyzed C–O couplings 

from the literature, the authors carefully selected a small subset of reactions (~200) that best 

represent the reaction information and chemical space covered by the original dataset. They then 

trained machine learning models using the large and curated datasets for comparison. The model 

trained with the small subset achieved the same predictive performance compared to the model 

trained on the original large dataset. Their study also reveals the importance of including failed 

experiments and low yield reactions extracted from optimization tables, such as those contained 

in Supporting Information sections. This will help to overcome reporting biases and lead to 

reaction datasets with a greater potential for generalization. 

Perspectives on the Available Data. The above examples highlight the importance of 

knowing the limitations and biases of literature databases as a source of training data for 

predictive models. Using expert chemical knowledge in dataset assembly and curation prior to 

model training is critical to ensure accurate and useful predictions. The success of any statistical 
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modeling approach to reactivity predictions will rely on the quality and diversity of the training 

dataset. Even a relatively small dataset can be suitable if it covers a significant chemical/reaction 

space. The above examples also highlight how synthetic chemists can help improve the 

applicability of literature data toward predictive modeling. For any new method, evaluating a 

diverse and balanced chemical space when exploring reaction scope is enormously useful, such 

as with an informer library.32 And evaluating/reporting diverse reaction conditions that result in a 

range of reaction yields is more useful than reporting only the “champion” conditions and yield. 

Recent initiatives such as the Open Reaction Database seek to standardize and streamline dataset 

curation to ensure each entry is complete and in machine-readable format, which should greatly 

improve the quality and accuracy of resulting models.36 

One final perspective on existing literature datasets is whether the synthetic chemists’ 

main metric (yield) is the best response variable for predictive modeling. Whether in academic 

papers or patent examples, the isolated yield is the universal measure of reactivity in organic 

synthesis. Accordingly, all of the aforementioned models are trained to build connections 

between molecular structure, reaction conditions, and yield values, with the key predicted 

outcome being the yield.37 However, the reliability and consistency of reported yields data from 

different literature sources give rise to concerns for its use in predictive model training. Due to 

lack of consistency in our reporting practices, a literature yield could refer to several different 

measurements, such as solution or assay yield by NMR, GC, or HPLC analysis (common during 

optimization), or isolated yield after workup/purification (for reaction scope exploration). 

Importantly, isolated yields are not only a measure of reactivity, but the efficiency of the 

isolation procedure. Thus, there must be systematic errors in isolated yield values due to product 

loss during workup and purification.38 This would be especially prevalent in cases where high 
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purity is desired over maximum yield – such as in the pharmaceutical syntheses that populate the 

USPTO database! 

Another concern with reaction yield as the major response variable is the small range of 

values it can take. Yields are bounded between 0-100%, and nearly always reported to the 

nearest percent. The small product masses (10-100 mg) isolated from many reactions also mean 

that isolated yields may have significant measurement errors. The narrow reporting range and 

low precision of isolated yields makes it difficult to capture and model significant reactivity 

differences, especially in lower yielding reactions. For example, the difference between 85% and 

95% yield and between 0% and 10% yield are both 10%; however, from a reactivity standpoint 

the former is barely significant, while the latter is very significant. Other measures of reaction 

outcome, such as rate or selectivity, can span multiple orders of magnitude and have distinct 

advantages in reactivity prediction; unfortunately, they are also much less frequently reported. 

 

DATA-RICH COMPUTATIONAL APPROACHES 

A crucial aspect of any quantitative structure-reactivity dataset is the collection of 

descriptors used to define molecular structures and reaction conditions. Thanks to tremendous 

developments in computer performance and theoretical methods, computational chemistry has 

made impressive progress in performing fast and reliable calculations for a wide variety of 

chemical systems. Especially germane to reactivity prediction, computational chemistry is 

extensively used to create molecular structural representations and corresponding numerical 

descriptors, and to compute reaction coordinates, transition states, and reaction barriers. It is a 
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powerful complement to experiments in validating mechanistic hypotheses and accelerating 

reaction optimization in synthetic chemistry.39 

Whether by univariate regression or unsupervised machine learning, data-driven 

prediction models are developed by establishing quantitative relationships between 

experimentally obtained or computed molecular descriptors and measured reactivity outcome 

values. The application of powerful computational tools and mechanistic insights has vastly 

increased the number of relevant physicochemical descriptors to quantify molecular properties. 

Mechanistically relevant descriptors that directly impact chemical reactivity have found great 

value in reactivity prediction, such as the computed notations representing the electronic,40,41 

steric,42–44 and vibrational45 properties of a substrate or catalyst. Activation barriers determined 

from calculated transition state energies have also contributed to quantitatively accurate reaction 

outcome predictions.46 Finally, computational methods combined with statistical algorithms are 

used to develop automated workflows for tasks ranging from training data selection to error 

assessment of the output numbers for improved efficiency and reliability in reaction 

predictions.47,48 

Mapping Catalyst Chemical Space. A key aspect of organopalladium catalysis where 

computationally-derived datasets are prevalent is in ligand parameterization. Understanding and 

predicting the effect that a given ligand will have on reactivity and selectivity is central to Pd-

catalyzed coupling. Ligand choice is often the most consequential factor for catalyst performance 

(both rate and productivity), especially with less reactive but more abundant substrates (e.g. 

unactivated Ar–Cl).49–52 In addition, ligand identity is known to be a crucial factor to control site 

selectivity for Pd-catalyzed couplings of multihalogenated substrates.53,54 Accordingly, ligand 

screening from large and diverse ligand libraries is a frequent activity in industrial HTE labs. 
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However, to adequately cover the available chemical space even within a subclass of supporting 

ligand is time and resource intensive. Computational tools have been invaluable in mapping this 

chemical space with large sets of relevant numerical descriptors.  

Fey and coworkers have pioneered this approach through curation of the Ligand 

Knowledge Bases, a series of focused ligand descriptor datasets for specific ligand classes 

relevant to catalysis.24,55 These sets include mono and bidentate ligands with P (Figure 4A), C 

(carbene), N, and O donor atoms, with more than 1,300 entries containing at least 20 descriptors 

each. This focused approach allows each ligand class to be described by a relevant set of 

descriptors; for example, descriptors for LKB-PP (bidentate P,P and P,N ligands) were adapted 

to account for multiple donor atoms and specific steric aspects of chelate bite angle.56 Likewise, 

LKB-C (carbene ligands) was designed to take into account differences in electronic 

configuration between Schrock, Fischer, and NHC type carbene ligands.57 To highlight the 

LKB’s relevance to organopalladium catalysis, Fey and coworkers mapped HTE-derived Pd-

catalyzed C–N coupling data against the principal component analysis (PCA) map of LKB-P 

(monodentate P).58 While a quantitative model was not reported, the data visualization revealed a 

clear structure-reactivity trend where large, electron-rich phosphines are clearly optimal. In fact, 

adjacent to the most reactive ligands in the PCA map are several Buchwald-type biaryl ligands 

(not tested in the experimental data set) that are known to be very effective in this chemistry. 

Thus, LKB descriptors can potentially help to guide subsequent ligand screening. 
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Figure 4. A comparison of two monodentate phosphine databases: A) LKB-P (reproduced with 

permission from ref. 58) and B) Kraken, with representative phosphines shown (reproduced with 

permission from ref. 60). Each database is represented by two-dimensional principal component 

analysis (PCA) plot. In the LKB-P, PC1 is predominantly electronic in nature, while PC2 is 

predominantly steric. In the Kraken visualization, PC1-PC4 have the indicated contributors. 

A

B
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Schoenebeck and coworkers recently reported using the LKB descriptors as a basis for 

ligand clustering analysis.59 Their group’s interest in dimeric Pd(I) species as precatalysts led 

them to investigate the ligand properties that stabilize these dimers versus those that fail to 

generate stable dimers. Based on the initial LKB PCA map, there is no clear trend, with 

successful (e.g. P(t-Bu)3) and unsuccessful (e.g. PCy3) phosphines residing in the same PCA 

space. Clustering analysis using k-means reveals subtle but key differences between the ligand 

types, which were reinforced using specific calculated descriptors related to Pd(I) dimer 

formation. This targeted ligand mapping led to identification of new ligands that support Pd(I) 

dimers, which were validated experimentally by isolating and characterizing eight previously 

unknown derivatives. This example shows how effective data analysis is just as important as 

efficient collection and collation of computational data: the initial PCA plot of LKB descriptors 

fails to capture the subtle but significant differences within  the descriptor map, but alternative 

analyses (here, via k-means clustering) can reveal these “hidden” features. 

More recently, Gensch, Sigman, Aspuru-Guzik and coworkers created an online 

descriptor database for monodentate phosphines (Figure 4B).60 This database significantly 

expands the chemical and descriptor space applied to this important class of ligand, and 

incorporates conformational effects. For an initial set of 1,558 ligands (including the 200 most 

commonly cited phosphines in the literature), the authors calculated 190 individual descriptors 

using DFT methods. From this set, they then were able to train machine learning models to 

predict properties for a further 300,000 potential phosphine ligands. Thus, combining DFT and 

ML methods is a powerful approach to rapidly generate “big data” for molecular descriptor sets. 

In a follow-up study, Gensch, Sigman, and coworkers applied this phosphine descriptor 

database to guide the development of a diverse monodentate phosphine screening set to 
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maximize chemical space coverage.61 Unlike continuous reaction variables, such as temperature 

and reaction time, the electronic and steric properties of the PR3 ligands are generally treated as 

categorical/discrete variables in experimental screening. In a typical HTE-based optimization 

approach, researchers will design an array using a combination of literature precedent and 

chemical intuition.15 They will then determine which ligands to test next by analogy/perceived 

similarity to the most successful candidates in an iterative approach. Inevitably, this leads to 

selection biases when the search space for the discrete parameters is not well defined. To explore 

the discrete ligand space systematically, the authors sampled all of the commercially available 

PR3 ligands from the virtual library and generated a four-dimensional principal component (PC) 

space from the descriptor set. Using a computational data-driven workflow, they then winnowed 

down to a diverse set of 32 monophosphines intended to maximally and uniformly cover the 4D 

PC space. Application of this screening set to several Pd-catalyzed C–C and C–N coupling 

reactions revealed the expected spread of catalytic results, with a clear positive hit (or several) 

observed in each case. Furthermore, given the logical design of the screening set, follow-up 

investigations can focus on ligands in close PC space proximity to “hit” ligands, reminiscent of 

the LKB-P example described previously. 

High-Throughput Computation of Reaction Energy Profiles. In the absence of large 

experimental data sets of catalyst activity and/or selectivity for a given transformation (or set of 

transformations), computational studies can provide an invaluable source of data. Comparing 

relative energies of putative intermediates and/or transition states between different systems 

gives a molecular-level view of catalyst reactivity that is highly tunable. This is especially 

powerful where obtaining sufficient experimental data is cost and/or time prohibitive. It also 
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provides a method to interrogate aspects of the reaction mechanism that would be difficult or 

impossible using purely experimental means.  

Corminboeuf and coworkers have successfully applied high-throughput computational 

tools to construct linear free energy scaling relationships for catalytic reactions, and represent 

these using “volcano plots”.62,63 Such plots are commonly used in heterogeneous catalysis and 

electrochemistry, and originate from Sabatier’s principle that an ideal catalyst-reactant (or 

catalyst-product) interaction should be neither too strong nor too weak.64,65 By extending this 

concept to homogeneous catalysis, Corminboeuf’s group is able to gain new insights and make 

predictions of catalyst performance for transition metal-catalyzed cross-coupling reactions.  

They first validated the concept of molecular volcano plots using Suzuki coupling 

reactions as a key case study (Figure 5).66 For this initial analysis, catalytic behavior was 

modeled using thermodynamic aspects of the catalytic cycle: namely, the free energies of 

calculated catalytic intermediates for a variety of transition metals, and the linear relationship 

between the free energies of those intermediates. This analysis effectively reproduced the 

experimentally validated fact that Pd-based catalysts are optimal for Suzuki cross-coupling.  
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Figure 5. Molecular volcano plot of the calculated thermodynamics of oxidative addition (Rxn 

A), transmetallation (Rxn B) and reductive elimination (Rxn C) for a series of Ni, Pd, Pt, Cu, Ag, 

and Au catalysts Optimal performance is achieved by Pd-based catalysts, which have intermediate 

exergonicities of oxidative addition as compared to other transition metals Reproduced from ref. 

62, which is licensed under CC BY-NC-ND 4.0. 

 

In follow-up work, Corminboeuf and coworkers significantly expanded the catalyst pool 

under investigation to include more than 25,000 potential complexes.67 Using DFT-obtained 

thermodynamic data on the free energy of oxidative addition for 7,000 of these as a training set, 

they were able to use machine learning analysis to predict those values for the remaining 18,000 

potential catalysts. Constructing a molecular volcano plot using these thermodynamic parameters 

and filtering candidate catalysts by cost led to identification of 37 ideal candidates based on Pd 

or Cu. The authors also exploited this large dataset for further analysis through dimensionality 
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reduction via clustering analysis, extracting ligand effect trends across multiple cross-coupling 

reaction classes.68 Finally, in addition to studying catalyst effects on reaction performance, they 

have also applied the volcano plot analysis to studying how substrate structures and substituents 

affect the outcome.69 

The use of calculated transition state energies is another powerful indicator of catalyst 

performance, though collecting sufficient data can be challenging. A recent example by Yu, Fu, 

and coworkers showcases this approach to study the activating effect of Brønsted acids on the 

Pd-catalyzed C–O bond cleavage of allyl alcohols.70 They created a computationally derived 

reaction database containing 393 DFT calculated activation barriers, followed by multivariate 

linear regression (MLR) model training using calculated molecular descriptors. The prediction 

accuracy was confirmed by a small experimental test set (taken from the literature71), with good 

agreement between predicted ΔG‡ and the experimental product yield. 

Despite gains in computing power, generating large data sets by traditional computational 

methods can be time and resource intensive. This is especially true when assessing a large pool 

of candidate ligands, catalyst species, and/or substrates at a high level of theory. To streamline 

computational approaches to studying large numbers of transition metal catalysis, Maeda and 

coworkers have presented a virtual ligand-assisted screening strategy to overcome the typical 

difficulties in transition state (TS) calculations for complex catalyst structures.72 A virtual ligand 

is designed to approximate the structural features of a genuine ligand. This means that a virtual 

ligand reproduces the electronic and steric effects of the real system, while being simpler and 

faster to calculate. The initial case study from Maeda and coworkers successfully demonstrated 

how this virtual ligand approach can improve the efficiency of TS structure searches, and 

parameter-based optimization for simple monodentate phosphines (PR3). The authors point out 
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that the future direction of virtual ligand screening development is to extend its scope to more 

complex ligand structures, which requires invention of new computational methods to 

approximate several other important ligand properties. 

Currently, accurate and fast mechanistic modeling of organometallic transformations 

remains challenging. Schoenebeck has highlighted that computational studies of large, complex 

systems with myriad mechanistic possibilities lead to exponentially growing search directions 

(and thus exponentially growing computational resources).39 An additional challenge is that 

calculation outcomes often depend on the theoretical method employed,73 leading to another 

layer of complexity in designing high-throughput computational studies. Therefore, amassing 

computational data for a large array of Pd-catalyzed reactions needs to be performed with 

caution, balancing both calculation speed with accuracy. 

 

HIGH-THROUGHPUT EXPERIMENTATION 

Big data on demand via miniaturized array-based experiments. High throughput 

experimentation (HTE) is an increasingly common approach in both academic and industrial 

labs. HTE is especially well-suited to studying catalytic reactions, where the number of factors 

affecting reaction outcome are generally greater than in non-catalytic systems. While HTE is 

often used with the aim of either discovery (does this transformation work?) or optimization 

(what is the best set of conditions to maximize yield/selectivity?), it is also an invaluable 

approach to generating large internally-consistent datasets on demand. This Perspective will 

focus only on recent, illustrative applications of HTE in organopalladium chemistry; readers 

interested in HTE more generally are directed to several recent reviews on the topic.14,15,74–80 
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As HTE enables a data-rich approach to the discovery of chemical reactions – many more 

factors and their interactions can be studied simultaneously – it is particularly well-suited to the 

study of Pd-catalyzed processes. A typical cross-coupling reaction system includes numerous 

categorical factors (Pd source, ligand, base, solvent) and continuous factors (time, temperature, 

concentration, stoichiometries) that are impossible to fully assess “one factor at a time” (OFAT). 

Led by industrial R&D groups, particularly in pharmaceutical discovery and process chemistry, 

as well as academic HTE centers, data-rich HTE approaches to multifactor exploration and 

optimization have been demonstrated on many Pd-catalyzed reactions.15 In addition to the direct 

applicability of these studies to active pharmaceutical ingredient (API) synthesis, 

organopalladium catalysis is again a general proving ground for data-rich techniques.  

Developing new data-rich capabilities often goes hand-in-hand with applications in 

organopalladium chemistry. One set of examples is the development of new methods for high-

throughput reaction set-up and analysis for dense reaction arrays. Researchers at Merck used a 

combination of advanced liquid handling automation with rapid UPLC-MS or MALDI-TOF MS 

analysis to interrogate thousands of Pd-catalyzed C–N coupling reactions in plate-based 

formats.81,82 Researchers at Pfizer similarly demonstrated a new flow-based HTE platform using 

Pd-catalyzed Suzuki-Miyaura couplings to run and analyze thousands of examples.83 In 

academia, the Cernak group is continuing to push the envelope of ultra-high throughput methods 

in array design and execution.84–86 In the area of laboratory automation, the Hein group, in 

collaboration with Merck and the Aspuru-Guzik and Sigman groups, demonstrated the power of 

data-dense experimentation in an autonomous optimization of a Pd-catalyzed Suzuki-Miyaura 

reaction.18 The Newman group published a user-centered “how-to-HTE” guide on multiwell 

screening, using a Pd-catalyzed C–N coupling as the prototype reaction.87 And finally, even 
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undergraduate teaching lab experiments on microscale HTE employ Pd-catalyzed reactions as 

the exemplars.88 

Our research group focuses not only using HTE and data-rich techniques to develop new 

reactions,89–93 but also to better understand how reactivity and mechanism change as a function 

of the reaction system.41,94,95 To enable these efforts in the realm of organopalladium chemistry, 

we identified a need for Pd precursor compounds that are specifically suited to HTE studies. 

While many options exist for Pd(II) precursors, the only versatile Pd(0) source for in situ catalyst 

formation is Pd2dba3 and its crystalline solvates.96–99 Its (mostly) desirable reactivity is offset by 

known issues with stability, quality, and solubility; the latter point is crucial for conducting HTE 

that relies on liquid dispensing. In 2021 we reported an easily prepared and air-stable Pd(0) 

precursor, DMPDAB−Pd−MAH, which was designed specifically for HTE applications (Figure 

6).100 Inspired by prior work from Cavell, Stufkens, and Vrieze,101 as well as from Elsevier,102,103 

we chose a glyoxal-derived α-diimine (or diazabutadiene, DAB) supporting ligand with an 

electron-deficient alkene (maleic anhydride) to stabilize the Pd(0) center. While we initially 

investigated the known tBuDAB–Pd–MAH complex as a precatalyst for HTE, the challenges of 

working with tBuDAB (volatility and stench) combined with sluggish ligand substitution rates 

with bulky phosphines led us to explore N,N’-diaryl diimines. With 2,6-dimethylphenyl groups 

at nitrogen (Figure 6A), DMPDAB–Pd–MAH is easy to prepare and isolate on multigram scale 

(Figure 6B), is easy to analyze for purity by NMR spectroscopy, is indefinitely bench stable 

under air, is soluble and stable in a variety of common organic solvents, and – most importantly 

– rapidly and quantitatively undergoes ligand substitution with every phosphine tested to date 

Figure 6C). This includes the exceedingly large AdBippyPhos and AlPhos.104 
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Figure 6. Synthesis of A) DMPDAB and B) DMPDAB–Pd–MAH. C) Ligand substitution of 

DMPDAB–Pd–MAH to rapidly generate mono or bis(phosphine) complexes, critical for in situ 

catalyst formation during HTE plate setup. 
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We have confirmed the efficacy of DMPDAB–Pd–MAH as a precursor for in situ catalyst 

formation during HTE for a number of Pd-catalyzed reactions. Our initial evaluations focused on 

cross-coupling chemistry, with C–N, C–C, and C–O bond formations among the reactions tested 

(Figure 7).100 In subsequent work, we used DMPDAB–Pd–MAH to aid in reaction discovery for 

Pd-catalyzed tandem C–O/CH activation, where we found it to be the best Pd precursor for in 

situ catalyst formation.92 These results indicate not only that DMPDAB–Pd–MAH is effective in 

catalysis, but also highlights a broader aspect of applying HTE to Pd-catalyzed reactions: the 

choice of Pd source is often critical to reaction success, even with all other factors held constant. 

There is, as yet, no universal Pd precursor that is effective for in situ catalyst formation 

regardless of reaction type or conditions used. This must be taken into consideration when 

designing and collecting training sets via HTE, especially where a variety of ligands and/or 

reaction conditions are being explored. Work is underway in our laboratory to generate 

additional Pd(0) and Pd(II) precursors that will approach the ideal of a universal precursor for 

HTE. 
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Figure 7. Comparison of DMPDAB–Pd–MAH (denoted DAB–Pd–MAH) with three other Pd 

sources in microscale HTE screening for cross-coupling reactions, including a newly developed 

C–O/C–H activation reaction for direct C–H alkenylation. Data from refs. 92 and 100. 
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While HTE has been widely used to conduct catalyst screening exercises, as well as 

multifactor optimization studies like those shown in Figure 7, the identities of the substrates 

themselves are increasingly being explored via HTE. Sather and Martinot used a data-rich 

approach to find the best reaction conditions for fusing piperidine-based nucleophiles with five-

membered heteroaromatic bromides, a difficult C–N coupling type that has been rarely studied 

before.105 Extensive HTE revealed Pd-PEPPSI IHeptCl – an advanced precatalyst from the Organ 

group106 – as the best catalyst in their model pyrazole-based system, as well as specific 

solvent/base combinations that prevent substrate decomposition. They subsequently tested the 

generality of this catalyst system in a panel of 48 unique heteroaryl bromides, with a “hit-rate” of 

~50% (products observable by LCMS). This evaluation revealed several important features of 

the reaction, including incompatibility with certain ester functional groups, as well as protic 

functional groups including alcohols and amides. 

In 2019 we, along with collaborators at GSK and Temple University, conducted a similar 

study of a challenging C–N coupling involving sulfonamide arylation.89 Multi-substrate HTE 

revealed the BippyPhos class of ligands as superior, with AdBippyPhos as the optimal candidate. 

To evaluate the generality of this reaction, we tested an array of 288 substrate combinations: 24 

heteroaryl halides and 12 primary and secondary sulfonamides. In this case, our “hit-rate” was 

~25% (where coupled products were observed by LCMS in >10% area). Several substrates were 

ineffective when paired with any coupling partner, while others were effective with nearly all 

coupling partners. These kinds of substrate-focused HTE studies not only provide a map of 

reaction scope and highlight gaps in applicability, they are crucial as training sets for statistical 

analysis and reaction prediction. 
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Combining high-throughput experimental and computational approaches. HTE 

screening in chemistry is often aimed at achieving the ideal solution to a synthetic task. Beyond 

the optimization goal, the ability to generate hundreds-to-thousands of data points in a deliberate 

way means HTE is ideally suited as a means to build training datasets for reaction prediction. 

Multivariate HTE designs create reaction data libraries that cover a broader range of chemical 

structure and reaction space, and have more representative outcomes than literature data (vide 

supra, Figure 2). Such high-density coverage of reaction space is ideal when building 

quantitative statistical models for reactivity and/or selectivity, providing the experimental link to 

large computational datasets that are increasingly accessible (vide supra, Figure 4). 

Catalytic reactions are known to be acutely sensitive to seemingly minor changes, where 

subtle alterations to catalyst structure, solvent identity, or even reaction concentration can have a 

dramatic impact on reaction outcomes. Understanding the underlying connections between 

reaction conditions, molecular structure, and chemical reactivity is both a fundamental goal of 

catalysis research, and is crucial to making accurate predictions. Because of the flexibility in 

experimental design and efficiency in data collection, HTE can be used to study how specific 

aspects of a reaction system impact reactivity, providing sufficient experimental data to train 

predictive models. Notably, the following three illustrative examples are all academic/industry 

collaborations. 

A seminal example of combining high-throughput experimentation and computation for 

predictive modeling is the work of Dreher, Doyle, and coworkers on Pd-catalyzed C–N 

coupling.107 Their study was focused on the effect of a specific type of inhibitory additive, 

isoxazole heterocycles, on the performance of various C–N couplings. Using Merck’s nanoscale 

high-throughput platform, they collected a multidimensional experimental dataset of ~4000 
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reactions by combining 23 isoxazoles with different aryl halides, solvents and bases. From the 

computational side, a large set of molecular descriptors was generated without biasing selection 

with (possibly incorrect) mechanistic hypotheses. A variety of modeling approaches were 

evaluated, from multivariate linear regression (MLR) to machine learning (ML) algorithms, with 

a random forest algorithm providing the most accurate model. Even though ML-based models 

can be difficult to interpret mechanistically, the authors used a sensitivity analysis for key 

descriptors (i.e. how much is the model error increased by randomizing a given descriptor) to 

derive mechanistic insight. The two most sensitive descriptors are isoxazole-based, and are 

linked to electrophilicity (calculated 13C chemical shift of the C3 site, and LUMO energy), 

suggesting the most potent isoxazole inhibitors undergo competitive oxidative addition to Pd(0). 

This was verified experimentally by spectroscopic observation of the competitive N–O oxidative 

addition to Pd(PPh3)4. Notably, this work did generate commentary about the use of different 

feature sets,108,109 whether chemical-based (as in Dreher and Doyle’s approach107) or random-

valued (as discussed by Chuang and Keiser108). While the chemical insights and out-of-sample 

prediction accuracy of the initial random forest model validate the use of chemical-based 

descriptors in this case,109 incorporating control procedures and best practices into ML data 

analysis is crucial for those looking to use this powerful technique across the chemical 

sciences.26,110 

Making predictions for multiple outcomes – such as high activity and selectivity – poses 

additional challenges for reaction modelling. This is particularly the case for regio- and/or 

stereoselective catalysis, where both high chemical yield and high selectivities are requirements 

for a successful process; thus, catalyst/ligand optimization requires a multi-objective approach. 

Mack, Sigman, and coworkers reported a data-driven workflow using high-throughput 
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computation and experimentation for multi-objective ligand optimization. This approach was 

demonstrated for two key enantioselective steps toward an investigational API from 

Genentech.111 These steps are a regio- and enantioselective Pd-catalyzed Hayashi-Heck coupling, 

following by regio- and enantioselective Rh-catalyzed hydroformylation; the discussion here will 

focus on the first step (Figure 8A). In this case, the data foundations for this study are a 

computational database consisting of >550 bisphosphine ligands with DFT derived descriptors, 

and an experimental HTE screening database using a group of selected ligands based on previous 

research findings. These then informed the multi-objective analysis (Figure 8B). The ligands 

screened were classified based on a reactivity threshold analysis, where the phosphorus lone pair 

occupancy was an effective single descriptor. This revealed that phosphines below a threshold 

value were generally active, enabling a more focused ligand set to be taken forward. Then, 

regioselectivity as a function of ligand structure was assessed by MLR, revealing only two 

descriptors – anisotropic 31P NMR shielding value and P–C σ* orbital occupancy – were 

sufficient to build a robust correlation. Finally, a virtual screen of the entire bisphosphine 

database identified ligands predicted to be even more regioselective than those in the HTE 

dataset, leading to experimental validation of (S)-HexaMeO-BIPHEP as optimal from a 

combined activity, regioselectivity, and enantioselectivity standpoint (Figure 8C). 
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Figure 8. A) Hayashi-Heck coupling required in high yield, enantioselectivity, and 

regioselectivity. B) Step-wise multi-objective optimization via a data-rich computational / HTE 

approach, with univariate threshold analysis for activity, followed by MLR analysis for 

regioselectivity, and finally virtual screening for extrapolation to superior catalyst. C) Improved 

outcome with new catalyst system. Plots reproduced with permission from ref. 111. 

 

In another example from the Sigman/Genentech collaboration, Xu et al. reported the use 

of MLR modeling to optimize an atroposelective Pd-catalyzed Negishi reaction using chiral 
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bisphosphine ligands. This step is key for the synthesis of a potent KRAS G12C covalent 

inhibitor, GDC-6036.112 Using Genentech’s HTE capabilities, the authors rapidly collected a 

focused set of data for a variety of chiral ligands, with only 3 out of 24 giving yields >20%, and 

none with e.r. >70:30. One Walphos-type ligand was identified as superior in this initial set, 

leading to a more focused HTE campaign to generate a Walphos training set for MLR analysis. 

The resulting linear model facilitated virtual ligand screening and experimental verification, akin 

to that described above, leading to high stereoselectivity for the desired Negishi reaction using 

W057-2 as the optimal ligand.  

Notably in this case, the excellent selectivity exhibited by W057-2 is not transferable to 

other coupling partners in model Negishi reactions. Even small structural changes to the 

substrates result in significantly diminished yield and selectivity. This lack of generality is likely 

due to the focused HTE-based training set, where substrate variations were not taken into 

account. This is obviously not an issue for the Genentech researchers, who are primarily 

concerned with synthesis of GDC-6036 rather than simpler biaryls; however, it does reveal the 

broader challenges and complexities in discovering general catalytic systems, where 

substantially more data is required to account for interactions between substrate and catalyst.  

Quantitative structure-rate relationships (QSRRs). Overall, combining HTE with 

MLR/ML analysis to link experimental outcomes to calculated descriptors is an excellent 

approach to building robust, accurate, and potentially generalizable predictive models. However, 

as discussed previously, using reaction yields as the outcome variable is not optimal for 

quantitative modeling. Kinetic parameters (rates, rate constants, ∆G‡ values) are superior to 

yields as an outcome variable, especially for mechanism-based approaches. Many of the best-

performing models – such as the two Sigman/Genentech examples above – use selectivity 
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measurements as the outcome metric. If under kinetic control, selectivity represents a ratio of 

reaction rates for the formation of one product or the other, and therefore can be used to 

construct linear free energy relationships (LFERs). This is why selectivity values are often 

represented as Δ∆G‡ – i.e. free energies – in the resulting models. 

A classic example of LFERs in physical organic chemistry is the Hammett equation,113 

which has been widely used to study mechanistic aspects of organic and organometallic 

reactions.114–116 A relevant example in organopalladium chemistry was reported by Maes, Jutand, 

and coworkers, who studied the oxidative addition of 2-halopyridines to Pd(PPh3)4 using 

Hammett analyses of experimentally measured rates.117 The corresponding Hammett plots and 

DFT calculations of transition states reveals that the oxidative addition mechanism for 2-

halopyridines changes depending on the identity of the halide. A polarized nucleophilic 

displacement mechanism was proposed for 2-chloro and 2-bromopyridines, whereas a classic 3-

centered mechanism was proposed for 2-iodopyridines. 

Kinetic values can outperform yields in providing chemically-meaningful predictions 

because the major objective that most models are trained to predict – whether explicitly or 

implicitly – is kinetic in nature. Higher reaction yields are often correlated to favorable reaction 

kinetics. However, unlike selectivity or yield measurements – which are easily performed in 

HTE-type formats – determining large numbers of kinetic parameters via rate analysis is much 

more challenging. Rate data is also not as widely reported in the literature, limiting the 

usefulness of reaction database mining. A recent successful example of using literature rate data 

to train an ML QSRR model was reported by Jorner, Brinck, Norrby, and Buttar (yet another 

academic/industry collaboration!).46 While this study focused on SNAr chemistry and not 

organopalladium chemistry, their approach is likely to be generally applicable provided 
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sufficient data is available. The authors trained an ML model using a combination of >400 

experimental rate constants from the literature, automated DFT transition state modeling, and 

calculated molecular descriptors for each component of the reaction system. This model has 

excellent prediction accuracy across a wide range of reported SNAr reactions, though the 

literature dataset is necessarily skewed toward certain substrate classes (e.g. fluoronitroarenes as 

electrophiles). Importantly, the hybrid DFT/ML approach is superior when fewer experimental 

datapoints are used, which is a likely scenario when using kinetic parameters. Finally, this model 

performed extremely well in site selectivity predictions for out-of-sample multihalogenated 

electrophiles, despite not being trained for that purpose.  

Jorner et al.’s work highlights the power of using kinetic parameters in quantitative 

modeling; however, data collection for new systems is non-trivial. In a collaboration between 

Pfizer and the Sigman group, independently measured rate constants were used to build a QSRR 

model for amide coupling.118 Rate constants for 44 individual amide couplings – chosen via PCA 

of the chemical space for ~5,100 carboxylic acids and ~3,500 primary amines – were determined 

from concentration versus time profiles. Even for a relatively modest set of rate constants, this is 

a substantial experimental burden; however, the authors explicitly point out the superiority of 

using rate constants as opposed to yields. 

To efficiently assemble rate-based datasets as a foundation for predictive modeling, 

alternative techniques are required. The concept of “one-pot multi-substrate screening” was 

introduced by Kagan for its application in fast optimization of asymmetric catalysts for various 

enantioselective reactions.119,120 In 2007-2008, Plenio and coworkers extended this concept to 

realize high-throughput kinetic analysis of Pd-catalyzed Sonogashira couplings.121,122 The 

authors of these two studies were able to simultaneously collect initial rates for up to 25 
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substrates in a single reaction flask. This significantly reduces the number of measurements 

needed to generate large kinetic datasets. Their QSRR studies combined 29 aryl bromide 

substrates with 17 monophosphine ligands for a total of 410 individual reactions. This pioneering 

study demonstrates the power of creative experimental design in high-throughput 

experimentation, where more individual experiments is not necessarily required to amass 

sufficient data. While the quantitative analysis provided by the authors does not attempt to create 

a unified multivariate model, this dataset was invaluable to our group as an external test set for 

catalytic predictions (vide infra).  

Plenio and coworkers do note some limitations of the one-pot, multi-substrate kinetic 

analysis approach. One challenge is measuring initial rates for very fast reactions, due to the 

need for offline analysis by (in their case) GC. Another challenge specific to this method is to 

accurately measure rates for the slowest reactions in a multi-substrate set, as the effective 

catalyst concentration per substrate will increase once the faster reactions finish. Thus, care must 

be taken to validate the results from these multi-substrate studies. Nevertheless, this approach is 

likely applicable to many reaction types, and should prove valuable for high-throughput kinetic 

analysis. 

Our group has also considered the challenges of collecting large kinetic parameter 

datasets, and have taken a different approach to reducing the experimental burden. Rather than 

collect rate data from multiple measurements of concentration over time, we opted to measure 

relative rates via competition experiments. This effectively converts rate measurements to 

selectivity measurements. It also enables data collection for extremely fast reactions, since a 

concentration-time profile is not required. Using this approach, we recently reported two QSRR 

models for accurate prediction of SNAr94 and Pd-catalyzed cross-coupling reactivity.41 By 
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correlating calculated molecular descriptors to relative free energies of activation (ΔΔG‡), we 

obtained MLR models that have excellent performance to predict rate and selectivity for many 

external datasets. A discussion of the Pd-based work is illustrative of this approach. 

Rather than study a specific class of Pd-catalyzed reaction, we focused our QSRR study 

on a key step in the catalytic mechanism: oxidative addition. This fundamental transformation is 

common to myriad catalytic reactions, and is often turnover and/or selectivity determining in Pd-

catalyzed transformations (Figure 9A). We therefore hypothesized that a QSRR model for Ar–X 

oxidative addition to Pd(0) would be applicable to many different Pd-catalyzed cross-coupling 

reactions. To collect the required rate data, we assembled a diverse set of (hetero)aryl halides 

with a variety of substitution patterns, and ensuring heterocyclic substrates were well-

represented. Using a model Pd(0) complex – Pd(PCy3)2 – we then performed a series of 

competition experiments under pseudo first-order conditions by having two Ar–X electrophiles 

in excess but equal amount compete for oxidative addition (Figure 9B). The product ratio, and 

therefore relative rate, is easily measured by quantitative 31P NMR spectroscopy, and control 

experiments confirmed that the product ratio is kinetically controlled. This technique enables 

rapid assembly of a reactivity scale for substrates that spans many orders of magnitude in rate 

(Figure 9C). 
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Figure 9. A) Generic catalytic cycle for Pd-catalyzed cross-coupling, highlighting the importance 

of oxidative addition. B) Experimental approach to rapid relative rate collection via competition 

experiments, with analysis of L2Pd(Ar)(X) complexes by 31P qNMR spectroscopy. C) Reactivity 

scale for representative substrates. Figure adapted from ref. 41, which is licensed under CC BY-

NC 3.0. 

 

During feature selection for our QSRR models, we quickly determined that the average 

molecular electrostatic potential (ESP) is a particularly useful electronic descriptor. It is the 

average ESP energy across the surface area of an atom in the molecule,123 and is easily 

calculated using the wavefunction analysis application Multiwfn.124 Molecular ESP has been 

previously used to interpret the chemical properties and reactivity of various molecular 

systems.125 Germane to this Perspective, Suresh and Koga126 correlated minimum molecular ESP 
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values at P to a variety of phosphine molecular properties, demonstrating ESP is an excellent 

descriptor for the electronic nature of phosphine ligands. Subsequent work from Anjali and 

Suresh correlated molecular ESP at Pd to computationally-determined activation barriers for 

oxidative addition of various Ph–X substrates to L–Pd(0) fragments.127  

In our oxidative addition QSRR model, five descriptors are sufficient to describe the 

reactivity for Ar–Cl, Ar–Br, and Ar–OTf substrates (Figure 10). The most significant 

contributors are the average molecular ESP at the reactive carbon (ESP1) and at the adjacent 

atom (C or N, ESP2); combined, these values contribute >60% to the model output. These local 

descriptors not only indicate the extent of electron-deficiency, but also the polarization of the 

C=C or C=N bond. Steric effects were initially accounted for using simple tabulated A values,128 

and work is underway to incorporate calculated steric descriptors.43 Finally, the identity of the 

leaving group is linked to two additional descriptors: the C–X bond strength, given by the 

intrinsic bond strength index (IBSI),129 and the pKa of the leaving group conjugate acid. Both of 

these descriptors are necessary to unify the three classes of electrophile, and subsequent work 

indicates this set of features enables incorporating Ar–I substrates as a fourth substrate class.104 
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Figure 10. Multivariate QSRR model for Ar–X oxidative addition to Pd(PCy3)2. Figure adapted 

from ref. 41, which is licensed under CC BY-NC 3.0. 

 

To test our hypothesis that a QSRR model for oxidative addition would be applicable to 

multiple classes of catalytic reactions, we used predicted ∆G‡
OA values from the model to make 

predictions about site selectivity in multihalogenated electrophiles. There is a plethora of 

literature available on cross-coupling site selectivity,130 and our analysis indicated that the MLR 

model in Figure 10 is able to predict “conventional” site selectivity for a wide range of substrates 

in both Suzuki and Buchwald-Hartwig reactions. This is the expected site selectivity when using 

“simple” catalyst systems, such as those based on PPh3, dppf, or other common phosphines. 
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Given we used Pd(PCy3)2 as the Pd(0) source to generate our model, this consistency with simple 

phosphines makes sense. Neufeldt’s group have assessed factors that lead to unconventional site 

selectivity in Pd-catalyzed coupling, many of which are related to ligand and/or solvent identity, 

and their impacts on Pd speciation.53,54,131–135 Future work in QSRR modeling for oxidative 

addition must therefore endeavor to capture these ligand/solvent/speciation effects. 

Finally, we tested our oxidative addition QSRR model for predicting external catalytic 

rate data. The aforementioned Sonogashira dataset from Plenio and coworkers was an ideal and 

comprehensive case study, especially since the data could be cleanly separated into two distinct 

sets (Figure 11). In one paper, the authors focused on electronic effects (meta and para 

substitution), with 20 different Ar–Br substrates (Substrate set #1).122 In another report, only 

steric effects were studied (ortho substitution), with 9 additional Ar–Br substrates (Substrate set 

#2, which also contains Ph–Br from Substrate set #1).121 Importantly, most of the substrates from 

both sets are not included in our ∆G‡
OA training set. The inclusion of 17 different monophosphine 

ligands also provided an opportunity to test our model’s applicability beyond PCy3-ligated 

catalysts. 

We exclusively used Substrate set #1 as our training and test set to build an initial MLR 

model. For each substrate, we calculated the predicted ∆G‡
OA value from the equation in Figure 

10; effectively, this is a pre-weighted “super-descriptor” that takes into account the steric and 

electronic effects of the electrophile. For the phosphine ligands, we used two descriptors – 

average molecular ESP at P (ESPP) and % buried volume (%Vbur)
42 – to account for electronic 

and steric effects, respectively. These three descriptors – ∆G‡
OA, ESPP, and %Vbur – lead to an 

accurate linear model for ln k of the Sonogashira reactions in Substrate set #1, with statistics 

given in Figure 11.  
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To challenge this model, we reserved data from Substrate set #2, which contains all 

ortho-substituted substrates, as an external validation set. Even though the MLR model training 

data had none of these substrates included, predictions for Substrate set #2 are still excellent, 

with a mean absolute error of 0.732 (compared to 0.529-0.542 for the training/test sets). This is 

possible because steric effects are already accounted for in the predicted ∆G‡
OA values, since that 

model was trained using a far more diverse range of (Het)Ar–X substrates. In addition, the 

predicted ∆G‡
OA model appears to function equally well for all 17 phosphine ligands. Only two 

outlier points are observed, corresponding to 2,4,6-triisopropylphenyl bromide as a substrate 

with P(tBu)3 and P(Ad)2(tBu); in other words, the most sterically hindered substrate with the two 

largest phosphines. Individual univariate correlations of ∆G‡
OA with ln k for all 17 phosphines 

confirm this generality. Thus, even though our initial oxidative addition QSRR model was built 

using only Pd(PCy3)2, it is clearly able to make accurate predictions for many additional 

catalysts. 
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Figure 11. Applying predicted ∆G‡
OA values to external catalytic reaction datasets: unified QSRR 

of Plenio and coworkers’ Sonogashira initial rates for all substrate/catalyst combinations. Figure 

adapted from ref. 41, which is licensed under CC BY-NC 3.0. 
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CONCLUSIONS AND OUTLOOK 

The art and practice of catalyst and reaction development in synthetic chemistry is in a 

state of change. The advent of rapid tools to collect, visualize, and analyze the plethora of 

existing data from the academic and patent literatures is enabling chemists to use these data like 

never before. Increases in computing power and speed are greatly expanding the utility of high-

throughput computational chemistry approaches to mapping chemical space with molecular 

descriptors, as well as rapid and accurate calculation of reaction intermediates and transition 

states for ever more complex molecules. And advances in laboratory automation and 

miniaturization are changing the way chemists design and conduct experiments, moving from 

traditional “one factor at a time” iteration to more holistic, multifactor approaches. 

Organopalladium catalysis is central to each of these three aspects, providing large existing 

datasets, rich catalyst structure space and mechanistic diversity, and a plethora of opportunities 

for high-throughput studies. 

With these powerful new tools and approaches becoming more mainstream in catalysis 

research, we must be cognizant of the challenges and drawbacks of each individual approach. 

Literature/patent data is known to be skewed by selection and reporting biases; computational 

results are not acquired instantaneously, nor are they error-free; and HTE is still bottlenecked by 

reagent/catalyst availability, and by analysis speed/accuracy. The ideal data-rich approach to 

catalysis research must combine all three sources of data and the corresponding analysis 

methods. Importantly, massively large datasets are not required to make accurate and actionable 

reactivity/selectivity predictions, especially if mechanistic aspects are taken into account. As an 

exemplar of this fact, our work on quantitative predictions for Pd oxidative addition reactivity is 
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broadly applicable across multiple reaction classes and accurate when presented with new data, 

despite being built from only ~80 relative rate constants. 

While this Perspective showed how organopalladium catalysis has been the proving 

ground of choice for many data-rich methods, there is nothing inherent about palladium or its 

reactivity that makes it uniquely suited for these new approaches. Many other reaction classes 

are well-represented in the chemical literature, and high-throughput experimentation methods are 

increasingly accessible to many reaction types.85,136 The concepts from the case studies presented 

here, as well as others from the literature, are applicable to any type of synthetic chemistry. 

Finally, as remarked throughout, many of the seminal works on data-driven catalysis research are 

the result of academic/industry collaborations. These research partnerships will likely continue to 

be at the forefront of this emerging area. 
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