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Abstract

Green hydrogen is an attractive energy vector due to its zero carbon emission in production and use,
supporting many industries in their transition to cleaner operations. However, the production of green
hydrogen has a fundamental challenge in resilience since it requires renewable energy (RE) systems that are
subject to variability. This study develops an optimization-based decision-making framework for the design
and capacity expansion of hydrogen production systems at a regional level. A novel resilience objective
function that considers external RE-derived fluctuations, as well as internal plant failures, is proposed. An
illustrative case study using data from five regions in Chile verifies that consideration of resiliency in the
objective function results in a system that is able to overcome the variance without greatly increasing the
equilibrium cost for hydrogen. These designs are based on dual storage capacities with different expansion
profiles.
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1. Introduction

Fossil fuels and their greenhouse gas emissions have considerably impacted the environment, specifically
on climate change [1]. Renewable energies (REs) are proposed to mitigate this problem; however, REs
present new technical challenges compared to traditional fossil resources. For example, renewable sources
are susceptible to exogenous effects such as weather conditions, making some of them unpredictable (e.g.,
tidal and wind energy). As a consequence, the supply has to deal with uncertainty [2].

The concept of a Hybrid Renewable Energy System (HRES) has been developed to withstand this defi-
ciency. It proposes that a system composed of coupled RE sources can complement each other’s weaknesses
and produce a more stable energy output. In addition, these systems consider various types of energy storage
technologies to further improve the desired stability [3].

Green hydrogen has been studied extensively as an energy carrier with no direct carbon emissions during
the production phase [4]. This attractive property has led to international interest in developing hydrogen
production based on hybrid renewable energy systems. However, dealing with the variability of RE sources
is still a pending question in the regional or national-scale HRES design phase.

Research gap exists regarding the use of resilience metrics in the design and optimization of long-term
HRES [5]. This paper proposes a metric that provides a quantitative approach to HRES resilience for green
hydrogen production by considering the resource variability and the intrinsic failure rate of physical com-
ponents in the system. This quantitative approach is expressed as an objective function in an optimization
problem model to decide the capacity expansion of an off-grid regional-scale green hydrogen production
system.

1.1. State of the art: HRES modeling and applications

Mathematical programming has been recently used in power systems and HRES design. For example,
Siddaiah and Saini [6] proposes mathematical programming to achieve a specified goal (such as minimal
cost or emissions) in HRES design while considering pertinent constraints associated with the system and
its parts; Lara et al. [7] proposed a deterministic multi-scale formulation for electric power infrastructure
planning, considering annual generation, investment, and hourly operational decisions; Alraddadi et al.
[8] modeled the expansion planning of power systems that incorporate a high solar power share, where
higher generation and storage capacity is required to meet demand at night; Wang et al. [9] coupled the
optimization of a regionally integrated energy system together with eleven sustainability indices to a case
study in Xinjiang, China; and Cho et al. [10] implemented a GDP and bilevel decomposition approach for
reliable power system planning, determining long-term investment and short-term operational decisions.
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Nomenclature

Indexes

d Representative day

e Renewable energy source

i Technology (superstructure equipment)

r Location

t Time of day

Parameters

∆H Hydrogen electrolysis reaction enthalpy

ηPV Solar panel efficiency

ηCharge Battery charge efficiency

ηDischarge Battery discharge efficiency

ηTank Hydrogen tank discharge efficiency

λ Wind turbine swipe area to Land usage ra-
tio

Λi Availability of technology i

ρAir Air density

AMax
r Maximum available area in location r

CImlp
i Implementation cost of technology i

COp
i O&M cost of technology i

CWind
p Wind turbine capacity factor

Demandd Hydrogen demand for day d (trimester
demand)

GSun
t,d,r Average solar radiation at time t at day d

in location r

HTLMax Maximum hydrogen level in the hydro-
gen tank system

kCompressor Compressors power consumption con-
stant

LBattery Battery passive losses

M A sufficiently large number

PSale
H2

Hydrogen selling price

SOCMin,Max Minimal and maximal states of
charge for the battery system

ηAE Alkaline electrolyzer efficiency

Supplementary definitions
ext∆E−

t,d,r Net energy variability from external
influences at time t at day d in location r

extδE−
t,d,r Overall energy variability from exter-
nal influences at time t at day d in location
r

int∆E−
t,d,r Net energy variability from internal in-
fluences at time t at day d in location r

intδE−
t,d,r Overall energy variability from internal
influences at time t at day d in location r

int∆M−
t,d,r Net mass variability from internal in-
fluences at time t at day d in location r

intδM−
t,d,r Overall mass variability from internal
influences at time t at day d in location r

CAPEXd Implementation cost at day d

DFd Discount factor at day d

Land Total Land acquisition cost

OPEXd Operational cost at day d

Storaget,d,r available storage at time t at day d in
location r

˙V are,t,d,r Installed variability associated with
source e at time t at day d in location r

CH2

Opd
Stored hydrogen opportunity cost at day d

Variables

ĖDirect
e,t,d,r Energy flow directed to the AE from source

e at time t at day d in location r

ĖStorage
e,t,d,r Energy flow directed to the battery stor-

age from source e at time t at day d in lo-
cation r

ṁd
t,d,r Mass flows supplied to demand directly

from the AE at time t at day d in location
r

ṁout
t,d,r Outgoing mass flow from the AE at time t

at day d in location r

APV
d,r Installed pv panel area at day d in location

r

AWind
d,r Installed wind turbine swipe area at day d

in location r

Ar Bought Land in location r

Capi,d,r Capacity of technology i at day d in loca-
tion r

CapDi,d,r Amount of capacity downgrade for tech-
nology i at day d in location r

CapEi,d,r Amount of capacity expansion for tech-
nology i at day d in location r

Hr 1 if location r is used in the regional pro-
duction

PowerComp
t,d,r Compressor power consumption at
time t at day d in location r

Xi,d,r 1 if a decrease for technology i starts at day
d in location r

Yi,d,r 1 if an expansion for technology i starts at
day d in location r

Ėin
AEt,d,r Total energy flow entering the AE at time

t at day d in location r

Ėin
s t,d,r Energy flow directed to battery storage at

time t at day d in location r

Ėout
s t,d,r Energy flow directed to the AE from the

battery storage at time t at day d in loca-
tion r

ṁin
s t,d,r Mass flow supplied to the hydrogen tank

at time t at day d in location r

ṁout
s t,d,r Mass flow supplied to demand from the

hydrogen tank at time t at day d in loca-
tion r

EAcc
t,d,r Energy stored in the battery system at time

t at day d in location r

mAcc
t,d,r Mass stored in the hydrogen tanks at time

t at day d in location r
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Coupling renewable power sources with the production of renewable fuel carries over the difficulties of
renewable power systems, where the intermittency of these power sources is a relevant design factor. Along
these lines, Zhang et al. [11] integrated HRES into the planning and scheduling of renewable-based fuels
and power production, identifying bottlenecks and synergies when RE sources are considered; Corengia and
Torres [12] formulated a superstructure optimization model that considers the selection of energy sources,
type of electrolyzer, its capacity and energy storage devices to select the optimal green hydrogen production
capacity for a given renewable energy generation pattern; and Cooper et al. [13] proposed a hydrogen hub
designed to operate at variable operation through a bi-level optimization approach.

1.2. State of the art: resilience in power systems

Resilience can be understood as the capacity to withstand misfortune and recover from undesirable
events. Applied to any specific field, such as energy systems, infrastructure, material science, and others,
this definition needs to be more specific to propose a resilience indicator. This specificity depends on
the system under study. The most common approach to define resilience in an energy system is through
the systems health-overtime-curve, representing the transient state of specific properties over time after an
incident that disrupts a stable condition. As discussed in Gasser et al. [14], multiple resilience definitions
and measures are defined through this curve. They can be clustered in two groups: draw-down, which
represents the system’s loss due to an undesired event, and draw-up, as the system’s ability to recover from
said adverse event. Some examples of the draw-down section of the curve are:

• Robustness: which refers to a system’s capacity to withstand a given level of stress or demand
without any loss of function ([15]).

• Absorptiveness: defined as the degree to which a system can absorb the impacts of a perturbation
and minimize consequences with minimal effort ([16]).

• Resistance: which refers to the capacity of the system to stay within acceptable ranges of functionality
after a negative event ([17]).

The draw-up section of the curve is associated with recovery behaviors. Some examples are:

• Recovery: refers to the capacity to recover quickly and at low cost from potentially disruptive events
([17, 18]).

• Adaptability: refers to how the system adapts to the newly introduced conditions ([19]).

• Rebuildability: refers to the capacity to rebuild all the functions and establish normal operation
([20]).

An innovative approach in considering resilience in HRES design is the one in Vera [21]. Here, a novel re-
silience indicator that considers a system’s capacity to recover from catastrophic events, such as earthquakes,
is included as an objective function in a MILP optimization framework. Further, the authors conducted a
comprehensive review of resilience indicators based on the system’s health over time curve.

Another approach is included in Cho et al. [22] where simultaneous consideration of reliability (withstand-
ing component failure), flexibility (feasible operation under uncertain conditions), and resilience (capacity
to withstand catastrophic events) in power systems planning stem as a requirement for future advanced
optimization.

1.3. Aim of this study

Most of the resilience metrics described above are based on the system’s health-over-time curve. Because
of this, resilience metrics can be used in dynamic models for planning energy systems. Consequently, the
indicators require information on how much system loss occurred at a specific time, how long it lasted, and
how fast the system dropped quality and recovered functionality. When design considers long-term planning,
such as capacity expansion models, it is not possible to assess with confidence which disruptive events will
occur and what their magnitude will be. This results in a research gap when optimizing HRES design with
respect to robustness and resilience [5].

This paper introduces a multidimensional design of a regional green hydrogen production system through
a novel objective function for HRES operational resilience. This novel resilience metric accounts for the
power sources variability, internal physical components failure, and their mitigation through a dual storage
system of batteries and H2 storage. The trade-off between an increased storage capacity, renewable energy
variability, plant allocation and the cost of the system is analyzed through a multi-objective optimization
of present cost and the proposed operational resilience function through a regional capacity expansion.

We consider Chile as the case study as it is known as one of the countries with a significant capacity to
produce clean energy, specifically from solar and wind sources, and has the opportunity to become a global
leader in green hydrogen production [23].
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2. Problem statement

This work focuses on the allocation and capacity expansion of off-grid green hydrogen production facilities
within a delimited geographical region subject to a given hydrogen demand. Each location in the region
needs to define whether or not to install renewable energy (RE, solar, or wind) generators, a bank of batteries
to store that energy, an electrolyzer, and the associated hydrogen compression stage, and tanks for storage.
In addition, we want these designs to be resilient. Figure 1 depicts a representation of the problem.

Figure 1: Graphical representation of the regional production problem. A given H2 demand will be satisfied by r locations;
each location needs to define the capacity (solar and wind generators, battery, electrolyzer, storage tanks) to install and their
expansion plan for a 15-year time horizon.

Due to the RE sources’ intermittency, energy output variability is expected. Said variability may result
in a hydrogen production deficit if the system cannot overcome the energy shortfall. Storage capacity, either
in batteries or hydrogen tanks, provides the system with flexibility in operation, reducing the effects of an
energy deficit but incurring a trade-off of higher capital and operational cost. The main objective of the
allocation and subsequent capacity expansion is to determine the optimal sizing and investment plan for
each location each year, thriving for an economical and flexible regional hydrogen production system.

The possible processing alternatives can be represented in a superstructure as shown in Fig. 2. In there,
mass and energy flows are respectively presented as filled and dashed lines, whereas equipment capacity
variables are presented as bold text. The capacity of the equipment can vary in the time horizon. We
assume that the plants do not interact with each other.

The superstructure considers that renewable energy sources can directly supply the electrolyzer with
power for hydrogen production or feed a battery system to store energy for later discharge to the electrolyzer.
Alkaline electrolysis is considered in this study since it is currently the most cost/efficient technology (see
Appendix B). Hydrogen is compressed to 30 MPa.

Figure 2: Superstructure for a generic solar/wind green hydrogen production plant. Solar and wind generators can supply
power directly to the electrolyzer and compressor; a battery system can be placed to balance intermittencies of the generators.
The demand for hydrogen can be directly satisfied from production or from intermediate storage tanks.

Formulation of an optimization problem to solve the superstructure results in a Mixed Integer Linear
Programming problem that considers r locations and d days hourly discretized by the index t. A summary
of the main equations of the model is given in the following subsections, a complete formulation is available
at Appendix C.
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3. Modeling

3.1. Representative days approach

The time horizon for design and expansion is considered to be 15 years, from 2025 to 2040. Modeling
hourly operations of said systems to capture detailed climatic conditions is known to turn the optimization of
the system into an intractable problem [24]. To withstand this complication, a representative days approach
is considered. This method is based on selecting specific periods of a historical year; each period is then
represented by a characteristic day, which encompasses the overall behavior of the property being analyzed
[25]. In this case, said properties are solar radiation and wind speed. Hence, each year is subdivided into
three representative days, grouping January to April, May to August, and September to December; then,
an hourly subdivision of time is considered for each representative day.

3.2. Equipment

3.2.1. Solar and wind energy generators

Renewable energy sources are modeled according to the installed equipment area in each location on a
certain representative day. The variables associated with the installed PV panel area and wind turbine swipe
area are APV

d,r and AWind
d,r , respectively. The solar energy generation model is presented in Eq. 1, where

following [26], the output power is modeled as linearly dependent on the installed area, the solar radiation,
and the panel efficiency.

ĖDirect
PV,t,d,r + ĖStorage

PV,t,d,r = ηPV ·APV
d,r ·GSun

t,d,r (1)

The wind energy generation model in turbines follows the assumptions in [27] where the total output
power depends on the installed swipe area, the capacity factor of the turbine, the average wind speed, and
the air density, as shown in Eq. 2.

ĖDirect
Wind,t,d,r + ĖStorage

Wind,t,d,r =
1

2
· CWind

p ·AWind
d,r · ρAir · (vWind

t,d,r )3 (2)

In this study, a constant height of the turbine (80 m) is assumed since an in-depth design of equipment
is out of the scope of this study. [28] provides a systematic approach to relate the wind turbine swipe area

with the land area requirements; a value of 1.7 · 10−3
[
m2 swipe
m2 land

]
is set for the present study.

3.2.2. Energy storage in batteries

Battery systems present two relevant modeling requirements: (i) the energy balance that relates inputs,
outputs, and accumulated energy and, (ii) the minimal and maximal states of charge (SOC) required to
preserve the battery system’s correct operation and lifetime. The energy balance of the battery system is
presented in Eq. 3, where charge, discharge, and passive losses are considered.

EAcc
t,d,r =

[
1− LBattery

]
· EAcc

t−1,d,r +∆t ·

(
ηCharge · Ės

in

t−1,d,r −
Ės

out

t−1,d,r

ηDischarge

)
(3)

A linear constraint for the battery systems’ SOC nominal battery capacity constrains the stored energy
according to the minimal and maximal SOC as presented in Eq. 4.

SOCmin · CapBattery,d,r ≤ EAcc
t,d,r ≤ SOCmax · CapBattery,d,r (4)

3.2.3. Electrolyzer

We consider an alkaline electrolyzer where the mass of hydrogen produced is related to the power supply
as shown in Eq. 5.

Ėin
AEt,d,r =

ṁout
AEt,d,r ·∆H

ηAE
(5)

Here, ηAE is the electrolyzer’s power to hydrogen efficiency and ∆H the water to hydrogen reaction
enthalpy. Following [29, 30], the ∆H

ηAE
factor is assumed to be 57.3 kWh/kg for alkaline electrolysis.

An essential characteristic of AE technologies is that at small/medium capacities, a minimum load factor
is required to avoid persistent shutdown periods in the electrolyzer operation. These shutdown periods can
be considered in the optimization problem through binary variables [12]. However, since this study deals
with large-scale hydrogen production, the number of required stacks is sufficient to render the minimum
load factor negligible. Thus individually accounting for on-off periods is not required.
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3.2.4. Compressor

Hydrogen compression is considered as a classical polytropic compression as shown in Eq. 6 [31].

PComp =
ṁin

Comp ·RkT

MW · (k − 1) · ηComp

((
PH2

Pel

) k−1
k

− 1

)
(6)

In here, the compressor power requirement is dependent on the hydrogen mass flow (ṁin
Comp), the com-

pressor efficiency (ηComp), the polytropic coefficient (k), the molecular weight of hydrogen (MW ), and the

ratio of out/in pressure (
PH2

Pel
) inside the vessel. To allow for a linear equation to represent the compression

stage, the pressure inside the vessel is considered constant and equal to the maximum pressure of the vessel;
then Eq. 6 simplifies to Eq. 7.

PowerComp
t,d,r = kCompressor · ṁout

AEt,d,r (7)

where kCompressor brings together all the constant parameters in Eq. 6; following [12] kCompressor is set
to 4 [ kWh

kg H2
].

3.2.5. Hydrogen storage in tanks

Analogous to energy storage in batteries, modeling hydrogen storage in tanks requires two equations:
(i) mass balance to relate the level of storage as shown in Eq. 8, where a discharge efficiency of 95% is
considered to account for pumping or leakage losses [32], and (ii) the maximum hydrogen level (HL) in the
tank as a safety measure which is captured in Eq. 9; a value of 95% of the nominal capacity is considered in
this study.

mAcc
t,d,r = mAcc

t−1,d,r +∆t ·

(
ṁsint−1,d,r −

ṁsoutt−1,d,r

ηTank

)
(8)

0 ≤ mAcc
t,d,r ≤ HTLmax · CapTank,d,r (9)

3.3. Capacity expansion modeling

In this problem, any location is allowed to increase or decrease the installed capacity. We consider that
any expansion project requires a year-long development and that increments in capacity become available
gradually at each trimester. A reduction in capacity is considered to take one trimester. Equation 10
presents the model for technology capacity through the time horizon as a stock constraint.

Capi,d,r = Capi,d−1,r +

d+2∑
d̂=d

(
1

3
CapEi,d̂

)
− CapDi,d−2,r (10)

In here
∑d+2

d̂=d

(
1
3CapEi,d̂

)
corresponds to the gradual increment in capacity in a trimester.

The system’s capacity expansion and capacity reduction are respectively associated with binary variables
Yi,r,d Xi,r,d defined as:

Yi,r,d = 1 i starts a capacity expansion at day d in location r

Xi,r,d = 1 i starts a capacity reduction at day d in location r

If an expansion project is being developed for a technology at a specific location, no other expansion or
reduction project can be started for said technology at that location. These logical relations are presented
in Eq. 11 (no simultaneous start of expansion and reduction projects); Eq. 12 (no further expansions if an
expansion is undergoing) and Eq. 13 (no reduction if expansion project is undergoing).

Yi,d,r +Xi,d,r ≤ 1 (11)

d+2∑
d̂=d+1

Yi,d̂,r ≤ 2 · (1− Yi,d,r) (12)

d+2∑
d̂=d+1

Xi,d̂,r ≤ 2 · (1− Yi,d,r) (13)

Upper-bound constraints are implemented to associate the existence of capacity-altering projects with
the corresponding magnitude of capacity expansion/ reduction. Equations 14 and 15 show said constraints.

CapEi,d,r ≤ Maxi · Yi,d,r (14)

CapDi,d,r ≤ Maxi ·Xi,d,r (15)
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3.4. Objective functions

3.4.1. Economic objective function

The economic objective function is presented in Eq. 16. Land acquisition, CAPEX, OPEX, H2 oppor-
tunity cost, and a discount factor are considered for each region and are defined below.

min: Land+
∑
d∈D

DFd · (CAPEXd +OPEXd + CH2
Opd) (16)

Land investment. We assume that the land is acquired during the first year for each location and that the
total cost is linearly dependent on the purchased area as stated in Eq. 17.

Land =
∑
r∈R

Cr
Area ·Ar (17)

CAPEX. Equations 18 and 19 respectively present the capital expenses at the beginning of the time horizon
(day 0) and those of subsequent capacity expansions. CAPEX includes the costs of equipment and instal-
lation of each technology, where said cost is expressed as USD

kW, kg/h, kg or kWh depending on the equipment.

CAPEX0 =
∑

i∈I, r∈R

Ci
Impl · Capi,0,r (18)

CAPEXd ̸=0 =
∑

i∈I, r∈R

Ci
Impl · CapEi,d,r (19)

OPEX. OPEX is defined as operational and maintenance cost (O&M) and is considered a percentage of
installed capacity (CAPEX); it is calculated as shown in Eq. 20.

OPEXd =
∑

i∈I, r∈R

Ci
Op · Ci

Impl · Capi,d,r (20)

In here, the parameter Ci
Op corresponds to the O&M costs of each trimester associated with the installed

capacity.

H2 opportunity cost. In this study, we refer to H2 opportunity cost as the loss of potential income related
to the decision of storing H2 instead of selling it to the market. Including this opportunity cost prevents the
system to increase resilience by over-storing H2. We model this opportunity cost as shown in Eq. 21.

COp
H2 d

= PSale
H2

·
∑

t∈T, r∈R

mAcc
t,d,r (21)

It is important to note that stored energy does not have an opportunity cost since the proposed plants are
assumed to be off-grid, and hence, it is not possible to directly sell the stored energy.

Discount factor. A discount factor is considered for the CAPEX, OPEX, and H2 opportunity cost to account
for the time value of money. Equation 22 exhibits the discount factor for a given interest rate r.

DFd =
1

(1 + r)d
(22)

The discount factor of the last representative day is modified as shown in Eq. 23. Here a perpetuity
is considered for any capacity still in place at the end of the time horizon. This perpetuity ensures that
capacity spikes will not occur near the end of the time horizon due to less relevant present cost values [33].

DFdf
=

1

(1 + r)df
+

1

(1 + r)df+1
· 1(

1− 1
(1+r)

) (23)

3.4.2. Resilience objective function

In this study, a system will be considered operationally resilient if it has sufficient autonomy to withstand
non-catastrophic unfortunate events. Such events are variations of RE sources (exogenous) and internal plant
operation failure (endogenous). Both of these events could cause a deficit in hydrogen production, either by
a shortage of energy or the unavailability of operational capacity. We will use the term heteronomy to refer
to the lack of autonomy of the system due to its dependence on conditions that the system cannot manage.

We consider two essential distinctions of unfortunate events that an autonomous system must endure:
(i) external events associated with the intrinsic unpredictable behavior that REs have and its effect on the
operation of a plant designed through statistical averages of representative days, and (ii) internal events,
associated with specific failures in the normal plant operation and its corresponding negative effect in
production.
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Modeling external variability. The model must acknowledge that the parameters of solar radiation and wind
speed, used for the sizing of generators of renewable electricity, are averages and are subject to variation.
In this sense, locations with a favorable average solar radiation or wind speed might have a high variance,
which is not a desired attribute for an off-grid hydrogen plant. This variability is dependent on the installed
area of renewable sources at each location, the day and hour of said day, as shown in Eqs. 24 and 25.

˙V arPV,t,d,r = ηPV ·APV
d,r · σPV,t,d,r (24)

˙V arWind,t,d,r =
1

2
· CpWind ·AWind

d,r · ρAir · (σWind,t,d,r)
3 (25)

Here, σPV,t,d,r and σWind,t,d,r correspond to the historical deviation of solar radiation and wind speed in
an hourly basis for each trimester and each location. The overall variability extδE−

t,d,r is the sum of both
sources

extδE−
t,d,r =

∑
e∈RE

· ˙V are,t,d,r (26)

A deficit of energy from renewable sources ultimately results in a deficit in hydrogen production since not
all the required power will be supplied to the electrolyzer. The system can compensate for this deficit with
storage which can either be in the form of energy in the battery system ([kWh]), which will supply power
to the electrolyzer, or as hydrogen itself in tanks ([kg]). The availability of storage can then be calculated
as shown in Eq. 27 where:

Storaget,d,r = ηDischarge · EAcc
t,d,r +

mAcc
t,d,r

ηAE
(27)

The net deficit in production due to external variance is then defined as the difference between the
expected RE source-induced variability and the compensation that might be achieved by the storage systems.
Equation 28 shows the mathematical representation of said term.

ext∆E−
t,d,r =ext δE−

t,d,r − Storaget,d,r (28)

Note that if the net externally induced variability ext∆E−
t,d,r is greater than zero, then, the system does

not have sufficient storage to withstand the variance of the renewable sources.

Modeling internal variability. According to [34], one of the equipments most prone to fail in a power system
are converters, including DC boosters and rectifiers. Figure 1 exhibits where said converters are located in
the architecture of the plant’s electrical system. Internal variability will consider the availability of renewable
sources and the electrolyzer based on their associated converters. Since the availability parameter will vary
with the converters circuit architecture [34], this study will refer to accepted literature values for solar PV
panels and wind turbines of 96% [35]. DC boosters for alkaline electrolysis circuit designs are still being
developed [36], and a 90% availability is assumed.

As shown in Fig. 1, failure in the renewable sources generators will result in a deficit of energy (δE−).
Meanwhile, failure in the electrolyzer will result in a deficit in the associated flow of hydrogen (δM−).
Equations 29 and 30 respectively characterize said energy and mass deficit as a function of the installed
capacity (Capi,d,r):

intδE−
d,r =

∑
e∈RE

(1− Λe) · Cape,d,r (29)

intδM−
d,r = (1− ΛAE) · CapAE,d,r (30)

where Λe and ΛAE represent the availability coefficient of the renewable sources and the alkaline elec-
trolyzer, respectively.

As stated in Section 3.4.2, the storage system may compensate for said variability. In this case, the
battery system can only compensate if the failure is in the RE generators (Eq. 31), while a failure in the
electrolyzer can only be compensated by storage of hydrogen in tanks (Eq. 32).

int∆E−
t,d,r =int δE−

d,r − ηDisch · EAcc
t,d,r (31)

int∆M−
t,d,r =int δM−

d,r −mAcc
t,d,r (32)
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Proposed objective function for resilience. The objective function for minimizing the net variability in the
system is defined as the combination of the equations discussed above. Hence:

fheteronomy =
∑
t,d,r

ηAE · (int∆E−
t,d,r +

ext ∆E−
t,d,r) +

int ∆M−
t,d,r (33)

This expression can be interpreted as the systems heteronomy since its value will determine if the design
can overcome the external and internal variance with its storage capacity. A negative value indicates that
storage is sufficient, and a positive one indicates that storage can’t adequately overcome the failures. In this
sense, an optimally resilient system can be defined as one with minimal heteronomy.

4. Case study

Figure 3: Global hydrogen demand projection through a learning curve for pessimistic, normal, and optimistic scenarios.

We evaluate the production of green hydrogen in five locations of the Biob́ıo region in Chile, namely:
Negrete, Aguapie, Lavapie, Rumena, and Colhue. The Biob́ıo region presents favorable sun radiation and
wind speed; the mentioned locations are chosen based on data availability in terms of area and climatic
conditions data availability. Specific data were obtained from the Chilean wind [37] and solar observatories
[38].

In terms of demand, this study will consider the work by Lane et al. (2021) [39], which forecasts the
demand for renewable hydrogen at a global scale using Monte Carlo simulations to incorporate uncertainty
and a learning curve. Providing the demand scenarios shown in Figure 3. To assess the model, we further
assume that Chile plans to supply 20% of the global hydrogen demand and the Biobio region 1% of the
total Chilean production. This provides a feasible regional demand for the case study, involving production
in all different locations. Appendix B presents the values for the learning curve extracted from Lane et al.
[39], each location cost and available area according to the SII database [40], and the technical parameters
associated with the case study optimization.

5. Results

The model for the case study in the previous section was implemented in PyOMO [41, 42] and solved
using the Gurobi MILP solver [43] on a regular portable laptop. The model constitutes a total of 82,811
variables, where 2,705 variables are binary, and 80,106 are continuous; related through 50,025 equality and
51,745 inequality constraints. The MIP gap terminal condition is maintained at its default value of 1e-4.

5.1. Single objective solutions and multiplicity analysis

Being a MILP problem, it is possible to achieve the same value of the objective function with different
values for the arguments, and due to the MIP gap termination condition, a more thorough search might
obtain better solutions. To evaluate the optimal design, successive integer cuts were implemented to obtain
3 alternate solutions. Equation 34 shows the “No good cut” [44], where the variable zi,d,r represents the
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Table 1: Optimal value for the objective functions in each single-objective model. Alternate solutions’ values are presented as
a difference from the optimal solution objective.

Model
Solution Economic [USD] Heteronomic [kg]

Optimal value 1.5996 E+9 -9.4439 E+9
Objective value difference (%)

Alternative #1 0 ≈2.8 E−5

Alternative #2 0 ≈2.5E−5

Alternative #3 ≈ 2.8E − 4 ≈ 2.2E − 5

expansion (Xi,d,r) and decrease (Yi,d,r) binary choices of section 3.3, B and NB are the set of basic and
non-basic solutions respectively. ∑

i,d,r∈NB

zi,d,r +
∑

i,d,r∈B

(1− zi,d,r) ≥ 1 (34)

Table 1 shows the results for the single-objective models, i.e., those solutions in which the weights for
combining the economic and heteronomy objective functions were either zero (purely resilient objective) or
one (purely economic objective). The purely economic single-objective model presents 2 alternative solutions
with the same value for the objective function. Meanwhile, no equivalent solutions were found for the pure
heteronomy single-objective model; three other alternative solutions where found with negligible differences
in the value of the objective function. As shown in Appendix A.1, only a difference in the stored hydrogen
at the end of the time horizon and in some expansion rates is observed in these cases. For the rest of the
discussion, the results labeled as Optimal value in Table 1 are considered.

5.2. Multi-objective solution – Pareto optimal results

Here, the problem was solved to find the Pareto frontier for the economic and heteronomy objective
functions via the weighted sum method. A computation time of 4,545 seconds was required to obtain the
multi-objective Pareto frontier.

(a) Pareto front and equilibrium price of hydrogen. (b) Hydrogen equilibrium price for each Pareto point.

Figure 4: Hydrogen equilibrium price for each Pareto point.

Figure 4a exhibits the Pareto curve and the equilibrium price of hydrogen, defined as the one required
to achieve a zero Net Present Value (NPV) for the plant investment and production costs. As expected,
there is a trade-off between both objective functions, which relates to the fact that designing a more resilient
system requires more investment in storage technologies, directly raising the total cost and the equilibrium
price for hydrogen. It is important to note that the heteronomy objective function has, at almost all points
of the Pareto curve, a negative value. This implies that in almost all solutions the designed network has
enough storage to withstand the expected external and internal losses. Figure 4b shows the equilibrium
price for hydrogen vs the weight values for each point in the Pareto curve. The green region above the curve
corresponds to the hydrogen prices that provide an economically feasible result (positive NPV). Inversely,
the red region corresponds to hydrogen prices that make the system economically unfeasible. In the following
section, a weight of 0.6, associated with a hydrogen equilibrium price of 2.3 [ USD

kgH2
] is selected as the desired

solution from the Pareto frontier, and will be referred as the autonomy enhanced solution. This equilibrium
price is lower than the 2.6 [USD

kg H2] benchmark established by the Chilean national hydrogen plan for the

Biob́ıo region [45], in addition to presenting a negative heteronomy value. A similar analysis for other
weights could be performed if desired.
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Table 2: Results overview for the single objective and autonomy enhanced solutions. Capacities are presented as intervals of
the minimal and maximum values in the time horizon, expressed as [Min - Max]. Zero values that have an index n referring to
the number of years (n) that the capacity value remains at zero. If n < 1 year, no index is implemented.

Result Model Rumena Negrete Aguapie Lavapie Colhue

Starting year
Economic: 2026 2025 2025 2026 2026
Enhanced: 2026 2025 2025 2026 2026

Solar source capacity [MW]
Economic: [0 - 14] [63 - 162] [0 - 26] [0 - 22] [0 - 25]
Enhanced: [0 - 16] [61 - 161] [0 - 32] [0 - 24] [0 - 27]

Wind source capacity [MW]
Economic: [0 - 109] [400 - 500] [44 - 245] [0 - 167] [0 - 205]
Enhanced: [0 - 109] [400 - 500] [44 - 239] [0 - 161] [0 - 100]

Battery capacity [MWh]
Economic: [0(11) − 2.1] 0 [0(9) − 0.8] [0(11) − 4.4] 0
Enhanced: [0(9) − 5.3] [0 - 5.9] [0 - 4.6] [0 - 7.7] [0 - 0.7]

H2 storage capacity [ton]
Economic: [0 - 10] [0 - 50] [0 - 21] [0 - 14] [0 - 16]
Enhanced: [1 - 100] [0 - 100] [0 - 100] [0 - 100] [0 - 100]

H2 equilibrium price [USD/kg]
Economic Enhanced

$ 2.3 $ 2.3

5.3. Summary of system design

Table 2 summarizes key changes in the design of HRES systems for green hydrogen production when the
economic objective function model is enhanced with the consideration of heteronomy.

Compared to the economic model, no relevant changes in the start years of each location are seen, where
Negrete and Aguapie start in 2025 and the rest in 2026. In all cases, a hybrid power system (wind and solar)
is selected. Comparing the autonomy enhanced and the economic solution, generation from wind energy
sources is implemented at a lower magnitude in Lavapie, Aguapie, and Colhue, followed by an increase in
solar capacity for said locations. However, the change is substantial only for Lavapie.

As expected, the most relevant difference between the two objectives relates to storage. Battery stor-
age is not installed at Negrete and Colhue when only the economic function is considered; in contrast, the
autonomy enhanced solution increases the energy storage capacity in batteries for each location. Hydro-
gen storage in tanks also follows the tendency of higher capacities when the heteronomy of the system is
considered, increasing to 100 [ton] at each location. It is important to note that the implementation of
these storage technologies comes without a noticeable increase in the equilibrium price of hydrogen; for the
selected economic/heteronomy combined solution, an investment of 0.37 [USD] is required per kg of H2 mass
variability reduction.

Analyzing the Pareto frontier and how the optimal point shows a considerable increase in present cost,
useful remarks arise for future studies: Figure 4a shows that most Pareto points have more than enough
mass and energy storage to withstand the accounted variability and that the spike in cost is associated with
said increase in storage capacity. Diminishing the value of the upperbound in the constraint associated
with storage technologies capacity, specifically mass storage, provides a system design with less idle storage,
reducing the overall cost of each point in the Pareto frontier and managing a less considerable cost compared
to the economic model. A 75% reduction in the upper bound is analyzed in Appendix A.2 through the
Pareto optimal hydrogen equilibrium prices, resulting in an increase in the economically feasible region due
to lower equilibrium prices throughout the Pareto front.

5.4. Capacity expansion: single objective and autonomy enhanced solution comparison

In this section, the different system designs are compared for the single objective models and the en-
hancement of incorporating the multi-objective approach. The capacities of each technology are analyzed
for the locations of Negrete and Aguapie, exposing the effects of the proposed heteronomy objective function
in the design of the system.

Figure 5 shows the expansion profiles for the economic single objective model in the mentioned regions.
In both locations, hydrogen storage and a hybrid power system of solar and wind for the complete time
horizon is obtained as the optimal design. In Negrete, the installation of energy sources and hydrogen
storage is completed by the first year, and an expansion of the electrolyzer capacity is implemented in the
9th year of operation. Meanwhile, Aguapie completes the installation of hydrogen storage and solar energy
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(a) Negrete economic expansion profile (b) Aguapie economic expansion profile

Figure 5: Expansion profiles of the economic model for Negrete (a) and Aguapie (b) respectively.

generators in the first year of implementation, and an expansion between the 9th and 11th year for the wind
energy generators, electrolyzer, and the battery system is considered.

Neither location considers a battery system for the first 9 years of operation, and Negrete does not im-
plement a battery system. The preference for a hydrogen storage system is related to the more cost/efficient
hydrogen mass storage over the lithium ion batteries for long periods since the latter have passive losses and
present a higher maintenance cost. Because of this, hydrogen storage is preferred over energy storage even
when an opportunity cost for hydrogen is implemented.

In both locations, a decrease in the hydrogen storage capacity starts from the 13th year until the end
of the time horizon to avoid the perpetuity cost effects (see section 3.4.1), where it is cheaper to diminish
hydrogen storage and fulfill demand with production and dispatch the already available stored hydrogen.

(a) Negrete heteronomic expansion profile (b) Aguapie heteronomic expansion profile

Figure 6: Expansion profiles of the heteronomy model for Negrete (a) and Aguapie (b) respectively.

Figure 6 shows the expansion profiles for the heteronomy single objective model in Negrete and Aguapie,
respectively. Both locations present similar profiles, with the installation of both hydrogen and energy
storage systems at maximum capacity for the complete time horizon. A hybrid power system dominated
by wind energy is present for each location as well, with a reduction in the generation capacity of the RE
sources and electrolyzer until the 3rd and 4th year, when a subsequent expansion is implemented.

The increase of the storage technologies is associated with the objective function formulation in section
3.4.2 as more storage implies a reduced dependence on external and internal variability. The reduction in
RE sources generation and electrolyzer capacities seeks to minimize the variability of the system (as defined
in sections 3.4.2 and 3.4.2), since a larger installed capacity results in larger internal and external expected
variability. Therefore, the heteronomy model maximizes storage capacity while maintaining a minimum
required energy source and electrolyzer capacity.

Figure 7 shows the expansion profiles for the autonomy enhanced solution in Negrete and Aguapie,
respectively. For both locations, a wind-dominated hybrid power system with dual storage technologies is
implemented. In Negrete, the installation of the power generation, the battery system, and the hydrogen
storage are complete in the first year of implementation. Aguapie’s battery system, hydrogen storage, and
power generation from solar energy are fully implemented by the first year, whereas power generation from
wind and electrolyzer capacity have an expansion in the 9th year of operation. Both locations present a
reduction in capacity in the last 2 years of the time horizon, associated with the perpetuity effects of the
economic objective function.

Compared with the purely economic objective, the results show that adding the heteronomy function
in a multi-objective approach impacts the system design, promoting dual storage throughout the complete
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(a) Negrete autonomy enhanced expansion profile (b) Aguapie autonomy enhanced expansion profile

Figure 7: Expansion profiles of the autonomy enhanced solution for Negrete (a) and Aguapie (b) respectively.

time horizon. The magnitude of the change varies: hydrogen storage increased its maximum value from 50
[ton] in the economic model to 100 [ton] in the autonomy enhanced solution in Negrete and from 21 [ton]
to 100 [ton] in Aguapie. Energy storage also increased compared to the economic model, from 800 [kWh]
to 4,600 [kWh] in Aguapie, and from 0 [kWh] to 5,900 [kWh] in Negrete. A slight increase in solar power
capacity is also perceived in Aguapie.

5.5. Role and effects of hydrogen storage

Figure 8 shows the mass of hydrogen stored in each location throughout the years for the economic,
heteronomy, and autonomy enhanced solutions.

(a) Economic model hydrogen storage pro-
file.

(b) Heteronomy model hydrogen storage pro-
file.

(c) Autonomy enhanced hydrogen storage
profile.

Figure 8: Hydrogen storage profile for the single and autonomy enhanced solutions.

As seen, the economic model has a null storage of H2 mass the first six years, presenting peaks before
and after the 10 years of operation. The first peak (8th year) is related to the capacity expansion profiles
present in Figures 5a and 5b. The 10th year of the horizon is when most of the system increases its capacity,
and since this requires a year to accomplish, the network must have enough storage to fulfill the increase
in demand associated with that year beforehand. The second increment after the 10th year relates to the
end-of-time effects in the economic objective function since the system stores hydrogen to fulfill demand in
the last year of operation. The heteronomy model increases storage rapidly, reaching a constant value by
the 3rd year (see Figure 8b) since, as expected, the purely heteronomy-based model maximizes storage to
overcome disruptions. The autonomy enhanced solution encompasses the characteristics of both models.

(a) Economic proposed OF profile. (b) Heteronomic proposed OF profile. (c) Autonomy enhanced proposed OF profile.

Figure 9: Heteronomy objective function behavior.
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The effects of these different storage profiles in the resilience of the system, can be addressed through
the value of the heteronomy function since it measures how much autonomy the designed system has. As an
example, Fig. 9 exhibits these values for the Aguapie region. Other locations present analogous behaviors.

Figure 9a shows that the total heteronomy value of the economic model design is positive throughout the
complete time horizon. This is evidence that the designed system lacks autonomy and would be vulnerable
to the exogenous variability of RE sources and endogenous component failure. Hence, the role of storage as
a tool for expansion in the economic model doesn’t bring operational resilience to the design. In contrast,
the autonomy enhanced solution presents a positive value of heteronomy for the first 5 years, and a negative
value for the rest of the horizon. This indicates that the multi-objective approach manages to design a
storage system that can provide sufficient autonomy to the system for the majority of the time horizon.

The higher installation of storage capacity, the increase of total stored mass, and the objective function
behavior shown in Figure 9 shows that, without a relevant increase in the hydrogen equilibrium price, the
incorporation of the heteronomy function to the multi-objective optimization manages to design a system
that is more autonomous in front of exogenous and endogenous effects than a purely economic model.

6. Conclusion

A multi-objective Mixed Integer Linear Programming model was developed as a decision-making tool
to analyze green hydrogen production at a regional level. The tool introduces a novel resilience objective
function that minimizes the variability of the system by designing a hybrid storage system capable of
mitigating the fluctuations intrinsic to renewable energy sources as well as internal plant failures, striving
for simplicity and reasonable computational resources use.

As a case study, the program considers the production of green hydrogen in five regions of Chile that
differ in their climate conditions and land cost. In all cases, the optimal resilient system design is a hybrid
dual storage system, where wind power is the dominant energy source.

The optimal designs incorporate storage technologies with a capacity larger than the most economical
one, covering the estimated deficit in hydrogen and electricity with sufficient surplus throughout most of
the time horizon. Considering the five regions, the investment cost of H2 mass variability reduction is
about 0.37 [ USD

kg H2
] between the purely economically optimal model and the autonomy enhanced one. The

hydrogen equilibrium price does not differ much between these two cases, 2.3 [USD/kg], and is lower than
the 2.6 [USD/kg] projected by the Chilean hydrogen strategy.

This study’s approach can be implemented in other power-to-X technologies for a more diverse regional
design, considering the power system’s storage/cost trade-off in a manageable manner.
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[45] Ministerio de Enerǵıa - Gobierno de Chile, ESTRATEGIA NACIONAL DE HIDRÓGENO VERDE, Technical Report,
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Appendix A. Complementary results

Appendix A.1. Alternative designs

Figure A.10 shows an example of the design variations found through the integer cuts for Aguapie.

(a) Original expansion profile (b) Expansion profile of the first alternative

(c) Expansion profile of the second alternative (d) Expansion profile of the third alternative

Figure A.10: Alternative designs for the Aguapie expansion. Obtained through the ”No good” integer cut.

Only slight variations of design can be seen for the final hydrogen storage capacity, where the alternative
of Figure A.10c decreases capacity more than the other solutions. Another difference can be seen for the
profile of the third alternative design in Figure A.10d, where the expansion of the 9th year is delayed one
trimester, incurring in a step-wise increase before the maximum capacities for wind turbines, electrolyzer
and battery storage is achieved. None of the found solutions differ from each other considerably, neither in
the magnitude of the installed capacities or in the overall profile for the system expansion.

Appendix A.2. Storage capacity constraint effect in price

The effect of reducing the M constant in equation C.1 for the mass storage tank influences the Pareto
optimal solutions since the heteronomic model will have a smaller storage capacity upper bound and in
consequence a different objective function value. The effect of a 75% reduction in the upperbound is
depicted by Figure A.11.

The reduction provided a greater economically feasible region due to the lower prices in the Pareto
frontier. In consequence, said parameter must be chosen carefully to avoid overestimating the maximum
storage capacity of the desired system.
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(a) M constant associated with mass storage is set to 106 (b) M constant associated with mass storage is set to 2.5 · 105

Figure A.11: Equilibrium price of hydrogen in each Pareto optimal solution.

Appendix B. Parameters for the case study

Appendix B.1. Hydrogen demand projection

The global hydrogen demand behavior is modeled as a learning curve according to equation B.1.

Dt =
Df

1 + e−k·(t−t0)
+D0 (B.1)

Where Dt is the global hydrogen demand at time t, DF is the final market production, D0 is the initial
market production, k is the growth factor and t0 is the initial year of evaluation.

Table B.3: Parameters for the demand projection through a learning curve behavior.

Parameter Value Unit Reference

Initial market
Mean: 1.5 · 109 [kg/yr]

[39]
SD: 0 [kg/yr]

Final market
Mean: 1.66 · 1011 [kg/yr]

[39]
SD: 2.4 · 1010 [kg/yr]

Growth 0.1 [-] [39]
Shift 4.5 [-] [39]

Biobio global
market share

0.1% [-] Assumed

Appendix B.2. Electrolysis technologies cost comparison

Schmidt et al. [29] and Proost [30] provide the ∆H
ηElectr.

parameter for alkaine electrolysis (AE) and

proton exchange memmbrane electrolysis (PEME), meanwhile F. et al. [46] reports the value for solid oxide
electrolysis (SOE). The levelized cost of each technology is reported by Christensen [47]. With the levelized
cost and efficiency, the cost of mass production can be calculated as depicted in equation B.2.

CostMass
Electr. = CImpl

Electr. ·∆H/ηElectr. (B.2)

Equations B.3, B.4, and B.5 show the cost for each electrolyzer technology.

CostMass
AE = 1, 083

[
USD

kW

]
· 53.7

[
kW

kg/h

]
≈ 58, 157

[
USD

kg/h

]
(B.3)

CostMass
PEME = 1, 182

[
USD

kW

]
· 53.7

[
kW

kg/h

]
≈ 63, 473

[
USD

kg/h

]
(B.4)
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CostMass
SOE = 2, 285

[
USD

kW

]
· 42.7

[
kW

kg/h

]
≈ 97, 570

[
USD

kg/h

]
(B.5)

The AE presents the lower cost of hydrogen production according to the parameters that the formulated
model uses. Since no difference in availability can be factually stablished, the economic part of the multi-
objective function will always choose AE technologies over their counterparts.

Appendix B.3. Parameter values

Table B.4 presents the parameters used for the case study. For non-indexable parameters the value and
reference are stated separately. Meanwhile, indexable parameters are presented in groups.

Table B.4: Parameters for the case study

Parameter Value Unit Source
∆H
ηAE

53.7 [kWh/kg] [29], [30]

ηPV 20% [kWout/kWin] [48]
ηCharge 95% [-] [49]

ηDischarge 95% [-] [49]
ηTank 95% [-] Assumed
λ 1.7 · 10−3 [m2 swipe/m2 Land] [28][50]

ρAir 1.26 [kg/m3] [51]
CWind

P 0.4 [-] [38]
HTLMax 95% [-] Assumed
kCompressor 4 [kWh/kg] [12]
LBattery 0.02% [-] [52]
PSale
H2

2.6 [USD/kg] [45]

Λi

PV 96% [-] [35]
Wind 96% [-] [35]

Electrolyzer 90% [-] Assumed

AMax
r

Aguapie 50,000 [ha] [40]
Rumena 2,000 [ha] [40]
Lavapie 850 [ha] [40]
Colhue 41,200 [ha] [40]
Negrete 20,000 [ha] [40]

CImpl
i

PV 970 [USD/kW] [53]
Wind 1,350 [USD/kW] [54]
Battery 350 [USD/kWh] [55]
AE 1,083 [USD/kW] [47]

Compressor 250 [USD/(kg/hr)] [12]
Tank 1,000 [USD/kg] [56]

COp
i (as trimester)

PV 0.55% [-] [53]
Wind 0.6% [-] [57]
Battery 2.5% [-] [57]
AE 0.6% [-] [58]

Compressor 0.24% [-] [59]
Tank 0.24% [-] [60]

Maxi

Upgrade/Downgrade 105 [-] -
PV,Wind,Battery 106 [-] -

AE, Compressor, Tank 5·106 [-] -
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Appendix C. Condensed model formulation and nomenclature

1. Sets

• Renewable energy sources:
e ∈ RE = {PV,Wind}

• Sized technologies:
i ∈ I = RE ∪ {AE,Compressor,Battery, Tank}

• Discrete time of day:

t ∈ T = {0, 1, 2, 3, ..., 23}

• Representative days (trimester) in a 15 year time horizon:

d ∈ D = {0, 1, 2, 3, ..., 44}

• Locations where plants can be installed:

r ∈ R = {Aguapie,Rumena, Lavapie, Colhue,Negrete}

2. Variables

• If location r is used in the regional production:

Hr ∈ {0, 1}

• If technology i starts a expansion project at day d in location r:

Yi,d,r ∈ {0, 1}

• If technology i starts a downgrade project at day d in location r:

Xi,d,r ∈ {0, 1}

• Amount of capacity expansion/downgrade for project associated with technology i at day d in
location r:

CapEi,d,r CapDi,d,r ∈ R+

• Capacity of technology i at day d in location r:

Capi,d,r ∈ R+

• Bough Land in location r:

Ar ∈ R+

• Installed area of PV panels and wind turbine swipe area in location r:

APV
d,r AWind

d,r ∈ R+

• Compressor power consumption in time t at day d in location r:

PowerComp
t,d,r ∈ R+

• Energy flow directed to battery storage in time t at day d in location r:

Ėin
s t,d,r ∈ R+

• Energy flow directed to the AE from the battery system in time t at day d in location r:

Ėout
s t,d,r ∈ R+

• Energy flow directed to the AE from the energy source e in time t at day d in location r:

ĖDirect
e,t,d,r ∈ R+
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• Energy flow directed to the battery system from the energy source e in time t at day d in location
r:

ĖStorage
e,t,d,r ∈ R+

• Energy flow supplied to the AE in time t at day d in location r:

Ėin
AEt,d,r ∈ R+

• Mass flow out from the AE in time t at day d in location r:

ṁout
t,d,r ∈ R+

• Mass flow supplied to the hydrogen tank in time t at day d in location r:

ṁin
s t,d,r ∈ R+

• Mass flow supplied to demand directly from the AE in time t at day d in location r:

ṁd
t,d,r ∈ R+

• Mass flow supplied to demand from the hydrogen tank in time t at day d in location r:

ṁout
s t,d,r ∈ R+

• Energy stored in the battery system in time t at day d in location r:

EAcc
t,d,r ∈ R+

• Mass stored in the hydrogen tank in time t at day d in location r:

mAcc
t,d,r ∈ R+

3. Constraints

• If the location is not chosen, no capacity is allowed:

Capi,d,r ≤ Maxi ·Hr (C.1)

• Expansion and downgrade projects can’t start at the same day for technology i at day d in
location r:

Yi,d,r +Xi,d,r ≤ 1 (C.2)

• Expansion projects last for a year in implementation. Meanwhile, no expansion or downgrade of
the same technology can occur:

d+2∑
d̂=d+1

Yi,d̂,r ≤ 2 · (1− Yi,d,r) (C.3)

d+2∑
d̂=d+1

Xi,d̂,r ≤ 2 · (1− Yi,d,r) (C.4)

• The choice of expansion or downgrade bounds the augmentation or diminution of capacity:

CapEi,d,r ≤ Maxi · Yi,d,r (C.5)

CapDi,d,r ≤ Maxi ·Xi,d,r (C.6)

• Variation of capacity represented as a stock constraint. The implementation of upgrades is
achieved progressively through the year by trimester:

Capi,d,r = Capi,d−1,r +

d+2∑
d̂=d

(
1

3
CapEi,d̂

)
− CapDi,d−2,r (C.7)
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• Total produced solar energy depends on installed area:

ĖDirect
PV,t,d,r + ĖStorage

PV,t,d,r = ηPV ·APV
d,r ·GSun

t,d,r (C.8)

• Total produced wind energy depends on installed swipe area:

ĖDirect
Wind,t,d,r + ĖStorage

Wind,t,d,r =
1

2
CpWind ·AWind

d,r · ρAir · (vWindt,d,r)
3 (C.9)

• Renewable energy is bounded by installed capacity:

ĖDirect
e,t,d,r + ĖStorage

e,t,d,r ≤ Cape,d,r (C.10)

• Installed area of PV and wind cannot exceed bought Land at each location:

APV
d,r +

APV
d,r

λ
≤ Ar (C.11)

• Bought Land cannot exceed the maximum available area:

Ar ≤ Hr ·AMax
r (C.12)

• The battery system has to operate in between acceptable SOC values to preserve functionality:

SOCmin · CapBattery,d,r ≤ EAcc
t,d,r (C.13)

EAcc
t,d,r ≤ SOCmax · CapBattery,d,r (C.14)

• Effective mass flow out of the electrolyzer:

ηAE

∆H
· Ėin

AEt,d,r = ṁout
t,d,r (C.15)

• Maximum capacity for the electrolyzer:

Ėin
AEt,d,r ≤ CapAE,d,r (C.16)

• Compressors capacity restricts outgoing mass flow:

ṁd
t,d,r + ṁout

s t,d,r ≤ CapCompressor,d,r (C.17)

• Compressor power consumption according to mass flow:

PowerComp
t,d,r = kCompressor · ṁout

AEt,d,r (C.18)

• Mass storage must respect a maximal hydrogen level as a safety measure:

0 ≤ mAcc
t,d,r ≤ HTLmax · CapTank,d,r (C.19)

• Energy balance for the battery system:

EAcc
t,d,r =

[
1− LBattery

]
· EAcc

t−1,d,r +∆t ·

(
ηCharge · Ės

in

t−1,d,r −
Ės

out

t−1,d,r

ηDischarge

)
(C.20)

• Energy balance for total energy entering the battery system:∑
e∈RE

ĖStorage
e,t,d,r = Ės

in

t,d,r (C.21)

• Energy balance for total energy entering the electrolyzer:∑
e∈RE

ĖDirect
e,t,d,r + Ės

in

t,d,r = Ėin
AEt,d,r + PowerComp

t,d,r (C.22)

• Compressor mass balance:

ṁout
AEt,d,r = ṁd

t,d,r + ṁin
s t,d,r (C.23)
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• Hydrogen storage mass balance:

mAcc
t,d,r = mAcc

t−1,d,r +∆t ·

(
ṁsint−1,d,r −

ṁsoutt−1,d,r

ηTank

)
(C.24)

• Demand is associated to a complete trimester by the d index. Considering that a trimester
contains 120 representative days the demand fulfilment is characterized as:

120 ·

( ∑
t∈T r∈R

ṁout
s t,d,r + ṁs

t,d,r

)
= Demandd (C.25)

4. Objective functions

• Minimize present cost:

Min: Land+
∑
d∈D

DFd · (CAPEXd +OPEXd + CH2
Opd) (C.26)

• Minimize heteronomy:

Min: int∆M−
t,d,r + ηAE · (int∆E−

t,d,r +
ext ∆E−

t,d,r) (C.27)
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