A water-promoted Mars-van-Krevelen reaction dominates lowtemperature CO oxidation over Au-Fe₂O₃, but not over Au-TiO₂

Alexander Holm,[‡] Bernadette Davies,[‡] Sara Boscolo Bibi, Felix Santiago Moncada Arias, Joakim Halldin-Stenlid, Laurynas Paškevičius, Vincent Claman, Adam Slabon, Cheuk-Wai Tai, Egon Campos dos-Santos, Sergey Koroidov^{*}

[‡] These authors contributed equally to this work

*Corresponding author: Sergey Koroidov Department of Physics, Stockholm University E-mail: sergey.koroidov@fysik.su.se

ABSTRACT: We provide experimental evidence that is inconsistent with often proposed Langmuir-Hinshelwood (LH) mechanistic hypotheses for water-promoted CO oxidation over Au-Fe₂O₃. Passing CO and H₂O, but no O₂, over Au- γ -Fe₂O₃ at 25°C, we observe significant CO₂ production, inconsistent with LH mechanistic hypotheses. Experiments with H₂¹⁸O further show that previous LH mechanistic proposals cannot account for water-promoted CO oxidation over Au- γ -Fe₂O₃. Guided by density functional theory, we instead postulate a water-promoted Mars-van-Krevelen (w-MvK) reaction. Our proposed w-MvK mechanism is consistent both with observed CO₂ production in absence of O₂, and with CO oxidation in presence of H₂¹⁸O and ¹⁶O₂. In contrast, for Au-TiO₂, our data is consistent with previous LH mechanistic hypotheses.

KEYWORDS: CO oxidation, Mars-van-Krevelen, Langmuir-Hinshelwood, mechanism, Au, Fe₂O₃, TiO₂

CO oxidation over Au nanoparticles (NPs) on metal oxides is intensely studied in heterogeneous catalysis.^{1–22} Water strongly promotes this reaction, making catalysts up to one order of magnitude more active at room-temperature.^{10,12–15,17,20,23} However, there is still much debate regarding the mechanism behind water-promotion. At the center of this debate is whether support lattice-oxygen takes an active

part in the reaction (a Mars van Krevelen mechanism, MvK) or if the reaction takes place exclusively between co-adsorbed reaction intermediates (a Langmuir-Hinshelwood mechanism, LH).

theory,^{1,19} With support from spectroscopy, ^{3,5,6,24,25} temporal analysis of products, ^{9,10} and isotope exchange experiments,^{5,26} it has been argued that room-temperature CO oxidation occurs via a lattice-mediated Mars-van-Krevelen reaction over Au-TiO₂ and Au-Fe₂O₃. However, as pointed out by Chandler,¹² current mechanistic proposals involving the support lattice do not clearly account for waterpromotion. In contrast, various LH-mechanisms have been proposed that could account for this promotion.¹²⁻ ¹⁸ In particular, two influential studies have proposed that a LH-type mechanism can rationalize waterpromotion on both non-reducible (e.g., Al₂O₃) and reducible (e.g., TiO₂, Fe₂O₃) supports.^{12,13} Chandler et al. observed that, at room-temperature, CO and O₂ rate orders, kinetic isotope (hydrogen / deuterium) effects and H₂O adsorption were similar over Au-Al₂O₃ and Au-TiO₂, implying that the catalysts run by the same

Scheme 1. Elementary reaction steps for the (by Chandler et al.)¹² postulated LH-reaction mechanism of water-promoted CO oxidation over Au-Al₂O₃ and Au-TiO₂ which has also been proposed¹⁵ to be dominant on Au-Fe₂O₃. Note: * denotes an active site on the Au NP, away from the NP-support interface, [†] denotes an Au site at the NP-support interface, and [‡] denotes a support site at the NP-support interface. Formal charges that form during the reaction are assumed to be balanced by formal charges distributed over the Au NP.¹²

R1.	$2 \ge (CO(g) + * \rightarrow *CO)$
R2.	$2 \ge (H_2O(g) + \ddagger \rightarrow H_2O^\ddagger)$
R3.	$\mathrm{H_2O^{\ddagger}+O_2}\left(g\right)+^{\dagger} \bigstar^{\dagger}\mathrm{OOH}+^{\ddagger}\mathrm{OH^{-}}$
R4.	$^{\dagger}\mathrm{OOH} + ^{*}\mathrm{CO} \rightarrow ^{*}\mathrm{COOH} + \mathrm{O}^{\dagger}$
R5.	$^{*}\mathrm{COOH} + \mathrm{H_{2}O^{\ddagger}} \xrightarrow{} ^{*} + \mathrm{CO_{2}}\left(g\right) + \mathrm{H_{3}O^{+}}^{\ddagger}$
R6.	$O^{\dagger} + *CO \rightarrow ^{\dagger} + * + CO_2 (g)$
R7.	$^{\ddagger}\mathrm{OH^{-}} + \mathrm{H_{3}O^{+}}^{\ddagger} \xrightarrow{\bullet} 2 \mathrm{H_{2}O}\ (g) + 2 \overset{\ddagger}{}$
Σ	$2 \operatorname{CO}(g) + \operatorname{O}_2 \xrightarrow{} 2 \operatorname{CO}_2(g)$

Scheme 2. Elementary reaction steps for a previously (by Iglesia et al.)¹³ postulated LH-reaction mechanism of water-promoted CO oxidation over Au-Al₂O₃, Au-TiO₂, and Au-Fe₂O₃. Note: * denotes an active site on the Au NP.

R8.	$2 \ge (CO(g) + * \rightarrow *CO)$
R9.	$O_2(g) + * \rightarrow *O_2$
R10.	$H_2O(g) + * \rightarrow H_2O*$
R11.	$*O_2 + H_2O* \rightarrow *OOH + *OH$
R12.	$*OOH + *CO \rightarrow *OH + CO_2 (g) + *$
R13.	$^{\ast}OH + ^{\ast}OH \xrightarrow{} H_{2}O \ (g) + O^{\ast}$
R14.	*CO + O* → CO ₂ (g) + 2*
Σ	$2 \operatorname{CO} (g) + \operatorname{O}_2 \xrightarrow{} 2 \operatorname{CO}_2 (g)$

mechanism. It was argued that because lattice-oxygen on non-reducible Al₂O₃ cannot directly participate in the reaction mechanism, and because the data implied that Au-Al₂O₃ and Au-TiO₂ operate by the same mechanism, lattice-oxygen does not participate in room-temperature water-promoted CO oxidation over Au-TiO₂. Chandler therefore proposed that water-promotion over Au-TiO₂ and Au-Al₂O₃ occurs by a LHmechanism with CO adsorbing on Au NPs, and H₂O adsorbing on the Au-support interface, there promoting O₂ activation to form a reactive hydroperoxy species (OOH) which then reacts with adsorbed CO to form CO₂ (Scheme 1).¹² In this reaction scheme, no oxygen from water would be incorporated into CO₂, as the water-promotion occurs through a series of proton transfers only. Recently, the LH-mechanism proposed by Chandler for Au-TiO₂ and Au-Al₂O₃ was also proposed to account for water-promotion over Au-Fe₂O₃.¹⁵

Before Chandler, Iglesia et al. postulated a related LH-mechanism for water-promoted CO oxidation over Au-Al₂O₃, Au-TiO₂ and Au-Fe₂O₃ (Scheme 2). Similar to Chandler, it was hypothesized that only adsorbed intermediates participate in the reaction, and that water-promotion occurs because water activates O₂ to form OOH (Scheme 2). Observing that the rate equations derived from this mechanism accurately predicted rate orders and rates over all catalysts (Au-Al₂O₃, Au-TiO₂ and Au-Fe₂O₃), the authors proposed that this LH mechanism uses dominant

Figure 1. (A) TEM micrograph of Au-TiO₂, and (**B**) of Au- γ -Fe₂O₃. (**C**) Au NP size histogram for Au-TiO₂ and (**D**) for Au- γ -Fe₂O₃. (**E**) – (**G**) Typical high resolution TEM images of Au- γ -Fe₂O₃. The Au NPs are polyhedral, with the (111) facet dominating at the Au/ γ -Fe₂O₃ interface. For γ -Fe₂O₃, many facets are present, e.g., (114) and (210).

authors proposed that this LH-mechanism was dominant over the catalysts.¹³

Here we provide experimental data clearly demonstrating that a LH-type mechanism cannot dominate water-promoted CO oxidation over Au- γ -Fe₂O₃ at room-temperature. Instead, we postulate that a lattice-mediated mechanism, which do account for water-promotion, dominates. We present DFT calculations and careful CO oxidation experiments with C¹⁶O, ¹⁶O₂, and H₂¹⁸O suggesting that this mechanism can rationalize water-promoted CO oxidation over Au- γ -Fe₂O₃.

We prepared Au-TiO₂ and Au- γ -Fe₂O₃ catalysts by well-established protocols (Supporting Information, Section S1), resulting in Au NP sizes of 4.3 nm (Au-TiO₂) and 4.8 nm (Au- γ -Fe₂O₃), similar to previous reports (Figure 1 A - D).^{13,21,27–30} The Au- γ -Fe₂O₃ catalyst was characterized in more detail, and consists of polyhedral Au NPs supported on γ -Fe₂O₃, where the Au(111) facet is dominating at the Au/ γ -Fe₂O₃ perimeter, while many γ -Fe₂O₃ facets are present, e.g., (114) and (210), Figure 1 E - G.

Investigation by high-resolution STEM (Supporting Figure S10) found no evidence of single Au atoms, suggesting that Au NPs are the dominant Au species in the catalyst.

Catalytic tests were run at ambient temperature (controlled at 25 °C), consistent with previous studies. ^{3,5,6,12–15,21,28,29,31–34} Ambient oxygen adsorbed to the catalyst was removed by passing humidified N₂ (2.8 vol % H₂O) over the catalyst for 16 h. We then introduced CO (1 vol %) in the inlet flow. Over Au-TiO₂, no significant CO₂ production was observed (Figure 2 A), while over Au- γ -Fe₂O₃, CO₂ production quickly increased to 0.95 mmol CO₂ (mol Au)⁻¹ s⁻¹, then rapidly decreasing (Figure 2 B). The background O₂ concentration in our reactor is \approx 4 ppm, which is about 2 % of the CO₂ concentration resulting from CO oxidation (Supporting Figure S5 and Figure S6). In addition, no H₂ is produced (Supporting Figure S7), ruling out the possibility that the water gas shift reaction (CO + H₂O \rightarrow CO₂ + H₂), contributes to CO₂ production. Thus, over Au- γ -Fe₂O₃ lattice. Of course, the CO₂ production in the absence of O₂ is not stable because the γ -Fe₂O₃ lattice is gradually depleted of oxygen.

Thus, water-promoted CO oxidation over $Au-\gamma-Fe_2O_3$ can proceed by abstraction of latticeoxygen, while over Au-TiO₂, this appears unlikely. Our data, therefore does not refute previously

Figure 2. (A) Transient CO oxidation rates over Au-TiO₂. (B) Transient CO oxidation rates over Au- γ -Fe₂O₃. Reaction starts immediately upon introduction of CO, and terminates immediately upon removal of CO (at 3 h 45 min). Orange squares: 1 vol % CO, 2.8 vol % H₂O, 20 vol % O₂, balance N₂. Blue circles: 1 vol % CO, 2.8 vol % H₂O, balance N₂. Reaction temperature was 25 °C, and pressure 1 atm. The gas hourly space velocity (GHSV) was 21 L h⁻¹ g⁻¹_{cat}, and the CO conversion was below 20 % (ensuring data was collected under differential conditions).^{13,37} Reported curves are averages of three independent measurements. Error bars are 2 standard deviations wide. For some data points, the error-bars are so small, they are obscured by the data-labels. Full data-sets in Supporting Figure S8.

proposed LH mechanisms over Au-TiO₂. However, over Au- γ -Fe₂O₃, we need to investigate how significant the lattice reaction is when O₂ is present. To probe this question, we assessed water-promoted CO oxidation with O₂, for both Au-TiO₂ (Figure 2 A) and Au-Fe₂O₃ (Figure 2 B). The rates measured are similar^a to previously reported rates,^{3,5,6,21,28,29,31–34} showing that our catalysts are comparable to previously reported catalysts. Over Au- γ -Fe₂O₃, the maximum rate in the

Scheme 3. Elementary reaction steps for our proposed waterpromoted w-MvK CO oxidation mechanism (R15, R17 - R21). The (non-feasible) non-water promoted MvK mechanism is represented by R15, R16, R20, R21. Note: * denotes an active site on the Au NP, O_{lat} denotes a lattice-oxygen, near the Au NP, $\Box_{o_{lat}}$ denotes a lattice-oxygen vacancy, OH_{ad} denotes a hydroxyl on a lattice-Fe, OH_{lat} denotes a hydroxyl in a lattice oxygen position.

R15.	$2 \ge (CO(g) + * \rightarrow *CO)$
R16.	$O_{lat} \rightarrow CO_2 + * + \square_{O_{lat}}$
R17.	$H_2O(g) + O_{lat} \rightarrow OH_{ad} + OH_{lat}$
R18.	$*{\rm CO} + {\rm OH}_{ad} \twoheadrightarrow *{\rm COOH}$
R19.	*COOH + OH _{lat} \rightarrow CO ₂ (g) + H ₂ O (g) + * + $\Box_{o_{lat}}$
R20.	$O_2(g) + \Box_{O_{lat}} + * \rightarrow O_{lat} + O^*$
R21.	$O^* + *CO \rightarrow CO_2(g) + 2 *$
Σ (w-MvK, MvK)	$2 \operatorname{CO} (g) + \operatorname{O}_2 \xrightarrow{\bullet} 2 \operatorname{CO}_2 (g)$

presence of water, but without O₂ (0.95 mmol CO₂ (mol Au)⁻¹ s⁻¹) is \approx 13 % of the maximum rate with O₂. This suggests that a lower bound of \approx 13 % CO₂ is produced by a water-promoted lattice-route during CO oxidation over Au- γ -Fe₂O₃. However, the true contribution is likely higher, since with O₂ present, lattice-oxygen is continuously replenished. Below, we further investigate what this true contribution may be, using a combination of DFT computation and CO oxidation experiments in the presence of H₂¹⁸O.

To rationalize the observed CO₂ production over Au- γ -Fe₂O₃ in the absence of O₂, a lattice reaction (MvK) mechanism must be invoked. Considering the exposed Au and γ -Fe₂O₃ facets (Figure 1 E – G), a suitable Au- γ -Fe₂O₃ model system was created (Supporting Information, Section S2), using density functional theory (DFT). Using this system, we found a low barrier, water-promoted MvK (w-MvK) mechanism, presented in Scheme 3 and Figure 3. A similar mechanism has been proposed for water-promoted CO oxidation over single-atom Pt₁-CeO₂,³⁵ and we propose that this mechanism can be adapted to rationalize room-temperature CO oxidation over Au- γ -Fe₂O₃.

Direct abstraction of γ -Fe₂O₃ lattice-oxygen by Au-adsorbed CO comes with a prohibitively high barrier of 0.98 eV (reaction R16). However, introduction of water presents a low-barrier alternative (to R16), but likewise lattice-mediated, path for CO oxidation (R17 – R19, scheme 3). Reaction R17 describes

^a Rates should be compared after normalizing by the total Au-NP / support interface perimeter in the different studies. It has been shown that CO oxidation activity for Au-Fe₂O₃ and Au-TiO₂ is proportional to this perimeter.⁵

Figure 3. Schematic representation of our proposed mechanism for w-MvK CO oxidation (R15, R17 – R21) over Au- γ -Fe₂O₃. The non-feasible, non-water promoted, MvK mechanism is represented by R15, R16, R20, R21.

dissociative adsorption of H₂O onto an Felat-Olat motif in the γ -Fe₂O₃ surface, with H₂O splitting into a hydroxyl on top of Felat (OHad) and a latticehydroxyl (OH_{lat}) (Figure 3). Reaction R18 describes the reaction of CO, adsorbed on gold, with the water-derived OH_{ad} to form a carboxylic group (COOH) adsorbed to the Au NP. This carboxylic group then reacts (R19) with the OH_{lat} formed during water dissociation (R17) to produce CO₂ and re-form H₂O, thereby forming a lattice oxygen vacancy. Note from reactions R17 - R19 that water is first consumed, and then regenerated, such that no net-consumption of water occurs, and water acts purely as a promoter. Also note that, although oxygen from water is incorporated into CO₂, water is regenerated with oxygen from the γ -Fe₂O₃ lattice, meaning that overall, reactions R17 - R19 yields the same

stoichiometry as reaction R16 (Scheme 3 and Figure 3). The critical point is that the water-mediated abstraction of lattice-oxygen (in the form of OH_{lat}) is energetically more favorable than O_{lat} abstraction in the absence of water. Between reactions R17 – R19, reaction R18 has the highest barrier (0.44 eV), to compare with the barrier for direct abstraction of O_{lat} by CO (R16, 0.98 eV). Reaction R20 describes the filling of an oxygen vacancy with oxygen from O_2 (g), forming an oxygen atom (O*) on the Au NP in the process. The catalytic cycle closes (R21) with Au-adsorbed CO reacting with this oxygen atom to form CO₂. These final steps (R20, R21) of the catalytic cycle are essentially without barriers (Figure 4).

To compare our proposed w-MvK mechanism (Scheme 3) with previously proposed LH-mechanisms (Scheme 1 and Scheme 2), we also calculated the reaction barriers for these LH mechanisms (Figure 4). We calculated activation energies for the LH mechanisms proposed by Chandler (Scheme 1) and Iglesia (Scheme 2), and find that they share the rate determining step, namely O_2 (g) activation by water to form OOH. We calculate the activation energy for this step (R3 in Chandler's mechanism, and R11 in to 0.55 eV (Supporting Iglesia's mechanism) Information, Table S2). Our calculations therefore indicate that the w-MvK mechanism may be favored over these previously proposed LH mechanisms. However, the similar reaction barriers suggests that an

Figure 4. Energy diagrams of previously proposed LH mechanisms and of our proposed w-MvK mechanism. The reactions are labelled according to Schemes 1 - 3. Boxed values (in eV) are activation energies for the respective elementary reaction.

LH mechanism and a MvK mechanism potentially could operate simultaneously over Au- γ -Fe₂O₃ (although, as shown above, a lower bound of 13 % CO₂ must result from a MvK mechanism). To further distinguish between the mechanisms, we turned to experiments of H₂¹⁸O - promoted CO oxidation.

Different mechanisms of $H_2^{18}O$ - promoted $C^{16}O$ oxidation would lead to different abundances of $C^{16}O_2$, $(C^{18}O^{16}O + C^{16}O^{18}O)$, and $C^{18}O_2$. Chandler's mechanism would lead to no ¹⁸O incorporation into CO_2 (100 % $C^{16}O_2$ expected). In contrast, Iglesia's mechanism would lead to 75 % $C^{16}O_2$, and 25 % $(C^{18}O^{16}O + C^{16}O^{18}O)$, while our proposed w-MvK mechanism should result in relative abundancies of 50 % $C^{16}O_2$ and 50 % $(C^{18}O^{16}O + C^{16}O^{18}O)$. Please refer to the Supporting Information, Section S4, for a detailed analysis of how these relative isotopic CO_2 abundancies can be predicted from the respective mechanisms.

Before we discuss the experimentally observed relative abundancies, we note that CO_2 also exchanges oxygen directly with $H_2^{18}O.^{36}$ This exchange occurs in the reactor piping and on the catalyst bed, and is therefore a reactor-specific property that must be deconvoluted from the abundancies resulting

from ¹⁸O insertion into CO₂ due to the CO oxidation mechanism. To estimate the ¹⁸O exchange between $H_2^{18}O$ and different isotopic CO₂ species in our reactor, we prepared a mixture of C¹⁶O₂, $H_2^{18}O$ and ¹⁶O₂ with the same concentrations as obtained during CO oxidation. We then passed this mixture over the Au- γ -Fe₂O₃ catalyst, at the same conditions used for C¹⁶O oxidation. This experiment allowed us to deduce (Supporting Information, Section S4) the reactor-specific probabilities that a given CO₂ species (C¹⁶O¹⁶O, C¹⁸O¹⁶O, C¹⁶O¹⁸O or C¹⁸O¹⁸O) transforms to another isotopic CO₂ species by ¹⁸O exchange with H₂¹⁸O:

$$P_{\text{exch.}}(C^{16}O^{16}O \rightarrow C^{18}O^{16}O) = P_{\text{exch.}}(C^{16}O^{16}O \rightarrow C^{16}O^{18}O) = 0.18$$
(1)

$$P_{\text{exch.}}(C^{16}O^{16}O \rightarrow C^{18}O^{18}O) = 0.07$$
(2)

$$P_{\text{exch.}}(C^{18}O^{16}O \rightarrow C^{18}O^{18}O) = P_{\text{exch.}}(C^{16}O^{18}O \rightarrow C^{18}O^{18}O) = 0.25$$
(3)

With knowledge of our reactor-specific ¹⁸O incorporation into different CO₂ species by exchange with $H_2^{18}O$, and with the abundancies predicted to result from the different CO oxidation mechanisms, we can now predict, for each hypothetical mechanism, the expected abundancies in the reactor effluent. For Iglesia's LH-mechanism (Scheme 2), we would expect 43 % C¹⁶O₂, 46 % (C¹⁸O¹⁶O + C¹⁶O¹⁸O), and 11 % C¹⁸O₂. For Chandler's LH-mechanism (Scheme 1), we would expect 58 % C¹⁶O₂, 36 % (C¹⁸O¹⁶O + C¹⁶O¹⁸O), and 7 % C¹⁸O₂. And finally, for our proposed w-MvK mechanism, we would expect 29 % C¹⁶O₂, 56 % (C¹⁸O¹⁶O + C¹⁶O¹⁸O), and 16 % C¹⁸O₂. Please refer to the Supporting Information, Section S4, for detailed calculation of these predicted abundancies in the reactor effluent.

Transient CO oxidation experiments over Au- γ -Fe₂O₃, using C¹⁶O, ¹⁶O₂ and H₂¹⁸O were then carried out (Figure 5) using the conditions described in Figure 2 (although GHSV was reduced, through the flow-rate, to allow prolonged bubbling through a small volume of H₂¹⁸O). During CO oxidation, we measured transient production rates (Figure 5 A) of C¹⁶O₂, (C¹⁸O¹⁶O + C¹⁶O¹⁸O), and C¹⁸O₂, then calculating their transient relative abundancies in the reactor effluent (Figure 5 B). The experimental abundancies thus found were 28 % C¹⁶O₂, 55 % (C¹⁸O¹⁶O + C¹⁶O¹⁸O), and 17 % C¹⁸O₂ (Figure 5 C). It is note-worthy that, although the catalyst deactivates during reaction, the relative isotopic abundancies remain constant, suggesting that the same mechanism is dominant during the entire course of reaction.

Figure 5. $C^{16}O$ oxidation over Au- γ -Fe₂O₃ with H₂¹⁸O and ¹⁶O₂. (**A**) Transient production rates of different isotopic CO₂ – species, and the total rate. (**B**) Transient relative abundancies of different isotopic CO₂ – species in the reactor effluent. Relative abundancies were calculated (e.g., for C¹⁶O₂) as:

$$\frac{rate(C^{16}O_2)}{rate(C^{16}O_2) + rate(C^{18}O^{16}O + C^{16}O^{18}O) + rate(C^{18}O_2)} * 100$$

The relative abundancies predicted from our proposed w-MvK mechanism are indicated by dashed lines.

(C) Comparison between predicted (from different mechanistic hypotheses), and experimentally observed relative abundancies in the reactor effluent. Reaction conditions: 1 vol % C¹⁶O, 2.8 vol % H₂¹⁸O, 20 vol % ¹⁶O₂, balance N₂. Reaction temperature was 25°C, pressure 1 atm, and the space velocity (GHSV) was 10.5 L h⁻¹ g⁻¹cat.

Comparing (Figure 5 C) the measured isotopic CO₂ abundancies during reaction with the abundancies predicted by the previously proposed LH mechanisms (Scheme 1 and Scheme 2), it is clear that these mechanisms are not consistent with the observed abundancies in the reactor effluent. In contrast, our proposed w-MvK mechanism predicts the observed isotopic CO₂ abundancies to within one percentage point (Figure 5 C). Put differently, the observed isotopic CO₂ abundancies — after correcting for ¹⁸O exchange between CO₂ and H₂¹⁸O — suggests that H₂¹⁸O - promoted CO oxidation over

Au- γ -Fe₂O₃ results in 50 % C¹⁶O₂ and 50 % (C¹⁸O¹⁶O + C¹⁶O¹⁸O). This is clearly inconsistent with previous LH-mechanisms, but is consistent with our proposed w-MvK mechanism.

In conclusion, since no significant lattice reaction is observed during water-promoted CO oxidation over Au-TiO₂, previously proposed LH-mechanisms^{12–14,17,18} remain plausible for this system, at least at room-temperature. However, for water-promoted CO oxidation over Au- γ -Fe₂O₃, there is a lattice reaction that significantly contributes activity (Figure 2 B). By accounting for ¹⁸O exchange between CO₂ and H₂¹⁸O in H₂¹⁸O - promoted CO oxidation, we find that the reaction mechanism leads to

isotopic abundancies of 50 % C¹⁶O₂ and 50 % (C¹⁸O¹⁶O + C¹⁶O¹⁸O). Taken together, these results specifically refute (at least for Au- γ -Fe₂O₃) two previously proposed LH mechanistic hypotheses^{12,13} (Scheme 1 and Scheme 2), and also cast doubt over other^{15,22,37,38} previous LH mechanistic proposals. In contrast, our proposed w-MvK mechanism (Scheme 3 and Figure 3) is consistent with the data, and constitute a useful mechanistic hypothesis.

While we have shown that our w-MvK mechanism can rationalize water-promoted CO oxidation over Au- γ -Fe₂O₃, we also believe that this mechanism can rationalize CO oxidation in nominally dry conditions. In catalytic tests at room-temperature, nominally dry gas streams will contain 1 – 10 ppm H₂O,³⁹ which — because water is not consumed — likely is sufficient for water-promotion.^{13,17,23,39} Furthermore, our DFT calculations indicate that CO abstraction of lattice oxygen in absence of water is implausible (R16, 0.98 eV) compared to the water-promoted abstraction (R15, R17 – R21) with a barrier in the rate determining step of 0.44 eV. We therefore believe our w-MvK mechanism could rationalize observations^{3,4,6} of a lattice reaction in nominally water-free CO oxidation over Au- γ -Fe₂O₃. Finally, because many studies show that a lattice reaction occurs also on Au- α -Fe₂O₃^{3-6,10,27,40} we believe our proposed mechanism may operate also in these systems. We therefore believe our proposed w-MvK mechanism can rationalize CO oxidation over most Au-Fe₂O₃ catalysts in both nominally dry and in humid conditions.

Author Contributions A.H. and S.K. conceptualized the research. A.H., B.D., L.P.,V.C., C.W.T. and S.K. carried out experiments and characterization. E.D.S carried out the DFT study. A.H. wrote the original draft of the manuscript. All authors contributed to reviewing and editing of the manuscript. S.K. supervised the research.

ASSOCIATED CONTENT

Supporting Information. Section S1. Experimental details. Section S2. Computational details and results. Section S3. Miscellaneous Figures. Section S4. Calculation of predicted abundances of $C^{16}O_2$, $(C^{18}O^{16}O + C^{16}O^{18}O)$ and $C^{18}O_2$ resulting from $C^{16}O$ oxidation with $^{16}O_2$ and $H_2^{18}O$ over Au- γ -Fe₂O₃.

REFERENCES

Duan, Z.; Henkelman, G. CO Oxidation at the Au/TiO2 Boundary: The Role of the Au/Ti5c Site. ACS Catal 2015, 5 (3), 1589–1595. https://doi.org/10.1021/cs501610a.

- (2) Wang, Y.; Cantu, D. C.; Lee, M.; Li, J.; Rousseau, R. CO Oxidation on Au / TiO 2 : Condition- Dependent Active Sites and Mechanistic Pathways. 1–17.
- (3) Šmit, G.; Strukan, N.; Crajé, M. W. J.; Lázár, K. A Comparative Study of CO Adsorption and Oxidation on Au/Fe2O3 Catalysts by FT-IR and in Situ DRIFTS Spectroscopies. J Mol Catal A Chem 2006, 252 (1–2), 163– 170. https://doi.org/10.1016/j.molcata.2006.02.058.
- (4) Šmit, G.; Zrnčević, S.; Lázár, K. Adsorption and Low-Temperature Oxidation of CO over Iron Oxides. *J Mol Catal A Chem* **2006**, *252* (1–2), 103–106. https://doi.org/10.1016/j.molcata.2006.02.051.
- Wei, X.; Shao, B.; Zhou, Y.; Li, Y.; Jin, C.; Liu, J.; Shen, W. Geometrical Structure of the Gold–Iron(III) Oxide Interfacial Perimeter for CO Oxidation. *Angewandte Chemie* 2018, *130* (35), 11459–11463. https://doi.org/10.1002/ange.201805975.
- (6) Zhao, K.; Tang, H.; Qiao, B.; Li, L.; Wang, J. High Activity of Au/γ-Fe2o3 for Co Oxidation: Effect of Support Crystal Phase in Catalyst Design. ACS Catal **2015**, 5 (6), 3528–3539. https://doi.org/10.1021/cs5020496.
- Li, L.; Wang, A.; Qiao, B.; Lin, J.; Huang, Y.; Wang, X.; Zhang, T. Origin of the High Activity of Au/FeOx for Low-Temperature CO Oxidation: Direct Evidence for a Redox Mechanism. *J Catal* 2013, 299, 90–100. https://doi.org/10.1016/j.jcat.2012.11.019.
- (8) Zhang, Y.; Liu, J. X.; Qian, K.; Jia, A.; Li, D.; Shi, L.; Hu, J.; Zhu, J.; Huang, W. Structure Sensitivity of Au-TiO2 Strong Metal–Support Interactions. *Angewandte Chemie - International Edition* **2021**, *60* (21), 12074– 12081. https://doi.org/10.1002/anie.202101928.
- (9) Daniells, S. T.; Overweg, A. R.; Makkee, M.; Moulijn, J. A. The Mechanism of Low-Temperature CO Oxidation with Au/Fe2O 3 Catalysts: A Combined Mössbauer, FT-IR, and TAP Reactor Study. *J Catal* 2005, 230 (1), 52–65. https://doi.org/10.1016/j.jcat.2004.11.020.
- (10) Daniells, S. T.; Makkee, M.; Moulijn, J. A. The Effect of High-Temperature Pre-Treatment and Water on the Low Temperature CO Oxidation with Au/Fe2O3 Catalysts. *Catal Letters* **2005**, *100* (1–2), 39–47. https://doi.org/10.1007/s10562-004-3083-z.
- Klyushin, A. Y.; Jones, T. E.; Lunkenbein, T.; Kube, P.; Li, X.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R.
 Strong Metal Support Interaction as a Key Factor of Au Activation in CO Oxidation. *ChemCatChem* 2018, 10 (18), 3985–3989. https://doi.org/10.1002/cctc.201800972.
- Saavedra, J.; Pursell, C. J.; Chandler, B. D. CO Oxidation Kinetics over Au/TiO2 and Au/Al2O3 Catalysts: Evidence for a Common Water-Assisted Mechanism. *J Am Chem Soc* 2018, 140 (10), 3712–3723. https://doi.org/10.1021/jacs.7b12758.
- (13) Ojeda, M.; Zhan, B. Z.; Iglesia, E. Mechanistic Interpretation of CO Oxidation Turnover Rates on Supported Au Clusters. *J Catal* **2012**, *285* (1), 92–102. https://doi.org/10.1016/j.jcat.2011.09.015.
- Saavedra, J.; Doan, H. A.; Pursell, C. J.; Grabow, L. C.; Chandler, B. D. The Critical Role of Water at the Gold-Titania Interface in Catalytic CO Oxidation. *Science (1979)* 2014, 345 (6204), 1599–1602. https://doi.org/10.1126/science.1256018.
- Jin, C.; Zhou, Y.; Han, S.; Shen, W. Water-Assisted Low-Temperature Oxidation of CO at the Au-Fe2O3Interface. *Journal of Physical Chemistry C* 2021, *125* (47), 26031–26038. https://doi.org/10.1021/acs.jpcc.1c07995.

- (16) Bongiorno, A.; Landman, U. Water-Enhanced Catalysis of CO Oxidation on Free and Supported Gold Nanoclusters. *Phys Rev Lett* **2005**, *95* (10), 1–4. https://doi.org/10.1103/PhysRevLett.95.106102.
- (17) Daté, M.; Okumura, M.; Tsubota, S.; Haruta, M. Vital Role of Moisture in the Catalytic Activity of Supported Gold Nanoparticles. *Angewandte Chemie* **2004**, *116* (16), 2181–2184. https://doi.org/10.1002/ange.200453796.
- (18) Kung, H. H.; Kung, M. C.; Costello, C. K. Supported Au Catalysts for Low Temperature CO Oxidation. *J Catal* **2003**, *216* (1–2), 425–432. https://doi.org/10.1016/S0021-9517(02)00111-2.
- Wang, Y. G.; Cantu, D. C.; Lee, M. S.; Li, J.; Glezakou, V. A.; Rousseau, R. CO Oxidation on Au/TiO2: Condition-Dependent Active Sites and Mechanistic Pathways. *J Am Chem Soc* 2016, *138* (33), 10467– 10476. https://doi.org/10.1021/jacs.6b04187.
- (20) Fujitani, T.; Nakamura, I.; Takahashi, A. H2O Dissociation at the Perimeter Interface between Gold Nanoparticles and TiO2 Is Crucial for Oxidation of CO. ACS Catal 2020, 10 (4), 2517–2521. https://doi.org/10.1021/acscatal.9b05195.
- (21) Low Temperature Oxidation of Co over Gold Supported on Tio2 Fe2o3 and Co3o4.
- (22) Carley, A. F.; Morgan, D. J.; Song, N.; Roberts, M. W.; Taylor, S. H.; Bartley, J. K.; Willock, D. J.; Howard, K. L.; Hutchings, G. J. CO Bond Cleavage on Supported Nano-Gold during Low Temperature Oxidation. *Physical Chemistry Chemical Physics* 2011, *13* (7), 2528–2538. https://doi.org/10.1039/c0cp01852j.
- (23) Daté, M.; Haruta, M. Moisture Effect on CO Oxidation over Au/TiO2 Catalyst. *J Catal* **2001**, *201* (2), 221–224. https://doi.org/10.1006/jcat.2001.3254.
- (24) Li, L.; Wang, A.; Qiao, B.; Lin, J.; Huang, Y.; Wang, X.; Zhang, T. Origin of the High Activity of Au/FeOx for Low-Temperature CO Oxidation: Direct Evidence for a Redox Mechanism. *J Catal* **2013**, *299*, 90–100. https://doi.org/10.1016/j.jcat.2012.11.019.
- (25) Zhang, Y.; Liu, J. X.; Qian, K.; Jia, A.; Li, D.; Shi, L.; Hu, J.; Zhu, J.; Huang, W. Structure Sensitivity of Au-TiO2 Strong Metal–Support Interactions. *Angewandte Chemie International Edition* 2021, 60 (21), 12074–12081. https://doi.org/10.1002/anie.202101928.
- (26) Klyushin, A. Y.; Jones, T. E.; Lunkenbein, T.; Kube, P.; Li, X.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R.
 Strong Metal Support Interaction as a Key Factor of Au Activation in CO Oxidation. *ChemCatChem* 2018, 10 (18), 3985–3989. https://doi.org/10.1002/cctc.201800972.
- Tripathi, A. K.; Kamble, V. S.; Gupta, N. M. Microcalorimetry, Adsorption, and Reaction Studies of CO, O 2
 , and CO + O 2 over Au/Fe 2 O 3 , Fe 2 O 3 , and Polycrystalline Gold Catalysts. *J Catal* 1999, *187*, 332–342.
- (28) Carabineiro, S. A. C.; Bogdanchikova, N.; Tavares, P. B.; Figueiredo, J. L. Nanostructured Iron Oxide Catalysts with Gold for the Oxidation of Carbon Monoxide. *RSC Adv* 2012, 2 (7), 2957–2965. https://doi.org/10.1039/c2ra00724j.
- (29) Guczi, L.; Horváth, D.; Pászti, Z.; Petõ, G. Effect of Treatments on Gold Nanoparticles: Relation between Morphology, Electron Structure and Catalytic Activity in CO Oxidation. *Catal Today* 2002, 72 (1–2), 101– 105. https://doi.org/10.1016/S0920-5861(01)00483-7.

- (30) Khoudiakov, M.; Gupta, M. C.; Deevi, S. Au/Fe2O3 Nanocatalysts for CO Oxidation: A Comparative Study of Deposition-Precipitation and Coprecipitation Techniques. *Appl Catal A Gen* **2005**, *291* (1–2), 151–161. https://doi.org/10.1016/j.apcata.2005.01.042.
- (31) Akita, T.; Maeda, Y.; Kohyama, M. Low-Temperature CO Oxidation Properties and TEM/STEM Observation of Au/γ-Fe2O3 Catalysts. *J Catal* 2015, *324*, 127–132. https://doi.org/10.1016/j.jcat.2015.02.006.
- (32) Šmit, G.; Strukan, N.; Crajé, M. W. J.; Lázár, K. A Comparative Study of CO Adsorption and Oxidation on Au/Fe2O3 Catalysts by FT-IR and in Situ DRIFTS Spectroscopies. J Mol Catal A Chem 2006, 252 (1–2), 163– 170. https://doi.org/10.1016/j.molcata.2006.02.058.
- (33) Zhao, K.; Qiao, B.; Wang, J.; Zhang, Y.; Zhang, T. A Highly Active and Sintering-Resistant Au/FeOx-Hydroxyapatite Catalyst for CO Oxidation. *Chemical Communications* 2011, 47 (6), 1779–1781. https://doi.org/10.1039/c0cc04171h.
- Holm, A.; Goodman, E. D.; Stenlid, J. H.; Aitbekova, A.; Zelaya, R.; Diroll, B. T.; Johnston-Peck, A. C.; Kao, K. C.; Frank, C. W.; Pettersson, L. G. M.; Cargnello, M. Nanoscale Spatial Distribution of Supported Nanoparticles Controls Activity and Stability in Powder Catalysts for CO Oxidation and Photocatalytic H2Evolution. J Am Chem Soc 2020, 142 (34), 14481–14494. https://doi.org/10.1021/jacs.0c03842.
- (35) Wang, C.; Gu, X. K.; Yan, H.; Lin, Y.; Li, J.; Liu, D.; Li, W. X.; Lu, J. Water-Mediated Mars-Van Krevelen Mechanism for CO Oxidation on Ceria-Supported Single-Atom Pt1 Catalyst. ACS Catal 2017, 7 (1), 887– 891. https://doi.org/10.1021/acscatal.6b02685.
- Baltrusaitis, J.; Schuttlefield, J. D.; Zeitler, E.; Jensen, J. H.; Grassian, V. H. Surface Reactions of Carbon Dioxide at the Adsorbed Water-Oxide Interface. *Journal of Physical Chemistry C* 2007, *111* (40), 14870– 14880. https://doi.org/10.1021/jp074677I.
- (37) Schubert, M. M.; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. CO Oxidation over Supported Gold Catalysts -"Inert" and "Active" Support Materials and Their Role for the Oxygen Supply during Reaction. J Catal 2001, 197 (1), 113–122. https://doi.org/10.1006/jcat.2000.3069.
- (38) Kahlich, M. J.; Gasteiger, H. A.; Behm, R. J. Kinetics of the Selective Low-Temperature Oxidation of CO in H
 2-Rich Gas over Au/α-Fe 2 O 3; 1999; Vol. 182. http://www.idealibrary.comon.
- (39) Haruta, M. Gold as a Novel Catalyst in the 21st Century: Preparation, Working Mechanism and Applications.
- (40) Han, Q.; Zhang, D.; Guo, J.; Zhu, B.; Huang, W.; Zhang, S. Improved Catalytic Performance of Au/α-Fe2O3-like-Worm Catalyst for Low Temperature CO Oxidation. *Nanomaterials* 2019, 9 (8). https://doi.org/10.3390/nano9081118.