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Abstract 

We investigate feature selection algorithms to reduce experimental time of nanoscale 

imaging via X-ray Absorption Fine Structure spectroscopy (nano-XANES imaging). Our approach 

is to decrease the required number of measurements in energy while retaining enough information 

to, for example, identify spatial domains and the corresponding crystallographic or chemical phase 

of each domain. We find sufficient accuracy in inferences when comparing predictions using the 

full energy point spectra to the reduced energy point subspectra recommended by feature selection. 

As a representative test case in the hard X-ray regime, we find that the total experimental time of 

nano-XANES imaging can be reduced by ~80% for a study of Fe-bearing mineral phases. These 

improvements capitalize on using the most common analysis procedure – linear combination 

fitting onto a reference library – to train the feature selection algorithm and thus learn the optimal 

measurements within this analysis context. We compare various feature selection algorithms such 

as Recursive Feature Elimination (RFE), random forest, and decision tree, and find that RFE 

produces moderately better recommendations. We further explore practices to maintain reliable 

feature selection results, especially when there is large uncertainty in the system, thus requiring a 
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more expansive reference library, resulting in high linear mutual dependence within the reference 

set. More generally, the class of spectroscopic imaging experiments that scan energy by energy 

(rather than collecting an entire spectrum at once) is well-addressed by feature selection, and our 

approach is equally applicable to the soft X-ray regime via Scanning Transmission X-ray 

Microscopy (STXM) experiments. 
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1. Introduction 

As high-throughput experiments rise in prominence in all fields of science,[1] advanced 

processing techniques – such as image overlay analysis – allow both humans and machines to 

utilize all information available.[2] While the large amounts of data collected in these studies 

generate more opportunity for insight, these experiments often require quality control[3] or feature 

selection tools[4] to be both reliable and manageable. Feature selection is a machine learning 

technique that takes a set of observables, called features, corresponding to experimental parameters 

and determines the relative importance of the features in the context of targeted inference. In other 

words, the goal is to determine what measurement conditions (dictated by the experimental 

parameters) are needed to strongly retain the targeted information. Feature selection has the 

advantage of minimizing experimental time while simultaneously encouraging generalizability of 

learned predictions[5, 6]. 

Here, we perform feature selection to choose the best measurements for a type of high-

dimensional spectral imaging technique called nanoscale X-ray Absorption Near Edge Structure 

(nano-XANES)[7-12]. Nano-XANES is a scanning probe technique that contains a XANES 

spectrum at every pixel (with nanometer precision), by collecting 2D images usually at 50 to 100 

energy points. While XANES experiments are popular in many fields of science[13-15], the 

prevalence of XANES imaging, especially in the hard X-ray regime, is on the rise due to 

synchrotron advances such as increased beam brightness[16], fast monochromator motors[17], and 

better spatial resolution[18] due to fabrication of better nano-focusing optics[19]. On the other 

hand, nanometer-scale XANES imaging in the soft X-ray regime, such as with Scanning 

Transmission X-ray Microscopy (STXM), is already a common experimental technique at 

synchrotrons. However, hard X-ray spectroscopic imaging experiments are highly time-intensive 
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(over 8 hours) and thus run into conflict with beamtime allocation limitations., in addition to 

having risk of beam damage due to prolonged exposure to the X-ray beam. These time constraints 

limit expanding the measurement to higher dimensions – for example, expanding into a fourth 

dimension for in situ time-dependence studies of chemical kinetics. 

A common bottleneck for XANES imaging studies is the number of energy measurements 

in each spectrum, contingent upon the specific experimental beamline. Given this difficulty, we 

hypothesize that feature selection can help reduce the number of energy points necessary in nano-

XANES studies while retaining scientific purpose, such as statistically reliable inferences about 

the spatial distribution of mineral phases. This approach differs from previous work[20, 21] that 

has instead selected spatial regions of interest to gather full spectra, thus compromising global 

spatial information rather than spectral information. Even though there have been recent advances 

that accelerate XANES imaging[22, 23] from an implementation perspective, we find that feature 

selection can, for the representative test case of mineral phase identification of Fe-rich compounds, 

decreases total measurement time by ~80%. 

 Here, we compare several different feature selection algorithms, namely Recursive Feature 

Elimination (RFE), decision tree, random forest, and linear regression. Specifically, we find 

advantageous performance and heuristic merits for RFE[24], a wrapper-based supervised method, 

as our feature selection routine. Fig. 1 demonstrates the RFE algorithm. As the name suggests, the 

RFE model decides which input features are the most important by recursively pruning the feature 

space such that the least important features are removed first. The algorithm decides the 

importance of each feature by using one of a few possible options. For example, the RFE can 

correlate a subset of features to the accuracy of predicted target labels by training a base machine 

learning estimator on that specific feature subset. Or, in the case of linear regression, the RFE can 
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rank the model weights which correspond to each input feature such that the feature with the largest 

weight is deemed most important and the feature corresponding to the smallest weight is least 

important. The RFE algorithm will then recursively retrain the base machine learning model on 

smaller and smaller feature subsets until a desired number of features remains. The recursive nature 

of RFE has potential benefits over linear regression, random forest, and decision trees if the 

importance of features change when fewer of them are considered. 

 

 

Figure 1 Recursive Feature Elimination (RFE) optimizes the feature subset to measure, in this 

case energies, by training a base machine learning model – such as linear regression – to predict 

target variables from spectra. 

  

In this work, we find that feature selection algorithms provide energy measurement 

recommendations that produce reduced energy point spectra, which we call subspectra, with 

enough information to maintain sufficient analysis accuracy. However, when training the feature 

selection algorithms, we found unwanted sensitivity to spectral correlations and thus pre-
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processing the spectral training set with principal component analysis (PCA) stabilized the feature 

selection algorithms. Additionally, appropriate normalization of subspectra is critical for accurate 

results. While our results are generally applicable for any supervised regression feature selection 

algorithm, we emphasize results using recursive feature elimination (RFE) for which there are 

conceptual benefits that suggest its modest superiority here may be generic for this class of 

application. 

 

2. Methods 

The sample and experimental data is the same as it appeared in A. Pattammattel, et al. [25] 

and S. Tetef, et al.[26] See those works for the experimental details. Briefly, the sample was 

composed of stainless steel (SS), lithium iron phosphate (LFP), pyrite (Pyr), and hematite (Hem) 

nanoparticles. We prepared this sample with prior knowledge to optimize data analysis workflows 

for spectromicroscopy analysis. Fe K-edge XANES mapping data were collected in about 24 hours 

at the Hard X-ray Nanoprobe (HXN) Beamline at National Synchrotron Light Source II (NSLS-

II) at Brookhaven National Laboratory[18, 19]. Our reference library is the same as in A. 

Pattammattel, et al.[12] and S. Tetef, et al.[26], which includes the four known phases – stainless 

steel, LFP, pyrite, and hematite – and seven additional ones –HFO (hydrous ferric oxyhydroxide), 

goethite, maghemite, magnetite, Fe3P, Fe(III)PO4, and Fe(III)SO4. Training data for the feature 

selection and machine learning models was generated by linear combinations of reference spectra, 

where a random dropout was included such that there was enforced sparsity in the number of 

references contributing to any one generated spectrum. 

All feature selection methods, including recursive feature elimination (RFE), random forest 

(RF), decision tree (DT), and linear regression (LR), are implemented using the sklearn python 
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package. The RFE algorithm was trained on a dataset composed of 1000 linear combinations of 

references (without additional noise) and with linear regression as the base estimator. We then 

apply Principal Component Analysis (PCA) to the reference library and projected the 1000 

generated linear combinations using the principal component vectors obtained from the reference 

library; the number of principal components is determined such that the principal components 

explained 99% of the variance in the reference spectra. The PCA-projected spectra were similarly 

given as training input to the feature selection models, with the PCA-projected coefficients as the 

target (or output) variables. 

We keep the most important energies, which were selected as most important from a dataset 

of 50,000 linear combinations of reference spectra that were subsequently PCA-projected, where 

the RFE ranked all energies (it stopped when only one energy was left). The number of energies 

kept was largely based on the degrees of freedom in the reference library, which we determined by 

the number of principal components it took to explain 97% of the variance in the reference set. We 

then choose three additional energies ad hoc to ensure proper normalization of spectra – two in the 

far pre-edge (maximally spaced) and one in the post-edge (highest energy available). Using 

normalization and test LCF results, we ultimately kept a total of 16 energies from the original 74 

energies experimentally measured – 13 chosen by feature selection and 3 added as hoc for 

normalization. See Results and Discussion for more details. 

To normalize subspectra, we fit a line to the first two energies in each spectrum (energies 

which we added for that purpose) and subtracted that line. We then fit another background post-

edge line to all energies above 7150 eV; this value created the most consistent normalized spectra, 

and it was selected based on the post-edge spectral features in the reference set. We found the 

maximum of the subspectra to determine edge location (rather than the maximum in the derivative, 
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as is commonly done with full spectra) and generated “flattened” spectra by dividing by the post-

edge line in the region past the edge so that the post-edge features on average fall along the 

𝜇(𝐸)𝑥 = 1 line. 

As a baseline, we obtain “true” linear combination fitting (LCF) results using the full-

energy experimental spectra by performing pixel-by-pixel non-negative least squares linear 

combination fitting (NNLS-LCF) onto a smaller reference library composed of only the four 

known phases (SS, Hem, Pyr, LFP). The standard LCF utilizes stepwise regression (regression on 

enumeration of subsets of the reference library) on every pixel. Instead, here we utilize LASSO 

regression to encourage sparsity in fits, as originally presented in Jahrman, et al.[27] Details of the 

alternative LCF approach – LASSO-LCF via Manifold Projection Image Segmentation (MPIS) – 

are in S. Tetef, et al.[26]. In short, we use Uniform Manifold Approximation and Projection 

(UMAP)[28] and dbscan clustering[29] to globally group spectra together and then perform LCF 

on the cluster-averaged spectra rather than pixel-by-pixel analysis. 

 

3. Results and Discussion 

3.1 Recursive Feature Elimination (RFE) Training, Recommendations, and Validation 

Because RFE is a supervised feature selection routine, we synthesize a training dataset of 

linear combinations of reference spectra corresponding to possible mineral phases in our sample. 

Moreover, this training dataset incorporates prior knowledge of our system and mirrors post-

experimental analysis, particularly by inverting the analysis process of linear combination fitting 

(LCF) onto a reference library. However, the accuracy of this library’s composition is, of course, 

subject to the experimenter’s prior knowledge. Here, we knew our sample was made of stainless 

steel (SS), lithium iron phosphate (LFP), pyrite (Pyr), and hematite (Hem) – see the Methods 
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section. However, to represent a typical user uncertainty, we add other iron-containing mineral 

phases to the reference library. Specifically, we supplement the library with HFO (hydrous ferric 

oxyhydroxide), goethite, maghemite, magnetite, Fe3P, Fe(III)PO4, and Fe(III)SO4.[12, 26] 

The size of the reference library is well known to be a nontrivial issue in linear combination 

fitting (LCF), or any other method of inference, when working with XANES data.[27] Specifically, 

as the number of spectra in the reference library increases, the relative linear independence of the 

ensemble of spectra almost always decreases; often, the decrease is dramatic. This poses a core 

dilemma – if the spectra in the reference library have only weak linear independence, then any 

LCF fit results will be highly degenerate as there will be multiple solutions with almost identical 

goodness of fit parameters. 

The same issue of the lack of linear independence in the reference library also impacts any 

feature selection algorithm. The choice of reference spectra, or generically the choice of basis 

vectors that are used to generate linear combinations for a training dataset, plays a critical role in 

the reliability of the feature selection results. For example, we randomly selecting 50 experimental 

spectra as a basis set to generate linear combinations for the training data to simulate real-time 

feature selection during an experiment in the case entire spectra are collected at a time. However, 

using experimental spectra as a basis creates too little linear independence for the RFE algorithm 

to discern a solution; the base machine learning model at the center of the RFE learns unreliable 

solutions. We find that, in this case, the RFE produces recommendations that are contrary to our 

intuition by selecting energies (features) with low spectral variance (Fig. S1). By contrast, the RFE 

results match our intuition – identifying regions with high variance as important – when the basis 

vectors are chosen to be linearly independent (shown below). For illustrative purposes, the RFE 

matches human intuition for the synthetic case where distinct Gaussian distributions act as the 
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basis vectors for training the RFE (Fig. S2). This pattern is equivalently present for the other 

feature selection algorithms we compared: linear regression, decision tree, and random forest. 

However, if we relax the goal of inferring only from linear combinations of compositions 

but instead focus on information retention for the feature selection algorithms, we can circumvent 

the lack of linear independence issue. To do so, we recommend applying Principal Component 

Analysis (PCA)[30] to the reference library and then projecting the generated linear combination 

spectral training dataset onto these principal components. This pre-processing step forces feature 

inputs and target outputs to be linearly independent and thus obtain unique solutions for the feature 

selection model to learn. To be precise, the resulting unique solutions will be in terms of weighting 

coefficients of the principal components, not the reference spectra. Mathematically, we generate 

the linear combination spectra via 

𝑥⃗ = α1𝑟1 +⋯+ α𝑛𝑟𝑛 ,                                                    (1) 

where each 𝑟𝑖 is a normalized spectrum in a reference library of size n, and where ∑ 𝛼𝑛𝑛 = 1.  We 

then project spectra using PCA as 

𝑠 = β1𝑃𝐶⃗⃗⃗⃗⃗⃗ 1 +⋯+ β6𝑃𝐶⃗⃗⃗⃗⃗⃗ 6 ,                                                 (2) 

where the number of principal components (PC), six in this work, was determined to explain 99% 

of variance in the reference spectra, and the principal components themselves are obtained from 

the reference library. Because the principal components are linearly independent, predicting the 

correct β𝑖 values is more computationally stable because the solution is unique.  

It then remains the experimentalist’s task to address the lack of linear independence in the 

reference library when performing linear combination fitting on the final experimental data (taken 

with a reduced number of energy points), even though enforcing linear independence helps for 

feature selection. Again, there is a crisp separation of tasks between speeding up the experiment 
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with feature selection and performing analysis via linear combination fitting. The goal here is to 

perform feature selection that retains sufficient information. The subsequent data analysis gets no 

easier, but if we succeed in retaining (nearly) all information, then the analysis does not get more 

difficult, yet the experiment is accelerated. 

To illustrate the benefits of the PCA-based training dataset, Fig. 2 compares the RFE 

recommendations using the linearly dependent reference spectra versus the linear independent 

principal components as the basis for training data. Similar results occur with the other feature 

selection algorithms. Specifically, the first row uses the reference library (Fig. 2a) to make linear 

combinations (Fig. 2b) to train an ensemble of 10 RFE models and obtain a collective importance 

of every energy (Fig. 2c). On the other hand, using the first few principal components as a basis 

(Fig. 2d) for both the references and training dataset (Fig. 2e), the RFE results are relatively similar 

(Fig. 2f) to the recommendations made by training directly on the spectra (Fig. 2c) in that both 

focus on the rising- and post-edge regions. Fig. S3 quantitatively compares the results of training 

the RFE on the linear dependent versus linearly independent pairs of basis and target variables. 

The key observation is that the linear independence of both the input basis vectors and output 

coefficients help. 

While an appropriate choice in a small but comprehensive reference library might mitigate 

the effects of linear dependence of the basis set when training the RFE model, applying PCA first 

is a flexible procedure that allows for inclusion of a larger reference library, thus providing 

robustness against incorrect or incomplete priors for composition. It then remains the 

experimentalist’s task to address the lack of linear independence in the reference library when 

performing linear combination fitting on the final experimental data (taken with a reduced number 

of energy points), even though enforcing linear independence helps for feature selection. Again, 
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there is a crisp separation of tasks between speeding up the experiment with feature selection and 

performing analysis via linear combination fitting. The goal here is to perform feature selection 

that retains sufficient information. The subsequent data analysis gets no easier, but if we succeed 

in retaining (nearly) all information, then the analysis does not get more difficult yet the experiment 

is accelerated. 

 

 

 

Figure 2 Comparing RFE results on the full reference library versus using forced linear 

independence in the basis set and thus the training dataset. (a) The spectral reference library. (b) 

Training dataset of linear combinations of references. (c) The RFE results, trained on the spectral 

linear combinations. The black basis vectors are the same as in Fig. 2a. (reference spectra). (d) 

Spectra are instead represented using a basis set comprised of the first six principal components 

(PCs) to force linear independence. Thus, the linear combination solutions are unique. (e) The 
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same training data as before, which are also projected using PCA. (f) The RFE results trained on 

the PCA projections. The black basis vectors are the same as in Fig. 2d (PCs). 

 

Continuing our analysis based on the PC-constructed training dataset, Fig. 3a shows the 

results for four different feature selection models, i.e., RFE, random forest (RF), decision tree 

(DT), and linear regression (LR), and compares them to a random selection of energies. We show 

the combined results of an ensemble of 10 instances (each with a corresponding randomly 

generated training dataset to demonstrate changes in results based on different input data) for each 

feature selection model (including 10 random draws), where each model selects the top 10 

(arbitrarily chosen number) energies. We then add the same three energies to ensure normalization, 

as indicated by white points in the dark gray regions, for a total of 13 energies kept. We chose 10 

instances of each model to show the variation of each model to different random samplings of the 

training data. 

Fig. 3b shows the corresponding average and standard deviation of LASSO-LCF 

predictions given the energy selections for each feature selection model, where LCF is predicting 

the α coefficients corresponding to the reference spectra rather than the β coefficients 

corresponding to principal components. We compare the errors on both the simulated LCF (using 

a generated test dataset of linear combinations of references) and the actual experimental spectra. 

For the experimental spectra, we determine the “true” coefficients by performing non-negative 

least squares (NNLS) onto the four known reference spectra using the full energy point spectra. 

For each reduced energy point subspectrum, we perform LASSO regression onto the references 

(also reduced in energy points) to obtain the predicted coefficients. We focus on RFE in this paper 

since it produces moderately better subspectra with lower errors in predictions, likely due to the 
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recursive nature of the algorithm, but the other feature selection algorithms may also be worth 

considering when exploring other systems. 

Fig. 3c shows the consecutive energies discarded by the RFE as fewer energies are kept. 

Of note, the same energies are kept during each retraining of the RFE, where in each retraining the 

RFE picks fewer energies. This pattern is demonstrated by the purple stopping points and indicates 

that the RFE recommendations are consistent, regardless of the hyperparameter determining the 

number of features (or energies) to keep.  

Fig. 3d shows the error in normalizing XANES spectra using the reduced energy point 

subspectra. Specifically, the normalized root mean squared error (RMSE / number of energies 

chosen) is shown, where the error is calculated between subspectra that are normalized after energy 

cuts from the raw experimental spectra and the spectra normalized first using the full energy 

spectra and then sliced by energy to make the subspectra. Because there is no spectral variation in 

the far pre-edge, the RFE does not choose energies in that region. However, normalization of real 

experimental data requires fitting a line in that region to account for stray elastic and Compton 

scattering of the primary beam or tails of fluorescence from other elements, for example. Thus, we 

add two default energies in the far pre-edge (to ensure this line can be appropriately determined) 

as well as another high energy point to similarly help with normalization. We see the error in 

normalization is reasonably small when more than 15 total energies are kept (12 chosen by the 

RFE plus the three default ones). However, we recommend taking further care to determine the 

number of energy points needed to ensure normalization. 

 

https://doi.org/10.26434/chemrxiv-2023-cr7p9 ORCID: https://orcid.org/0000-0001-6738-7930 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-cr7p9
https://orcid.org/0000-0001-6738-7930
https://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

 

Figure 3 Characterization and validation of RFE algorithm. (a) Collection of energies chosen by 

different feature selection algorithms: random selection (Rand), recursive feature elimination 

(RFE), random forest (RF), decision tree (DT), and linear regression (LR). The dark bars include 

the three default energies (white) to ensure normalization. (b) Corresponding errors in LCF 

predictions on both a generated test dataset and the experimental spectra for all models. (c) 

Energies consecutively removed by the RFE as fewer energy points are kept, which shows 

consistency in training. The last energy, or set of energies, kept by the RFE are denoted in purple. 

(d) Error in reconstructing spectra using normalization parameters from reduced energy point 

subspectra of different sizes compared to normalized full energy spectra. (e) R2 score of the linear 

regression (LR) base estimator in the RFE. (f) Error in LCF predictions versus subspectra size on 

both simulated test data and the experimental spectra. 

 

Fig. 3e shows the score (coefficient of determination, or R2) of the base estimator inside 

the RFE, in this case linear regression (LR), as more and more energies are chosen by the RFE. 
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Because each spectrum has six degrees of freedom (DOF) – one for each of the principal 

components the spectra are projected onto – the score for the base estimator is imperfect when 

fewer than six energies are kept, exactly because the system of equations is underdetermined in 

that regime. Thus, we recommend keeping enough energy points such that number of energies is 

greater than the number of principal components required to explain 99% variance of the reference 

set. Increasing uncertainty in the system by including a larger reference library[31] slowly affects 

the number of principal components needed to reach 99% variance, see Fig. S4. Finally, Fig. 3f 

compares errors in LCF predictions (on both the simulated linear combinations and experimental 

data) using different number of energies in the subspectra. Again, we have added three default 

energies to ensure normalization, so the RFE algorithm is recommending between 4 and 23 

energies for a total of 7 to 26 energies kept, as shown. We see that errors in LCF predictions on 

the experimental spectra converge once 11 energies total are kept, providing a lower bound on our 

subspectra size. The slight drop in error at 9 and 10 energies kept is likely due to differences in 

normalization. 

 

3.2 Reliability of Inferences Using Measurements Chosen by RFE 

As emphasized above, the goal of feature selection is to reduce the number of 

measurements while retaining sufficient information for the desired analysis. We now transition 

to inferences on the reduced energy point experimental subspectra and demonstrate that the 

inferences are consistent when performed on the subspectra dataset guided by feature selection 

and the original dataset with all energy points. 

Following the recommendations above, we select the 13 most important energies 

recommended by the RFE algorithm and then add three ad hoc energies to ensure normalization, 
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thus keeping a total of 16 energy points in our subspectra. We then take energy cuts of the 

experimental and reference spectra using these 16 energies and renormalize all subspectra 

independently. We attempt to combat any systematic errors in normalization in the experimental 

subspectra by renormalizing the reference subspectra as well. The full experimental spectra and 

16-energy subspectra are shown in Fig. 4, with the solid gray lines indicating the RFE 

recommended energies and the dashed lines indicating the energies we added for normalization. 

Fig. S5 shows correlation matrices for both the full reference spectra and reference subspectra and 

Fig. S6 shows scree plots for the experimental dataset for the full spectra and subspectra. Both of 

those figures support our assertion that most of the information in the full spectra is retained in our 

subspectra. 

 

 

Figure 4 Fully measured experimental XANES spectra (left) compared to the reduced energy point 

subspectra (right), with energies recommended by the RFE algorithm (vertical gray lines). The 

dashed lines indicate energies we subsequently added for normalization purposes. 

 

Next, we apply Manifold Projection Image Segmentation (MPIS) to cluster spectra in the 

nano-XANES image and then performed Linear Combination Fitting (LCF) via Least Absolute 

Selection and Shrinkage Operator regression, or LASSO-LCF, as detailed in S. Tetef, et al.[26] 
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and originally presented in Jahrman, et al.[27] Briefly, MPIS applies PCA to the spectra and then 

nonlinear dimensionality reduction, in the form of UMAP, to the projections onto the principal 

components. Then dbscan clustering groups spectra together such that cluster-average spectra are 

used to perform LASSO-LCF. See Figs S7-S9 for the first four principal components, PCA triangle 

plot, and dbscan clustering on the UMAP space. The end results for LASSO-LCF via MPIS are 

shown in Fig. 5. We calculate the “true results” (Fig. 5a) via pixel-by-pixel non-negative least 

squares linear combination fitting (NNLS-LCF) regression using just the four known phases as 

our reference library. We then compare the standard analysis procedure – pixel-by-pixel NNLS-

LCF – using the full reference library on the full-energy spectra (Fig. 5b) versus the 16-energy 

subspectra (Fig. 5c). The dark speckles in these images are pixels where NNLS-LCF reported 

phases that were not one of the true phases, i.e., where it was distracted by the lack of linear 

independence in the reference set. The percent of pixel different between Fig. 5b and 5c is about 

6.5%. 

Finally, we compare these results instead using LASSO-LCF via MPIS on the full-energy 

spectra (Fig. 5d) and the 16-energy point subspectra (Fig. 5e). The results for the MPIS on the 

subspectra (Fig. 5e) are almost identical to the full-spectra results (Fig. 5d) – the percent difference 

is about 3.9% – indicating the 16-energy subspectra retained enough information to maintain 

accurate inferences of composition. Moreover, using the MPIS before performing LASSO-LCF 

removed the NNLS-LCF errors in Figs. 5b and 5c. 
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Figure 5 Linear Combination Fitting (LCF) results via standard pixel-by-pixel analysis and 

Manifold Projection Image Segmentation (MPIS). (a) The “true” results, using the full energy 

spectra via pixel-by-pixel NNLS-LCF onto the four known reference phases. (b) Pixel-by-pixel 

NNLS-LCF applied to the full energy spectra; black dots in this panel and later in the figure 

indicate erroneous inference by the analysis. (c) Pixel-by-pixel NNLS-LCF applied to the reduced 

energy point subspectra. (d) LASSO-LCF via MPIS applied to the full energy spectra. (e) LASSO-

LCF via MPIS applied to the reduced energy point subspectra. 

 

However, other experiments with larger noise would be more sensitive to incorrect results 

when fewer energy points are measured. To further reduce sensitivity to noise, we encode two 

additional modes of information into the MPIS analysis – the spatial location of each spectrum as 

well as the elemental composition of every pixel, specifically sulfur, phosphorus, and chromium 

using the X-ray fluorescence (XRF) intensities. The benefits of this approach are shown in Fig. 6, 

where Fig. 6a has the results for noisy full energy spectra (Gaussian noise with a standard deviation 
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of 10% of the spectral intensity at each energy is added to the experimental spectra). We include 

augmented information by tuning the strength of the encoding of the XRF data and spatial location 

of every pixel using the “XRF” and “Space” weighting hyperparameters, respectively. The detail 

of this encoding is explained in S. Tetef, et al.[26]. To view the overall effects of varying the two 

hyperparameters in MPIS that control spatial segregation – strength of the encoding of spatial 

location and the number of neighbors in UMAP – see Fig. S10. In summary, the UMAP space is 

a two-dimensional representation of the spectra and shows clustering of the experimental data; the 

details of the morphology of those clusters are not important here. 

Fig. 6b shows the results for the same augmented information except using the 16-energy 

point subspectra. The MPIS generates similar phase maps for both the full spectra and subspectra 

with the additional information encoded. However, performing MPIS on the subspectra without 

the augmented information (Fig. 6c) fails to appropriately separate out two of the four phases (plus 

a small cluster of outliers), indicated by the UMAP space only containing three large clusters rather 

than four. Thus, the extra information encoded into the MPIS pipeline helped to recover the extra 

cluster, distinguishing hematite from stainless steel when noise levels are high. Also of note, the 

black dots represent incorrect LCF results at that pixel. The pixel-by-pixel LCF on the subspectra 

likely has fewer incorrect pixels because of the decrease in correlation of the reference subspectra 

(Fig. S5), due to the increase in information density of the subspectra compared to the full spectra. 
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Figure 6 MPIS and LASSO-LCF results using (a) the full spectra and multimodal encoding, (b) 

the subspectra and multimodal encoding, and (c) the subspectra by themselves without 

augmented information. Here, the total XRF intensity of sulfur, phosphorus, and chromium and 

the spatial location of pixels are multimodal information. 
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In general, feature selection, such as RFE, can be highly beneficial for any high-throughput 

experiment that produces high-dimensional spectra, not just nano-XANES imaging. For example, 

as an extension of our work here, feature selection would be applicable to imaging experiments in 

the soft X-ray regime, called Scanning Transmission X-ray Microscopy (STXM); similar to nano-

XANES imaging in the hard X-ray regime, STXM scans over a sample energy by energy rather 

than taking full spectra at every spatial location. However, feature selection requires careful 

evaluation, especially how the constrained experiment effects spectral normalization, so that 

reliable results can be maintained before performing the constrained experiment. We also 

recommend a variety of feature selection algorithms to be explored, not just RFE, even though we 

demonstrated feature selection results with RFE here. 

 

4. Conclusions 

We have shown that feature selection can be used to select the most important 

measurements in a Nanoscale X-ray Absorption Fine Structure (Nano-XANES) imaging study; 

this selection can accelerate high-dimensional spectroscopy experiments that spatially image a 

sample one energy at a time. We demonstrate the utility of feature selection, highlighting 

Recursive Feature Elimination (RFE) to introduce this algorithm to the field, on a nano-XANES 

image of Fe-containing mineral phases. However, the benefits of feature selection can equivalently 

be applied to other imaging spectroscopy techniques such as Scanning Transmission X-ray 

Microscopy (STXM) experiments.[32] 

We observed that there are two key considerations to determining the minimum number of 

energy points to measure. First, ensuring energies are chosen such that proper normalization can 

occur is critical in maintaining reliable analysis results, specifically linear combination fitting 
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(LCF). Second, we recommend keeping the number of additional energies to measure at least equal 

to the degrees of freedom of the reference library, where Principal Component Analysis (PCA) 

can be utilized to parameterize the number of linearly independent components in the library and 

thus quantify the uncertainty in the system. Finally, when implementing RFE or any feature 

selection algorithm, we recommend pre-processing the training dataset of linear combinations of 

references with PCA to ensure that input and output vectors are linearly independent and thus the 

learned solutions are unique. The PCA pre-processing step for feature selection, in this context, 

creates more robust recommendations for larger reference libraries, which are inherently more 

prone to linear dependence within the set and can thus cause a feature selection algorithm to make 

unreliable recommendations. Given these considerations, we were successfully able to use feature 

selection to maintain sufficient information in a greatly reduced energy point subspectra, 

decreasing experiment time by 80% while maintaining similar analysis results. 
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