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ABSTRACT: Many ellagitannins with various conformations of their glucose moiety have been isolated from natural sources. 
Here, a conformational analysis was performed via the density functional theory calculation of 1H NMR coupling constants. It 
was observed that, in the solution state, davidiin exists as an equilibrium mixture of the BO,3 (boat) and 1C4 (chair) conforma-
tional states, while punicafolin is an equilibrium mixture of the 3S1 (skew-boat) and 1C4 conformational states. Their equilib-
rium states changed depending on the solvent and temperature. Such conformational flexibility may be important for the 
biosynthesis of ellagitannins with diverse structures. 

INTRODUCTION 
Hydrolyzable tannins, comprising gallotannins and ellag-
itannins, are a group of plant polyphenols with structural 
diversity and various biological activities.1 Most ellagitan-
nins comprise a glucose core and acyl groups, mainly hexa-
hydroxydiphenoyl (HHDP) and dehydrohexahydroxydiphe-
noyl (DHHDP) groups, derived from gallic acid.1 Feldman et	
al. suggested that the DHHDP group is oxidatively biosyn-
thesized from galloyl groups via intramolecular coupling.2 
In addition, the DHHDP group can be converted into the 
HHDP group by chemical reduction.2a,3 Our group recently 
reported that the DHHDP group is reductively metabolized 
to the HHDP group in several plants.4 Furthermore, the 
DHHDP group can be produced by the CuCl2-mediated oxi-
dation of galloyl ester derivatives in aqueous media.5 This 
strongly indicates that the DHHDP group is the initial prod-
uct of the oxidative coupling of two galloyl groups during 
ellagitannin biosynthesis, and the subsequent reductive 
metabolism yields HHDP esters (Figure 1a).4,5 

Glucose derivatives can adopt various conformations, 
such as chair (C), boat (B), skew- or twist-boat (S), envelope 
(E), and half-chair (H).6 Many ellagitannins are presumably 
biosynthesized from a common precursor, 1,2,3,4,6-penta-
O-galloyl-β-D-glucose (1) with a 4C1 conformation (Figure 
1b).3a,7 For example, the glucose moiety of 1-β-O-gal-
loylpedunculagin (casuarictin) with 2,3-(S)-HHDP and 4,6-
(S)-HHDP groups exhibits the same 4C1 conformation as 1.7 
Oppositely, the glucose moiety of geraniin (2) with 3,6-(R)-
HHDP and 2,4-(R)-DHHDP groups exhibits the 1C4 confor-
mation, where all the substituents are in the axial orienta-
tion.4c,8 In addition, amariin (3) with 2,4-(R)-DHHDP and 
3,6-(R)-DHHDP groups exhibits an O,3B conformation,4c 
whereas phyllanemblinin B (4) with a 2,4-(R)-HHDP group 
exhibits a 3S1 conformation.9 However, the precise confor-
mations of several ellagitannins remain unclear. 

Furthermore, certain ellagitannins change their confor-
mation depending on the solvent.10,11 

Davidiin (5), an ellagitannin with 1,6-(S)-HHDP and 2,3,4-
trigalloyl groups, has been isolated from Davidia	 involu‐
crata,3a,12 Acer	saccharum,13 and Persicaria	capitata	(Polyg‐
onum	capitatum).14 In addition, its various biological activi-
ties have been reported.12b,14a,15 The conformation of its glu-
cose moiety was initially assumed to be skew-boat.3a How-
ever, this has not been investigated. Previous literature has 
depicted 5 in three conformation types, 1C4,7b–d,f,16 3S1,17 and 
BO,3,12b,14b,18 thereby generating confusion (Figure S1). 
Among them, the BO,3-type conformation was estimated 
from its experimental 1H NMR coupling constants 
(JH,H).12b,14b,18 

Punicafolin (6), an ellagitannin with 3,6-(R)-HHDP and 
1,2,4-trigalloyl groups, has been isolated from Punica	gran‐
atum,19 Mallotus	japonicus,20 Euphorbia	helioscopia,21 Maca‐
ranga	tanarius,3c and Phyllanthus	emblica.9b It exhibits sev-
eral biological activities.22 Its glucose moiety was initially 
assumed to exhibit a 1C4 or skew-boat conformation in ace-
tone-d6.19 Thereafter, it was suggested to exhibit the B1,4 
conformation in DMSO-d6 from the JH,H values.23 In several 
reviews, its conformation has been described as 1C4.7d,f Re-
cently, density functional theory (DFT) calculations have 
shown that its most stable conformation is 1C4.24 However, 
its experimental JH,H values in acetone-d6 do not match those 
of geraniin with the 1C4 conformation (Table S2). 

Corilagin (7), an analogue of 5 without the galloyl groups 
at C-2 and C-4, is an ellagitannin with a flexible confor-
mation. It reportedly exists in an intermediate state be-
tween the B1,4 and O,3B (or 1C4) conformations in DMSO-d6, 
while a slightly perturbed O,3B (or 1C4) conformational state 
in acetone-d6.10a,b Its JH,H values change in DMSO-d6 depend-
ing on the temperature.10a Compound 7 was suggested to 
exhibit the 1C4 conformation with possible flattening of the 
pyranose ring at C-1 and O-53a or the B1,4 conformation23 in 
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DMSO-d6, and the 1C4 conformation in acetone-d68a and 
CD3OD.8c Furthermore, several computational studies have 
been conducted on the lowest-energy conformer of 7. The 
molecular mechanics (PIMM91) calculation of its model 
compound indicated 1C4.25 The other molecular mechanics 
(MM2) study of 7 suggested the skew-boat confor-
mation,26,27 and the semiempirical PM3 calculation sug-
gested B1,4 as its lowest-energy conformation.28 Based on 
electronic and vibrational CD spectroscopic data, JH,H values, 
and DFT calculations, a recent study reported the presence 
of 5 in the 3S1 and 1C4 conformations in DMSO-d6 and CD3OD, 
respectively.10c,29 Notably, the conformations of 3,6-bridged 
glucose derivatives change depending on their substituent 
groups and the bridge length.30 

To understand the biosynthetic mechanism and biological 
activities of ellagitannins, it is important to clarify their pre-
cise conformations. The JH,H values are the most useful data 
for the accurate determination of the conformation of glu-
cose derivatives because they reflect the dihedral angles be-
tween vicinal hydrogens. Here, the precise conformations of 
5, 6, and related ellagitannins in the solution state were in-
vestigated via the DFT calculations of JH,H values. 
 

 
Figure 1. (a) Plausible biosynthetic pathway of dehydrohexahydroxydiphenoyl (DHHDP) and hexahydroxydiphenoyl (HHDP) 
groups. (b) Structures of hydrolyzable tannins with various conformations. 

 

RESULTS AND DISCUSSION 
Conformational	 Analysis	 Procedure. The conforma-

tional analysis of the ellagitannins was performed as fol-
lows. Ellagitannins possess many phenolic hydroxy groups; 
therefore, numerous possible conformers with different 

orientations of such groups exist. First, a conformational 
search for the molecular skeletons was performed by the 
ring-flipping of glucopyranose and macrocyclic structures 
comprising HHDP esters without considering the orienta-
tions of the hydroxy groups using the MMFF94 force field. 
Thereafter, the obtained conformers were optimized at the 
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B3LYP/6-31G(d,p) level and classified based on the confor-
mation of glucopyranose. Second, a conformational search, 
including the orientation of the hydroxy groups, was per-
formed for the lowest-energy conformers of each classified 
group. The conformers discovered for each group within 6 
kcal/mol were optimized at the same DFT level. Their JH,H 
values with Boltzmann populations exceeding 1% were cal-
culated at the B3LYP/6-31G(d,p)u+1s level using only the 
Fermi contact term.31 Finally, the JH,H values were weight-
averaged for each conformer group. 

This procedure was first applied to phyllanemblinin B (4), 
an ellagitannin with a relatively simple structure. The con-
formation of its glucose moiety was originally reported to 
be skew-boat.9b Subsequently, Wakamori et	 al. suggested 
the 3S1 type based on experimental JH,H values and Merck 
Molecular Force Field (MMFF) calculations.9a,32 The present 
conformational analysis suggested three conformational 
states for 4: 3S1 (ΔG = 0.0 kcal/mol), B1,4 (ΔG = +4.8 
kcal/mol), and 1C4 (ΔG = +5.4 kcal/mol) (B3LYP/6-
31G(d,p)) (Figure S45, Table S9). Their JH,H values were cal-
culated by DFT. The results for the 3S1 type with the lowest-
free energy were consistent with the experimental values9a 
(Table 1), indicating that the conformation of the	glucose 
moiety was 3S1. 

 
Table 1. Experimental and calculated JH,H values (Hz) for phyl-
lanemblinin B (4). 

	
Conformational	Analysis	of	Davidiin	(5). As mentioned 

above, three conformers have been reported for davidiin 
(5): 1C4, 3S1, and BO,3 (Figure S1). However, the experimental 
JH,H values of its glucose moiety in acetone-d6, an NMR sol-
vent used in previous studies,3a,13,17a do not match those re-
ported for geraniin (2) with the 1C4 conformation8c and 4 
with the 3S1 conformation9a (Table S1). Here, the conforma-
tional analysis of 5 revealed three types of conformations of 
the glucose moiety: 1C4 (ΔG = 0.0 kcal/mol), 1,4B–1S5 (be-
tween 1,4B	and	1S5)	(ΔG = +2.8 kcal/mol), and BO,3 (ΔG = +4.4 
kcal/mol)33 (B3LYP/6-31G(d,p)) (Figure 2, Table S13). The 
DFT calculation of the JH,H values of these conformers was 
performed. However, none of the results agreed with the ex-
perimental values in acetone-d6 (Table 2), indicating that 5 
does not exhibit only one conformational state. When the 
calculated values for BO,3 and 1C4 were weight-averaged at a 
ratio of 60:40, they agreed well with the experimental data 
(Table 2), revealing that 5 exists as an equilibrium mixture 
of BO,3/1C4 in acetone-d6. Furthermore, the weight-averaged 
values of the BO,3/1C4/1,4B–1S5 mixture (55:40:5) were in bet-
ter agreement with the experimental data than those of 
BO,3/1C4 (60:40) (Table 2). This suggested that the 1,4B–1S5 

conformation might have slightly contributed to the equilib-
rium state of 5. Moreover, the J1,2, J2,3, and J3,4 values in-
creased with a decrease in temperature (Table S3), indicat-
ing a corresponding increase in the abundance ratio of BO,3. 
The 1H NMR spectra of 5 were recorded in other solvents: 
CD3OD, DMSO-d6, and D2O (Figure 3a). The experimental JH,H 
values in CD3OD were extremely similar to those in acetone-
d6 (Table 2). Contrarily, the experimental values of J1,2, J2,3, 
J3,4, and J4,5 in DMSO-d6 were higher than those in acetone-d6 
and CD3OD. Considering that the experimental JH,H values in 
DMSO-d6 matched the calculated values for BO,3 (Table 2), 
the conformation of 5 in this solvent was identified to be BO,3. 
The 1H NMR spectrum in D2O at 20°C revealed largely 
broadened signals, indicating a slow exchange rate between 
several types of conformers compared with the spectra in 
other solvents. Oppositely, sharp signals were observed at 
80°C, and the small values of J1,2, J2,3, and J3,4 indicated the 1C4 
conformation (Figure 3b and Table 2). 

When geometry optimization including the solvent effect 
was performed using the polarizable continuum model 
(PCM),34 the lowest-energy conformer was 1C4 in all the sol-
vents used, which was the same as without the solvent ef-
fect. The relative free energies between the three conforma-
tional groups were smaller than those without the solvent 
effect (Table S13). Another solvent model, the solvation 
model based on density (SMD),35 which reportedly affords 
better results than the PCM for polar and flexible molecules, 
including intramolecular hydrogen bonding,36 was applied. 
BO,3 was the most stable conformation in all the solvents 
(Table S14). Intramolecular hydrogen bonding and inter-
molecular interactions with solvents seem to contribute 
largely to the conformation of 5. The PCM is known to over-
estimate the stabilization by intramolecular hydrogen 
bonding.36,37 Thus, the stabilization by intramolecular hy-
drogen bonds between HHDP and 3-galloyl groups in 1C4 
and 1,4B–1S5 and between 2- and 4-galloyl groups in 1C4 ap-
peared to be overestimated (Figure 2). These results 
showed that it is difficult to predict the precise confor-
mation in various solvents based only on the calculated rel-
ative free energies, even when the solvent effect is included. 
However, it was possible by comparing the experimental 
and calculated JH,H values, even when the compounds ex-
isted as an equilibrium mixture of several conformations.38 

Geometry optimization using the B3LYP-D3(BJ) functional, 
including long-range dispersion correction, was per-
formed.39-41 The results showed that the 1C4 conformation 
(ΔG = 0.0 kcal/mol) was significantly stable compared with 
the BO,3 (ΔG = +13.7 kcal/mol) and 1,4B–1S5 (ΔG = +11.7 
kcal/mol) conformations (Table S13). In the 1C4 confor-
mation calculated at this level, an intramolecular π–π inter-
action was formed between the HHDP and 3-galloyl groups 
(Figure S52). Thus, in D2O, this interaction was presumably 
induced by hydrophobic interactions that stabilized the 1C4 
conformation. However, in DMSO-d6, the hydroxy groups in 
5 formed intermolecular hydrogen bonds with the solvent, 
which may have hindered intramolecular interactions be-
tween the acyl groups. These results indicate that 5 has sev-
eral types of conformers (BO,3, 1C4, and 1,4B–1S5), and its equi-
librium state changes depending on the solvent and temper-
ature (Table 3).  
	

3S 1 B 1,4
1C 4

J 1,2 5.9 6.2 7.5 0.5

J 2 ,3 1.0 0.7 0.9 1.3

J 3,4 3.7 3.7 3.0 3.2

J 4,5 0 0.2 0.8 1.7
a
500 MHz (Ref. 9a). 

b
Calculated at the B3LYP/6-

31G(d,p)u+1s//B3LYP/6-31G(d,p) level.

exptla
calcdb
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Figure 2. Three conformation types of davidiin (5) calculated at the B3LYP/6-31G(d,p) level. 

 

Table 2. Experimental and calculated JH,H values for davidiin (5). 

acetone-d 6
b

CD3OD
b

DMSO-d 6
b

D2O
c 1

C 4
1,4

B–
1
S 5 B O,3

B O,3/
1
C 4

(60:40)

B O,3/
1
C 4/

1,4
B–

1
S 5

(55:40:5)

J 1,2 2.9 2.9 4.0 0 0.8 2.2 4.1 2.8 2.7

J 2 ,3 7.3 7.1 10.2 0 2.1 0.3 11.5 7.7 7.2

J 3,4 6.7 6.4 8.9 0 2.2 7.4 9.7 6.7 6.6

J 4,5 2.6 2.5 3.5 0 0.5 11.5 3.3 2.2 2.6

J 5,6a 5.3 5.1 4.7 5.2 5.4 4.9 4.8 5.1 5.1

J 5,6b 12.1 11.8 11.9 12.1 12.7 0.2 12.6 12.7 12.0
a
500 MHz, 

b
 20 °C. 

c
 80 °C. 

d
Calculated at the B3LYP/6-31G(d,p)u+1s//B3LYP/6-31G(d,p) level.

exptl
a

calcd
d

 
 

Table 3. Conformations of davidiin (5), punicafolin (6), and corilagin (7) in various solvents assigned from experimental (20°C) 
and calculated JH,H values. 

acetone-d 6 CD3OD DMSO-d 6 D2O

davidiin (5)
B O,3/

1
C 4 (60:40)

[or B O,3/
1
C 4/

1,4
B–

1
S 5 (55:40:5)]

B O,3/
1
C 4 (60:40)

[or B O,3/
1
C 4/

1,4
B–

1
S 5 (55:40:5)]

B O,3
1
C 4

a

punicafolin (6) 3
S 1/

1
C 4 (65:35)

3
S 1/

1
C 4 (55:45)

3
S 1/

1
C 4 (90:10)

1
C 4

b

corilagin (7) 3
S 1/

1
C 4 (10:90)

3
S 1/

1
C 4 (10:90)

3
S 1/

1
C 4 (95:5)

1
C 4

a
 80 °C. 

b 
D2O/DMSO-d 6 (9:1).  
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Figure 3. The 1H NMR spectra of (a) the glucose moiety of da-
vidiin (5) in various solvents at 20°C and 500 MHz and (b) 5 in 
D2O at various temperatures and 500 MHz. 

 
Conformational	 Analysis	 of	 Punicafolin	 (6)	 and	 Cori‐
lagin	(7). As mentioned above, punicafolin (6) was origi-
nally reported to exhibit the 1C4 or skew-boat confor-
mation,19 the former being the most stable according to re-
cent DFT calculations.24 Here, the conformational analysis 
of 6 indicated two states: 1C4 (ΔG = 0.0 kcal/mol) and 3S1 (ΔG 
= +2.6 kcal/mol) (B3LYP/6-31G(d,p)) (Figure 4, Table S22). 
Although the calculated JH,H values for both conformations 
did not agree with the experimental values measured in ac-
etone-d6, the weight-averaged values for 3S1/1C4 (65:35) 
were in good agreement with the experimental values (Ta-
ble 4), indicating that 6 exists as an equilibrium mixture of 
3S1/1C4 (65:35). Moreover, the J1,2 and J2,3 values increased 

with a decrease in temperature (Table S4), suggesting a cor-
responding increase in the abundance ratio of 3S1. Further-
more, the JH,H values changed in different solvents, and the 
results revealed that 6 existed as 3S1/1C4 (55:45) in CD3OD, 
3S1/1C4 (90:10) in DMSO-d6, and 1C4 in D2O/DMSO-d6 (9:1)42 
(Figure 5a, Table 4). Geometry optimization with the sol-
vent effect (PCM or SMD) yielded smaller relative free ener-
gies than those without the solvent effect (Tables S22, S23). 
However, similar to 5, it was difficult to predict the equilib-
rium state of 6 in various solvents based only on the calcu-
lated relative free energies. Geometry optimization with the 
B3LYP-D3(BJ) functional revealed that the 1C4 conformation 
was largely stable compared with 3S1 (ΔG = 11.7 kcal/mol) 
(Tables S22, S23). The obtained 1C4 conformer exhibited in-
tramolecular π–π interactions between the HHDP and 1-
galloyl groups and between the 2- and 4-galloyl groups (Fig-
ure S62). This indicated that such interactions were induced 
by hydrophobic interactions that stabilized the 1C4 confor-
mation in D2O/DMSO-d6 (90:10). These results indicate that 
6 exhibits the 3S1 and 1C4 conformations, and its equilibrium 
state changes depending on the solvent and temperature. 
 

Figure 4. Two conformation types of punicafolin (6) calculated 
at the B3LYP/6-31G(d,p) level. 
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Table 4. Experimental and calculated JH,H values for punicafolin (6).

acetone-d 6 CD3OD DMSO-d 6
D2O/DMSO-d 6

(9:1)
1C 4

3S 1

3S 1/
1C 4

(55:45)

3S 1/
1C 4

(65:35)

3S 1/
1C 4

(90:10)

J 1,2 5.1 4.5 7.1 0 0.7 7.7 4.5 5.2 7.0

J 2 ,3 0 0 0 0 1.8 0.4 1.0 0.9 0.6

J 3,4 3.3 3.2 3.2 3.1 2.7 3.3 3.0 3.1 3.3

J 4,5 0  0 0 0 1.0 0.3 0.6 0.5 0.4

J 5,6a 7.0 – c 5.6 7.5 8.1 8.1 8.1 8.1 8.1

J 5,6b 8.0 – c 7.8 – c 11.1 8.0 9.4 9.1 8.3

exptl a calcd b

a 500 MHz, 20 °C. b Calculated at the B3LYP/6-31G(d,p)u+1s//B3LYP/6-31G(d,p) level. c  Not resolved. . 

 

Figure 5. The 1H NMR spectra of the glucose moiety of (a) puni-
cafolin (6) and (b) corilagin (7) in various solvents at 20°C and 
500 MHz. 
 

Figure 6. Two conformation types of corilagin (7). 

 

The experimental JH,H values for corilagin (7) were practi-
cally the same as those for 6 in DMSO-d6 and D2O, suggesting 
that 7 also exists as an equilibrium mixture of 3S1 and 1C4 
(Figures 5b and 6, Table S34). In acetone-d6 and CD3OD, its 
J1,2 values (1.8 and 2.0 Hz, respectively) (Table S34) were 
smaller than those of 6	(5.1 and 4.5 Hz, respectively) (Table 
4). This indicated a larger abundance ratio of 1C4 in 7 than 
in 6 in the solvents. The conformational analysis afforded 
four types for 7: 1C4 (ΔG = 0.0 kcal/mol), O,3B (ΔG = +2.9 
kcal/mol), 3S1–O,3B (ΔG = +3.1 kcal/mol), and 3S1 (ΔG = +4.4 
kcal/mol) (Figure S65, Table S29). However, the calculated 
J5,6 values for O,3B and 3S1–O,3B widely differed from the ex-
perimental values (Table S34). This indicated that they do 
not contribute to the equilibrium state of 7. However, the 
calculated JH,H values for 1C4 and 3S1 were very similar to 
those of 6, except for the J1,2 of 3S1 (7.7 and 4.6 Hz for 6 and 
7, respectively) (Tables 4 and S34). In the lowest-energy 3S1 
conformer of 7, an intramolecular hydrogen bond was 
formed between 2-hydroxy and 1-galloyl carbonyl groups, 
changing the dihedral angle between H-1 and H-2 (159.4° 
for 6 and 144.8° for 7) (Figures 4 and S65). However, in po-
lar solvents, hydroxy groups can form intermolecular hy-
drogen bonds with the solvent, and the calculated J1,2 values 
for the 3S1 conformations of 7, where the 2-hydroxy groups 
do not form intramolecular hydrogen bonds, were practi-
cally the same as those of 6 (Figure S65, Table S34). The cal-
culated JH,H values indicate that 7 exists as an equilibrium 
mixture of 3S1 and 1C4 (10:90) in acetone-d6 and CD3OD and 
as 3S1/1C4 (95:5) in DMSO-d6 and 1C4 in D2O (Tables 3 and 
S34). 

The abundance ratio of the 1C4 conformation of 7 was 
higher than that of 6 (Table 3). For 6, the distance between 
O-2 and O-4 atoms in the glucose moiety was closer in 1C4 
(2.9 Å) than in 3S1 (3.2 Å), suggesting a larger steric hin-
drance between the 2- and 4-galloyl groups in the 1C4 con-
formation than in 3S1. Thus, the abundance ratio of 3S1 was 
probably higher in 6 than in 7.	

 
Conformational	Analysis	of	Macaranganin	 (8). Maca-

ranganin (8) is a diastereomer of 6 with a 3,6-(S)-HHDP 
group. It has been isolated from Macaranga	 tanarius.3c Its 
lowest-energy conformer has been identified as 5S1 through 
DFT calculations.24 Here, its conformational analysis indi-
cated four possible conformational states: 3S1 (ΔG = 0.0 
kcal/mol), 5S1–B1,4 (ΔG = +0.6 kcal/mol), 5S1–5E (ΔG = +2.5 
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kcal/mol), and 5S1 (ΔG = +4.5 kcal/mol) (B3LYP/6-
31G(d,p)) (Figure S69, Table S41). The DFT calculations in-
cluding the solvent effect afforded smaller relative free en-
ergies: 3S1 (ΔG = 0.00 kcal/mol), 5S1–B1,4 (ΔG = +0.19 
kcal/mol), 5S1–5E (ΔG = +0.90 kcal/mol), and 5S1 (ΔG = +0.73 
kcal/mol) (B3LYP/6-31G(d,p) in acetone (PCM)) (Table 
S41). The reported experimental JH,H values in acetone-d6 + 
D2O24 were in good agreement with the calculated values for 
5S1 (Table S46). Thus, the conformation of 8 was confirmed 
to be 5S1 (Figure 7). When the B3LYP-D3(BJ) functional was 
used for geometry optimization, the four types of conform-
ers converged into two types, 5S1 and 3S1 (Figure S71). Con-
sidering that 8 was unavailable for the present study, it was 
impossible to investigate its conformations in other sol-
vents. 

Figure 7. The 5S1 conformation of macaranganin (8) calcu-
lated at the B3LYP/6-31G(d,p) level. 
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Scheme 1. Possible biosynthetic pathways toward ellagitannins 2 and 9–11 with the 1C4 conformation from 1,2,3,4,6-penta-
O-galloyl-β-D-glucose (1) (a) via the flexible-conformation intermediates 5 and 6, and (b) via terchebin (12). HHDP, hexahy-
droxydiphenoyl; DHHDP, dehydrohexahydroxydiphenoyl. 
	
Biosynthetic	 Considerations	 of	 1C4‐type	 Ellagitannins. 
The conformational flexibility of ellagitannins revealed in 
the present study is crucial in the biosynthesis of 1C4-type 
ellagitannins from 1 with the 4C1 conformation (Scheme 1a). 
The conformation of carpinusin (9)43 and helioscopinin A 
(10)14b,21 with a 1,6-(S)-HHDP group is locked as the 1C4 type 
by a 2,4-bridged DHHDP group. For their biosynthesis from 
1, a glucose moiety with the 4C1 conformation must be con-
verted into the 1C4 type. Conformationally flexible 5 can be 
biosynthesized from 1 via oxidative coupling between its 1- 
and 6-galloyl groups. In turn, since 5 can adopt the 1C4 con-
formation, 9 and 10 can be biosynthesized via oxidative 
coupling between the 2- and 4-galloyl groups in 5. Similarly, 
geraniin (2) and granatin B (11),3a,19,44 locked as the 1C4 con-
formation by a 2,4-bridged DHHDP group, can be biosynthe-
sized from 1 via the flexible intermediate 6, which can adopt 
the 1C4 conformation. 

Conversely, another possible biosynthetic pathway toward 
1C4-type ellagitannins exists (Scheme 1b). Geraniin (2) is re-
ductively biosynthesized from amariin (3) and isoamariin 
(15) bearing 2,4-(R)- and 3,6-(R)-DHHDP groups with the 
O,3B-type conformation.4c,45 In addition, 3 and 15 can be ox-
idatively biosynthesized from 1 via terchebin (12) bearing 
a 2,4-(R)-DHHDP group.44a Although the conformation of 12 
has not been investigated, it was suggested to exist in an in-
termediate state between the B1,4 and O,3B (or 1C4) confor-
mations in DMSO-d6.10a We assume that 12 might also have 
a flexible conformation; this is currently under investiga-
tion. Compound 9 can also be biosynthesized from 12.	The 
formation of a DHHDP group between the 1,6-galloyl 
groups in 12	would afford unknown intermediates 13 and 
14, which could be reductively metabolized to produce 9. 
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CONCLUSION 
The precise conformations of davidiin (5) (bearing a 1,6-

(S)-HHDP group) and punicafolin (6) (bearing a 3,6-(R)-
HHDP group) were revealed by conformational analysis 
through DFT calculations of the JH,H values. These ellagitan-
nins exhibited flexible conformations in the solution state, 
and their equilibrium states were significantly influenced 
by the solvent and temperature. The conformation of cori-
lagin (7), which is known to change depending on the sol-
vent, was also investigated. Here, it was difficult to predict 
the precise conformations of these flexible ellagitannins 
only from the calculated relative free energies under several 
calculation conditions. Although several studies have inves-
tigated the conformations of 5 and 6 using computational 
methods, most of them could not precisely predict them 
since they were based on the calculated relative (free) ener-
gies and did not consider the simultaneous existence of sev-
eral conformations as an equilibrium state. However, this 
study demonstrated that the precise conformation can be 
predicted by comparing the experimental JH,H values with 
the corresponding calculated values. Recently, Auer et	al. in-
vestigated the conformations of xylopyranoside derivatives. 
They demonstrated that identifying the most stable con-
formers using the computational calculations of relative 
free energies or NMR chemical shifts was not sensitive, 
whereas the calculation of JH,H values enabled the quantifi-
cation of the ratio of different conformers in the mixture.46 
The procedure of conformational analysis presented here 
was similar to that of Auer et al. 

Conformationally flexible ellagitannins are important in-
termediates in the biosynthesis of ellagitannins with the 1C4 
conformation. Their flexibility may contribute to their vari-
ous biological activities. Although several in silico molecular 
docking studies of 5–7 with proteins have been reported,47 
their flexibility, as revealed here, contributes to the future 
bioinformatics research of these ellagitannins. Ellagitannins 
have attracted significant attention as targets for total syn-
theses because of their structural diversity and complex-
ity.48 For example, the total syntheses of 5–8 have been re-
ported.17a,24,49 The elucidation of the precise conformations 
of ellagitannins will be important for their efficient synthe-
sis. 
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