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Abstract

An important concern related to the performance of Li ion batteries is the for-

mation of the solid electrolyte interphase on the surface of the anode. This film is

formed from the decomposition of electrolytes and can have important effects on sta-

bility and performance. Here, we evaluate the decomposition pathway of ethylene

carbonate and related organic electrolyte molecules using a series of density functional

approximations and correlated wavefunction (WF) methods, including coupled-cluster

theory with single, double, and perturbative triple excitations [CCSD(T)] and auxil-

iary field quantum Monte Carlo (AFQMC). We find that the transition state barrier

associated with ring opening varies widely across different functionals, ranging from

3.00 to 17.15 kcal/mol, which can be compared to the value of 12.84 kcal/mol predicted

by CCSD(T).This large variation underscores the importance of benchmarking against

accurate WF methods. A performance comparison of all the density functionals used

in this study reveals that dispersion-corrected M06-2X (a meta-hybrid GGA), CAM-

B3LYP (a range-separated hybrid) and B2GP-PLYP (a double-hybrid) perform the

best, with average errors of about 1.60 kcal/mol compared to CCSD(T). We also com-

pared the performance of WF methods that are more scalable than CCSD(T), finding

that DLPNO-CCSD(T) and phaseless AFQMC with a DFT trial wavefunction exhibit

average errors of 1.38 kcal/mol and 1.74 kcal/mol respectively.

1 Introduction

Lithium-ion batteries have been the gold standard and ubiquitous driving force behind almost

all electronic devices for over two decades.1,2 A typical lithium-ion battery consist of a

graphite anode, a transition metal oxide cathode, and an electrically insulating and ionically

conducting nonaqueous organic electrolyte that acts as an ionic path between the two.3,4

One key to understanding a battery’s electrochemistry is its electrode/electrolyte interface,

which controls critical aspects of performance and is thus a target for improvement.5,6 The

decomposition of organic electrolyte molecules at the electrode surface yields a passivation
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layer called the solid electrolyte interphase (SEI).7 Understanding the SEI layer formation,

composition, and growth over multiple time and length scales is essential for the design of

next-generation safe and performant lithium-ion batteries.8,9

The most common electrolytes are mixtures of alkyl carbonates such as ethylene carbon-

ate (EC) or propylene carbonate (PC), and lithium salts such as LiAsF6 or LiPF6.
10 Both

components undergo chemical reactions that contribute to the composition of the SEI. The

choice of an electrolyte is partially based on its compatibility with the electrode materials

used, such that the electrolyte should either be electrochemically stable or form a stable and

well-understood SEI at the electrode surface,6 necessitating a thorough understanding of the

electrolyte stability and decomposition pathways. However, it is experimentally challenging

to directly capture reactive processes leading to the formation of SEI.11,12

Alternatively, atomistic simulations, including electronic structure theory and molecular

dynamics, have the potential to contribute to a fundamental understanding of the elec-

trolyte decomposition pathways responsible for the SEI.13–19 Although density functional

theory (DFT) has become a standard approach due to the steep computational scaling of

more accurate wavefunction (WF) methods that explicitly describe electron correlation, the

results can vary depending on the density functional approximation used and the system

of interest. Therefore, the selection of a particular density functional approximation for a

specific application requires rigorous benchmarking studies.20–24 In this work, we carry out

such a study for the problem of organic electrolyte decomposition in the presence of lithium.

Specifically, we study the reductive decomposition of the organic electrolytes ethylene car-

bonate (EC), propylene carbonate (PC), and fluoroethylene carbonate (FEC). The reaction

pathways studied here are similar to those investigated previously by Balbuena and cowork-

ers25 using DFT. We perform accurate benchmark calculations using a variety of high level

WF methods, and then evaluate a range of DFT functionals; our work should be useful for

the future development of accurate force field parameters for large scale atomistic simulations

of battery electrochemistry.26,27 In addition to our evaluation of a range of DFT function-
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als, we also use the EC decomposition to compare three accurate WF methods capable of

serving as a benchmark: coupled-cluster theory with single, double, and perturbative triple

excitations [CCSD(T)],28 its low-scaling variant via domain-based local pair natural orbitals

[DLPNO-CCSD(T)],29 and phaseless auxiliary field quantum Monte Carlo (ph-AFQMC)

using a Kohn-Sham determinant trial wavefunction. We find that the three methods yield

similar reactions energetics (within a few kcal/mol), and this internal consistency—especially

between very different methods like coupled cluster and AFQMC—supports the conclusion

that all three give accurate results for this class of reactions. Consequently, we utilize the

least expensive approach, DLPNO-CCSD(T), in studying the remaining reactions (involving

the PC and FEC electrolyte solvent components). It should be noted, however, that if the

desired precision was chemical accuracy (1 kcal/mol), further improvement of the reference

results would be necessary.

2 Methods

All geometry optimizations are performed at the ωB97X-D/def2-TZVP(-f) level of theory

using Jaguar v11.4.30 The transition state (TS) of the EC decomposition pathway is obtained

using the automatic transition state (AutoTS) search approach as detailed in Ref. 31. The

transition states of the substituted ethylene carbonates (FEC and PC) are initially opti-

mized with the eigenvector following method using ωB97X-D/6-31G* as a guess, followed by

frequency analysis to verify the TS. Finally, these pre-optimized TS geometries were refined

with eigenvector following utilizing ωB97X-D/def2-TZVP(-f). These geometries are used for

all subsequent energy evaluations.

DFT single-point energy calculations were performed with Jaguar v11.4 and Orca v5.0

using the def2-TZVP(-f) basis set, without any further basis set extrapolation. We selected

a wide range of DFT functionals belonging to different rungs of Jacob’s ladder, including

generalized gradient approximation (GGA), meta-GGA, hybrid, meta-hybrid-GGA, range-
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separated hybrid, and double hybrid.32 Many of the functionals were combined with vari-

ous treatments of dispersion, including D3,33 D3BJ,34 and VV10.35 The full list of density

functional approximations can be found in Sec. 3. In total, we tested 17 different density

functional approximations.

Canonical CCSD and CCSD(T) calculations were performed with PySCF v1.7.36–38

DLPNO-CCSD and DLPNO-CCSD(T) calculations were performed with ORCA 5.039

using “TightPNO” settings and semi-canonical perturbative triple corrections (i.e., with-

out the improved iterative “(T1)” correction40).All CC calculations were performed using

a spin-unrestricted Hartree-Fock (HF) reference determinant and core orbitals were frozen.

All AFQMC calculations were carried out using single determinant trial wavefunctions as

detailed in Ref. 41. The trial wavefunctions (UB3LYP) and integrals for AFQMC were

obtained with PySCF v2.0. Similar to previous studies,42 the imaginary time step for the

AFQMC propagation was 0.005 Ha−1, and the total propagation time was 200 Ha−1, em-

ploying the “comb” algorithm for population control every 20 steps.43 We used 3312 total

walkers, which were initialized with a spin-restricted HF determinant.

Calculations were performed with the aug-cc-pVDZ, TZ, and QZ basis sets. The HF

energy was extrapolated to the CBS limit with an exponential form and the correlation

energy was extrapolated with a X−3.05 form,44 using the TZ and QZ results (X = 2, 3, 4 for

DZ, TZ, QZ). As one exception, the reaction involving formation of 8 was too large to treat

at the QZ level with CC theory, so extrapolation was performed with a X−2.51 form using

only DZ and TZ results.44

In this work, we focus on the purely electronic energies, i.e., we neglect vibrational

corrections and all calculations are performed in the gas phase. This approach facilitates a

direct comparison of different levels of electronic structure theory, but of course is not meant

to be compared to experimental values. Although we expect small vibrational corrections

on the order of 1–2 kcal/mol, the solvation energy corrections are expected to be very large.

Nonetheless, we expect our conclusions concerning the performance of different levels of

5

https://doi.org/10.26434/chemrxiv-2023-d4mq1-v2 ORCID: https://orcid.org/0000-0002-2489-0090 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-d4mq1-v2
https://orcid.org/0000-0002-2489-0090
https://creativecommons.org/licenses/by/4.0/


theory to hold even when the solvent is treated explicitly or implicitly.

3 Results and Discussion

We study in detail the reductive decomposition of ethylene carbonate (EC) in the presence

of a lithium ion, and we closely follow the mechanism identified in Ref. 25. We also study

the same reaction for propylene carbonate (PC) and fluoroethylene carbonate (FEC), as a

confirmation of the generality of our conclusions.

3.1 Reductive decomposition of ethylene carbonate

Figure 1 illustrates the steps of the reductive decomposition of EC.25 Step 1 involves the

strong binding of the EC molecule 1 with a Li+ ion to form the ion-pair intermediate 2.This

ion-pair intermediate 2 is reduced in step 2 to form the neutral adduct 3; the energy change

for this step is large and negative due to the strong electron affinity induced by the Li+ ion (in

the absence of Li+, addition of an electron to gas phase EC requires about +8 kcal/mol).25

The adduct 3 subsequently undergoes homolytic ring cleavage, passing through the transition

state 4 in step 3 to form the intermediate radical 5 in step 4. A nonplanar pathway in steps

2 and 3 is also possible,25 but we do not consider it here. Once the radical 5 is formed, there

are several possible termination pathways. Here, we study two such pathways, as illustrated

in step 5 and 6, which correspond to pathways C and B, respectively, in Ref. 25. The first

is a reductive decomposition to form lithium carbonate anion 6 and ethylene 7. The second

is a dimerization of the radical 5 to form ethylene 7 and lithium ethylene dicarbonate 8. We

note that both lithium carbonate and lithium ethylene dicarbonate have been implicated as

major components of the SEI, but there are some conflicting observations.45–47

Using the electronic structure methods described in Sec. 2, we calculated the electronic

energy differences of all six steps. A T1 diagnostic test48 on CC calculations confirms that

all species are qualitatively single-reference, supporting the application of DFT, CC, and
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Figure 1: Reductive decomposition of EC in the presence of a lithium ion calculated using
three different levels of theory. Relative energies with respect to the initial species are given
in kcal/mol.

AFQMC with a single determinant trial. Using CCSD(T) as the reference, we then calculate

the mean absolute deviation (MAD) over these six steps for each method considered. The

detailed reaction energy profile predicted by PBE-D3, CAM-B3LYP-D3, and CCSD(T) is

shown in Figure 1 and the MAD from all methods is presented in Figure 2.

First, we consider the performance of the wavefunction methods. Among those we

tested, DLPNO-CCSD(T) has the the smallest MAD of 1.38 kcal/mol, where the largest

deviations of 2.70 kcal/mol and 3.01 kcal/mol are observed for the reactions involving the

transition state (steps 3 and 4), which is consistent with other reports of overestimations of

transition state barriers by DLPNO-CCSD(T).49 Without step 3 and step 4, the MAD of
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Figure 2: Mean absolute deviation with respect to CCSD(T) of stepwise energy differences
for the reductive decomposition of EC shown in Fig. 1.

DLPNO-CCSD(T) is reduced to 0.64 kcal/mol, which is excellent in light of its significantly

lower computational cost compared to canonical CCSD(T).The MADs obtained for CCSD,

DLPNO-CCSD, and AFQMC are 1.73 kcal/mol, 2.61 kcal/mol, and 1.74 kcal/mol, respec-

tively, where AFQMC has an average statistical uncertainty of ±1.10 kcal/mol. Again, the

highest deviations are obtained for steps 3 and 4. As shown in Figures 3 and 4, all other

wavefunction methods overestimate barrier heights compared to CCSD(T), which is opposite

to the behavior displayed by most density functionals. Overall, the wavefunction methods

are reasonably consistent, justifying their usage as a benchmark, and the good performance

of DLPNO-CCSD(T) supports its application to larger molecular systems than accessible

with canonical CCSD(T).

Turning to the performance of DFT, we see that PBE-D3, arguably the most popular

GGA functional in battery modelling, has a large MAD of 6.83 kcal/mol. The meta-GGAs

M06-L, SCAN and TPSS exhibit MADs between 5.50 and 6.40 kcal/mol. These results raise

concerns about the reliability of commonly used functionals for applications related to SEI
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modelling. Hybrids perform slightly better, with MADs between 4.00 and 5.00 kcal/mol,

with the lowest MAD of 4.18 kcal/mol for B3LYP-D3. The meta-hybrid functional M06-2X-

D3 performs best, with an MAD of 1.48 kcal/mol, which is comparable to DLPNO-CCSD(T).

However, the other meta-hybrid SCAN0 exhibits a relatively large MAD of 4.59 kcal/mol,

with the largest deviation of 11.26 kcal/mol obtained for step 5 (reductive decomposition).

The range-separated hybrid functionals also perform well, especially when dispersion cor-

rections are included. The lowest MAD is obtained for CAM-B3LYP-D3 (1.64 kcal/mol).

The MAD of other leading range-separated hybrid functionals, such as ωB97X-D3BJ and

ωB97X-V is about 1.80–2.40 kcal/mol. The double-hybrid functionals give similar average er-

rors ranging from 1.50–2.70 kcal/mol, with B2GP-PLYP(-D3) having the lowest MAD of less

than 2.00 kcal/mol. Based on all of these results we can identify dispersion-corrected M06-2X

(meta-hybrid GGA), CAM-B3LYP and ωB97X (range-separated hybrids), and B2GPLYP

(double hybrid) as among the best performing functionals.
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Figure 3: Signed deviation with respect to CCSD(T) for the transition state barrier for ring
opening (step 3).

In the SI (SI-1.1), we provide errors for each step of the decomposition pathway from
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Figure 4: Signed deviation with respect to CCSD(T) for step 4, which is the reverse of a
transition state for the ring closing reaction.

all methods, which provides a more detailed look into their performance. Here, we fo-

cus on their performance for the critical step 3, i.e., the transition state barrier for ring

opening, which determines the kinetics of the decomposition.Figure 3 shows the absolute

deviation of all methods with respect to CCSD(T) for this step. The deviation ranges from

0.02–9.84 kcal/mol, with B2GPLYP-D3 (0.02 kcal/mol), B2GPLYP (0.04 kcal/mol), CAM-

B3LYP-D3 (0.44 kcal/mol), and M062X-D3 (0.64 kcal/mol) agreeing well with the reference

value. While ωB97X-V has a mean error of 1.88 kcal/mol when averaged over all reaction

steps, it exhibits a significant error of 3.74 kcal/mol for this critical step. Importantly, we

find that some of the most common functionals used for materials simulations resulted in

large deviations. For example, PBE-D3, SCAN, TPSS, and B3LYP-D3 underestimate the

barrier height by more than 6 kcal/mol. Similar behavior is seen for step 4, which is to be

expected because the magnitude of its energy difference is the barrier height for the reversed

(ring closing) reaction. As shown in Figure 4, the error for this step closely tracks that of

the ring-opening barrier height (step 3), but with opposite sign. The observed challenge in
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describing the energy differences of these steps is presumably due to the self-interaction error

and associated stabilization of delocalized electronic structure of the transition state geom-

etry 4. Although we observe an improvement by over 7 kcal/mol for PBE0-D3 compared to

PBE-D3 for these steps, attributable to its reduced self-interaction error, such improvement

is not consistent across all steps of the reaction. For example, in steps 5 and 6 (Figure S3a

and Figure S3b), the errors obtained for PBE0-D3 are larger than for PBE-D3. Thus, it is

difficult to rank PBE0-D3 and PBE-D3 for this reaction pathway.
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Figure 5: MAD of DFT functionals and wave function methods with respect to DLPNO-
CCSD(T).

This completes our analysis of the reductive decomposition of EC, but before moving

on, we note that exhaustive benchmarking against CCSD(T) is computationally expensive,

especially for increasingly large molecules. DLPNO-CCSD(T) provides a cheaper alternative

to serve as a benchmark, especially given its good agreement with canonical CCSD(T).To

test whether our conclusions are changed, we repeated the same analysis using DLPNO-

CCSD(T) as the reference, and the results are shown in Figure 5. Overall, we observe

very similar trends, although the MAD of almost all functionals is increased by about 0.50–
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1.40 kcal/mol due to errors introduced by the DLPNO approximations. For example, the

2.69 kcal/mol overestimation of the barrier height (step 3) by DLPNO-CCSD(T) changes the

apparent accuracy of one of the best performing functionals, M06-2X-D3, from 0.63 kcal/mol

to 3.33 kcal/mol. This effect needs to be kept in mind when benchmarking DFT functionals

against affordable DLPNO-CCSD(T) calculations.

To test the transferability of our conclusions above with regard to functional performance,

we extended our study to two electrolyte solvent molecules with substitution, –CH3 and –F

(PC and FEC). Given the comparatively cheaper cost and good performance of DLPNO-

CCSD(T) with respect to CCSD(T), we select DLPNO-CCSD(T) as the reference to compare

the performance of different density functionals. Our detailed numerical results are given

in the SI (SI-2 and SI-3), but, unsurprisingly, the findings are very similar to those for EC,

reinforcing our previous conclusions. Specifically, B3LYP-D3, M06-2X-D3, CAM-B3LYP-

D3, and the double-hybrids are the best performing functionals within their respective rungs.

4 Conclusion

In this work, we have benchmarked different density functionals against accurate correlated

WF methods for lithium-mediated electrolyte decomposition. In addition, we have compared

the agreement between different correlated methods. Overall, DLPNO-CCSD(T) shows good

agreement with canonical CCSD(T) for the reaction energies: when the reactions involving

transition state is excluded, the MAD is 0.64 kcal/mol. Moreover, AFQMC also shows

good agreement with a MAD of 1.74 kcal/mol and an average statistical uncertainty of

±1 kcal/mol. Considering the accuracy and cost of different correlated methods, we conclude

that DLPNO-CCSD(T) is an excellent benchmark method for reaction energies of complex

systems relevant to battery electrochemistry, i.e., reactions involving organic molecules and

Li atoms. For barrier heights, it would likely help to improve the quality of the DLPNO-

CCSD(T) calculations via tightened parameters (TCutPNO, TCutMKN, TCutPairs)49 and
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usage of the improved iterative “(T1)” correction.40

A performance comparison of all the density functional approximations used in this study

reveals that CAM-B3LYP-D3, M06-2X-D3, and double-hybrids perform very well for this

system. Perhaps most importantly, the DFT transition state barrier heights vary from

3.00 to 17.15 kcal/mol, when the CCSD(T) barrier height is 12.84 kcal/mol. GGAs in

particular are especially prone to significant underestimation of the barrier height by up

to 10 kcal/mol. Therefore, we urge caution when interpreting the results of GGA-based

molecular dynamics simulations of electrolyte decomposition and SEI formation.However,

despite the good performance of meta-GGAs, range-separated hybrids, and double-hybrids

observed in this molecular study, we note that these families of functionals are limited in

their applicability to periodic metals.50 The development of accurate and broadly applicable

electronic structure methods for surface chemistry is an important task for the community,

especially towards the development of accurate force fields for reactive molecular dynamics

simulations.
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6 Associated Content

The supporting information includes

• Individual reaction energies of ethylene carbonate decomposition pathway

• Individual reaction energies of fluoroethylene carbonate decomposition pathway

• Individual reaction energies of propylene carbonate decomposition pathway
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