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Abstract

The application of machine learning models in chemistry has made remarkable strides in

recent years. Even though there is considerable interest in automating common proce-

dure in analytical chemistry using machine learning, very few models have been adopted

into everyday use. Among the analytical instruments available to chemists, Nuclear Mag-

netic Resonance (NMR) spectroscopy is one of the most important, offering insights into

molecular structure unobtainable with other methods. However, most processing and

analysis of NMR spectra is still performed manually, making the task tedious and time

consuming especially for larger quantities of spectra. We present a transformer-based

machine learning model capable of predicting the molecular structure directly from the

NMR spectrum. Our model is pretrained on synthetic NMR spectra, achieving a top–1

accuracy of 67.0% when predicting the structure from both the 1H and 13C spectrum.

Additionally, we train a model which, given a spectrum and a set of likely compounds,

selects the one corresponding to the spectrum. This model achieves a top–1 accuracy of

96.0% when trained on 1H spectra.

1. Main

Nuclear magnetic resonance (NMR) spectroscopy is widely considered the most crucial

tool in determining the structure of molecules [1]. Unlike other techniques such as infrared
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(IR) spectroscopy or mass spectroscopy (MS), NMR provides comprehensive and human

interpretable information about the molecule. It reveals details such as the number of

NMR-active nuclei, the functional group to which a peak belongs, and, for some nuclei,

information about its surrounding environment [2]. Typically the spectra of multiple

NMR-active nuclei are used to definitely assign the structure. Most commonly, an 1H

NMR and a 13C NMR are used for this purpose. In the literature, the combination of

these two spectra has become the de facto proof that a compound has been synthesised [3].

Consequently, NMR spectroscopy has risen to prominence as the preferred analytical

instrument in standard chemical laboratories.

Nevertheless, analyzing NMR spectra is not straightforward. Although there are various

software tools available to assist chemists in this process, the majority of spectra are

still processed manually. As a result, the analysis of NMR spectra, particularly in large

quantities, becomes a time-consuming and tedious undertaking [4].

The increasing availability of computational power has ushered in a new era of statistical

methods: machine learning and deep learning. These approaches have revolutionized fields

such as image classification and language modeling by addressing previously unsolvable

problems [5, 6]. In the realm of chemistry, machine learning, and particularly language

modeling, has emerged as a highly promising tool. Such models have diverse applications,

spanning from predicting retrosynthetic routes over designing new drug candidates to

assisting in the automation of experiments [7–9].

In addition to changes brought about by machine learning, chemistry is experiencing a

paradigm shift due to the growing prominence of robotics and automation in laboratories

[10,11]. Advances in both fields have carried over into chemistry, enabling fully automated

high-throughput experimental campaigns that generate vast volumes of data previously

inaccessible. By operating at nanomolar scales, these techniques can conduct hundreds

to thousands of reactions per day [12–15]. However, one crucial step remains a limitation:

the analysis of the reaction products.

Current high-throughput approaches are predominantly restricted to a limited number

of reagents and reactants, largely due to their heavy reliance on high-performance liquid

chromatography (HPLC) systems. Each reactant and product necessitates a separate

calibration curve, imposing limitations on the chemical space that can be explored [16,17].

Despite the automation of most physical handling steps, the analysis of the resulting data

still predominantly relies on manual labor, demanding weeks to months of tedious work.

Among these tasks, the analysis of NMR data obtained from high-throughput experiments

can be particularly burdensome.

Even though the analysis of NMR spectra obtained from high-throughput experiments

remains time consuming, advances have been make to alleviate the burden to some ex-

tent. Commercial NMR software offers options to automate peak picking, integration

and multiplet assignement of the spectra [18, 19]. However, automatically determining a
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structure from the spectra without strong prior knowledge is currently not feasible. There

have been advances in this task using machine learning but these approaches are so far

limited in the sense that they either limit the number of elements, the heavy atom count

(all atoms other than hydrogen) or solely rely on one type of spectrum (e.g. 13C) [20–24].

To close the loop between automated high throughput experiments and NMR spec-

troscopy, an automated NMR structure elucidation workflow is required. Here we propose

to utilise language models trained on NMR spectra to directly predict the structure. We

achieve a top–1 accuracy in predicting the correct molecular structure from simulated
1H and 13C NMR spectra of 67.0%. If the language model is provided with additional

information such as the reagents and products of a reaction, the model is able to identify

the correct structure in 96.0% of cases from the 1H NMR spectrum.

2. Results and Discussion

We focus on two primary tasks. The first one involves predicting the molecular structure

directly from the 1H spectrum, 13C spectrum, or the combination of both spectra. The

second one focuses on exploring the effect of adding additional context to the NMR

spectrum. This second task corresponds to a typical high-throughput scenario, where

chemists are aware of the reaction that was conducted and, consequently, the potential

molecules present in the spectrum. We task the model to match the correct molecule to

a given spectrum.

2.1. Data

As the number of publicly available experimental NMR spectra is limited, we simulate

a large training set using MestreNova [18]. We sample reactions from the Pistachio

dataset [25] and simulate NMR spectra for both the reactants and products. In con-

trast to previous work, we do not exclude stereoisomers or restrict the heavy atom count

drastically, opting for a range of 5 to 35, with an average heavy atom count of 22.7.

We limit the elements to the ones most commonly found in organic chemistry, excluding

molecules with elements other than carbon, hydrogen, oxygen, nitrogen, sulfur, phospho-

rous and the halogens. In total we generate 1.94 million 1H and 19F decoupled 13C NMR

spectra as well as 1.10 million 1H NMR spectra. Further details on the molecules can be

found in methods section 4.1.

Instead of utilizing the raw 1H NMR spectrum, as demonstrated previously by Huang

et al. [20], we opt for a processed version of the spectrum. There are two main reasons

behind this choice. Firstly, if starting from the raw vector, the model would need to learn

concepts such as peak picking, peak integration, and multiplet assignment. Our approach

reduces the learning demand on the model by preprocessing the spectra using MestreNova.
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Secondly, the wide availability of such processed experimental NMR spectra in papers

and patents presents a potential avenue for validating our models on experimental data.

Further information on the exact simulation details can be found in Methods section 4.1.

2.2. Model

In this study, we adopt a sequence-to-sequence encoder-decoder transformer architecture,

building upon the formulation utilized in our previous investigation of IR spectra [26].

As discussed above, we employ the processed NMR representation of a spectrum instead

of a vector. For the 1H NMR this takes the form of a string containing the position of the

peak in ppm, the multiplet type (‘s’, ‘d’, ‘t’, etc.), and the integration of the peak (i.e.

the number of hydrogen atoms). All 1H values are rounded to the nearest second decimal.

On the other hand, 13C NMR spectra are presented to the model as a simple list of peaks.

All values in ppm are rounded to the nearest first decimal. Examples are illustrated in

Figure 1. A detailed account of how NMR spectra are processed can be found in Methods

section 4.3.

All molecules are presented to the model as presented to the model as Simplified

molecular-input line-entry system (SMILES) [27].

1H-NMR Spectrum

Tokenization 1HNMR 1.15 1.36 t 3H | 2.38 
2.56 t 1H | 3.54 3.91 m 2H

Range of the peak in ppm 
rounded to two decimal points

Multiplet Type e.g.
 ‘t’, ‘d’, etc.

Number of Hydrogens

Peak separating Token

13CNMR 17.6 57.6

Position of the peak in ppm 
rounded to one decimal points

Tokenization

13C-NMR Spectrum

Figure 1: Summary of the tokenization process for NMR spectra. Top: Tokenization of an
1H NMR spectrum following the Range representation. Bottom: Tokenization
of an 13C NMR spectrum.

2.3. Structure Prediction from NMR spectra

In the following we focus on predicting the molecular structure directly from the NMR

spectrum. We assess three different scenarios: Predicting the structure solely from the
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1H NMR spectrum, solely from the 13C NMR spectrum, and from the combined 1H and
13C NMR spectra.

2.3.1. Model optimisation

To explore the consequences of various data preparation methods, we examine the effects

of supplementing the model with the chemical formula alongside the spectra, altering the

formatting of 1H NMR peaks, and investigate the effect of a shared or separate token

space between the 1H and 13C NMR peaks. In total, we train 13 models to assess the

impact of these changes. We evaluate the performance of the trained models based on

the top–1, top–5, and top–10 accuracy metrics. These metrics indicate the percentage

of cases where the predicted structure matches the target structure within the first, first

five, and first ten predictions, respectively. Molecules are defined as matching if their

canonical SMILES are identical. The results of these experiments can be found in Table

1. In the following, we delve deeper into the different data preparation methods and their

respective effects.

Table 1: Summary of experiments on simulated data and associated metrics.
Formula Format∗ Tokens† Top–1% Top–5% Top–10%

1H NMR

✗ Center N/A 38.29% 54.67% 58.43%
✓ Center N/A 53.34% 71.71% 75.09%
✓ Adaptive N/A 53.39% 71.84% 75.23%
✓ Range N/A 55.32% 73.59% 76.74%

1H NMR (Augmented) ✓ Range N/A 51.58% 70.52% 73.94%

1H NMR (Ensemble) ✓ Range N/A 57.99% 76.65% 80.04%

13C NMR
✗ N/A N/A 37.21% 53.98% 57.45%
✓ N/A N/A 51.37% 70.74% 74.32%

13C NMR (Augmented) ✓ N/A N/A 49.02% 69.05% 72.90%

13C NMR (Ensemble) ✓ N/A N/A 53.91% 73.45% 77.72%

1H+13C NMR
✗ Range Separate 56.88% 73.91% 76.89%
✓ Range Separate 64.78% 81.74% 84.43%
✓ Range Shared 65.05% 82.07% 84.70%

1H+13C NMR (Augmented) ✓ Range Shared 62.35% 80.15% 82.93%

1H+13C NMR (Ensemble) ✓ Range Shared 66.99% 84.09% 86.59%
* The format used to represent the position of the 1H NMR peaks

Center: Center of the peak
Range: Minimum and maximum ppm of the peak
Adaptive: If the range is larger than 0.15 ppm use the range format otherwise center format

†
Whether the token space of the 1H and 13C NMR spectrum is shared or separate

We trained a model for all the three scenarios (solely 1H or 13C and combined 1H and
13C) with and without the chemical formula. We observe an increase in performance

of ∼8–14% in performance for all three models when including the formula. Adding the
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chemical formula constrains the chemical space that the model has to explore. This trans-

forms the task for the model from predicting the structure solely based on the spectrum

to generating a set of isomers from the chemical formula and matching the best one to

the spectrum. Consequently, we include the formula in all subsequent experiments.

Another point of interest is the format in which 1H NMR peaks are presented to the

model. In the literature, two formats are commonly used to describe 1H NMR peaks.

For smaller, narrower peaks, the center of the peak is typically used. Conversely, for

larger, broader peaks, the peak is described as a range by indicating the minimum and

maximum values at which the peak begins and ends. Here, we investigate three cases: (1)

providing the model only with the center of the peak, (2) using a range by specifying the

start and end values of each peak, and (3) employing an adaptive approach inspired by

the format found in the literature with thinner peaks using the center and broader peaks

the range representation. We define broad peaks as those with a width greater than 0.15

ppm. The results are presented in Table 1 within the 1H NMR section. We find that the

range representation yields the best performance, likely due to the additional information

on the width of the peak. Therefore, for all subsequent experiments involving 1H NMR

spectra, we utilize the range representation.

Next, we shift our focus to the combination of 1H and 13C spectra. To assign a structure

from NMR spectra, it is common practice to rely on both the 1H and 13C spectra, as

opposed to analysing a single spectrum on its own. In these experiments, we investigate

the impact of providing the model with both the 1H and 13C NMR spectra. Following our

earlier experiments we reuse the best representations for 1H spectra and concatenate it

with the 13C spectrum. More detailed information regarding the data format utilized to

feed the model can be found in Methods section 4.3. Additionally, we examine whether

the model performs better when the tokens representing the position of the peaks fall into

a shared space or a separate one. This is achieved by dividing the position of the 13C

NMR peaks by 10 causing a significant overlap in tokens describing the position of peaks

between the two modalities. The advantage of sharing tokens is a decreased vocabulary

size. However, when the tokens are shared the model has to learn to differentiate between
1H and 13C NMR tokens. The results, presented in Table 1 under the 1H+13C NMR

section, demonstrate that the shared tokenization scheme outperforms the separate one

by ∼0.25%.

To enhance the models’ performance and promote generalization, we augment the train-

ing data. Specifically, we utilize jitter augmentation with a range of 0.5 ppm, as outlined

in the Methods section 4.4. This augmentation approach generates two augmented spec-

tra for each original spectrum. When training the models on the combined augmented

and original spectra, we observe a noticeable decline in performance across all scenarios

(1H, 13C, and the combined 1H and 13C). This is likely caused by the simulated data

exhibiting high homogeneity, consistency in peak position and width, and lack of noise.
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Introducing noise through augmentation disrupts the models learning process and results

in decreased performance on the simulated test set. However, it is important to note that

if the models were evaluated on experimental spectra, which naturally contain noise, the

augmented models would likely perform better.

Ensembling was used to further increase the performance of the models. We used an

ensemble of the five best performing checkpoints for each model trained on non-augmented

data. Across the three scenarios this increases performance on average by ∼2.4%. Results

of the best performing models can be seen in Table 1. Ultimately, our final top–1 accuracy

for 1H NMR reaches 58.0%, for 13C NMR it achieves 53.9%, and for the combined 1H and
13C NMR spectra, it reaches 67.0%.

2.3.2. Model Analysis

In the following we analyse the performance of the model across the three tasks. We use

the best ensembled model from above and evaluate how the performance of the model

changes with respect to the heavy atom count and in relation to the presence of specific

functional groups. In addition, we also demonstrate that even if the model makes mistakes,

most predicted molecules are relatively similar to the ground truth by evaluating the

Tanimoto similarity of all predicted molecules [28].
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Figure 2: Heavy atom count vs accuracy. Results for 1H spectra are shown in blue, for
13C in orange and in green for the combination of both.
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Heavy Atom count

In order to assess the model’s performance, we evaluate its accuracy in relation to the

heavy atom count. Figure 2 shows a negative correlation between the heavy atom count

and the model’s accuracy. The model trained on both 1H and 13C spectra outperforms the

models trained on a sole spectrum, highlighting the complementary information that can

be extracted from both types of spectra. As expected, the 1H model demonstrates better

performance compared to the 13C model, albeit by a relatively small margin of ∼5%. It is

worth noting that there is a relatively high variability in performance for molecules with

a heavy atom count ranging from 5 to 10. This can be attributed to the limited training

data available in this particular range, comprising only around 2.5% of the total training

dataset.

The negative correlation of the model’s performance with the heavy atom count can

be attributed to two factors. Firstly, as the heavy atom count increases, molecules tend

to become more complex, resulting in longer SMILES strings. Since the model generates

predictions autoregressively, even a single incorrect token prediction can lead to a sig-

nificantly different structure. This sensitivity to errors becomes more pronounced with

an increase in the complexity of the molecules. Secondly, as the heavy atom count rises,

the chemical space expands exponentially, giving rise to a greater number of potential

isomers that the model must differentiate, making the prediction more challenging. How-

ever, both of these factors can be mitigated by extending the model’s training data. By

incorporating a larger and more diverse dataset, the model can learn to better distinguish

between various isomers, and improve overall performance. Additionally, more training

data could allow for a larger model architectures, further increasing the performance of

the model.

Functional Group to Structure

We analyse the model’s ability to generate the correct structure depending on the pres-

ence of certain functional groups by calculating the top n metrics for subsets containing

a specific functional group in the test set. The scores are shown for each of the scenarios

in Figure 3. As with the heavy atom count, the model trained on the combined spectra

outperforms both models trained on a sole spectrum, demonstrating the synergy that can

be obtained by using both.

Across all three tasks, we observe relatively low performance for phosphoric acids. This

can be attributed to the limited training volume available for this functional group, with

only around 0.12% of the molecules in the dataset containing either a phosphoric acid

group. Surprisingly, the model also encounters challenges in predicting the structure

of alkenes, despite the training volume for alkenes accounting for approximately 11%

of all molecules. This difficulty may be due to the relatively wide range of chemical

shifts of alkenes in both 1H and 13C NMR, as well as their similarity to aromatic signals.
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a)

b)

c)

Figure 3: The models ability to correctly predict the molecular structure plotted against
the presence of certain functional groups: a) 1H NMR, b) 13C NMR, c) 1H+13C
NMR.
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Additionally, E and Z isomerism may contribute to the lower performance, as correctly

assigning these isomers can be challenging.

We observe high performance for halogens when predicting structures from 1H spectra.

However, when evaluating their performance on 13C spectra, the halogens show only

mediocre performance. This divergence can be attributed to the fundamental differences

between the two modalities. While 13C-NMR offers some insight into the presence of

halogens, 1H-NMR spectra provide substantially more information, enabling conclusions

to be drawn regarding the presence and even quantity of halogens on adjacent atoms.

Conversely, we find that the 1H NMR model performs relatively poorly when predicting

molecules containing alkynes, ranking fourth lowest out of the 21 functional groups. In

contrast, the 13C NMRmodels performs well, ranking alkynes within the top six functional

groups. This can be attributed to two factors. Firstly, carbon NMR alkyne peaks are

relatively distinctive and easily identifiable. Secondly, in many cases, there are simply no

hydrogen atoms directly attached to the alkynes. As a result, alkynes become a potential

blind spot for 1H NMR.

When both 1H and 13C NMR spectra are provided to the model, we observe an im-

provement for all functional groups. This is especially apparent for both halogens and

alkynes compared to the individual models. In fact, these functional groups now perform

above average in the combined model. This highlights the the model’s capacity to ef-

fectively utilize and integrate information from both modalities, thereby harnessing the

complementary strengths of the two types of spectra enhancing its predictive capabilities.

Similarity

We compute the Tanimoto similarity [28] to the ground truth for all predicted molecules

using Morgan fingerprints with a radius of 2 and a bit vector size of 1024 [29]. The

average Tanimoto similarity is 0.534, 0.537, and 0.553 when the prediction relies on 1H

NMR, 13C NMR, and combined spectra, respectively. Examples of molecules predicted

by the combined model are shown in Figure 4, while Figure 5 illustrates the similarity

distribution of the prediction of this model. The similarity distribution for all three

models can be found in Figure 7 in the appendix. This highlights that even when the

model makes incorrect predictions, most of them still exhibit a high degree of similarity to

the ground truth. We assess the number of dissimilar molecules generated by the model

by calculating the fraction of molecules with a Tanimoto similarity less than 0.4. We find

that it amounts to ∼33% for both 1H and 13C NMR. In contrast, when combining both

spectra, the fraction decreases to ∼30%. This indicates that the model can extract a

greater amount of chemical information when provided with both spectra.
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Target Molecule Prediction No. 1

Similarity: 1.0

Prediction No. 3

Similarity: 0.724

Prediction No. 7 

Similarity: 0.152

Prediction No. 4

Similarity: 0.289

Figure 4: Four predictions of the model trained on the combined data. Illustrated are the
target molecule on the left and the four predictions on the right including their
rank and similarity to the target molecule.
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Figure 5: The Tanimoto similarity distribution of all predictions of the model (10 ranked
predictions per spectrum) trained on 1H and 13C spectra. The invalid SMILES
strings and the correctly-predicted molecules were excluded.

2.4. Molecule Differentiation

In this task, our objective is to evaluate the model’s ability to accurately match the correct

structure to an NMR spectrum based on a set of potential molecules and the spectrum.

Simulated spectra were generated for both the reactants and products of a given reaction.

In practical terms, this task resembles a situation in which, after a reaction has been

completed and NMR spectra have been obtained for each fraction, these fractions must

be assigned to a potential molecule. For this task, we train three new models: on the 1H,
13C, and combined spectrum, respectively. We compare these models to a baseline which

randomly picks a molecule from the set.

We provide the model with the complete set of reactants and products from a reaction,

along with an NMR spectrum of one of the molecules in the reaction. The input of

the model consists of the SMILES of the potential molecules separated by “.” and the

spectrum in the same format as discussed above. With this input, the model predicts

which molecule the spectrum corresponds to. For all models, we employ the optimal data
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format as developed above. The performance of the models is evaluated based on the

top–1, top–2, and top–5 accuracy metrics. Results of the experiments can be found in

Table 2.

Table 2: Accuracies of the models in choosing the correct structure based on a set of
molecules and an NMR spectrum.

Training Set Top–1% Top–2% Top–5%
Random Baseline 31.16% 58.35% 85.99%
1H NMR 96.03% 99.03% 99.43%
13C NMR 90.45% 97.58% 98.11%
1H+13C NMR 95.17% 98.62% 99.08%

Table 2 shows that the random baseline achieves an accuracy of 31.16%, which is

consistent with the average of three potential molecules that can be chosen per reaction.

The accuracy increases when considering the top–2 or top–5 predictions.

When considering the performance with spectra, 13C NMR performs the worst, as it

contains comparatively little information than an 1H NMR spectrum. However, it still

correctly predicts the molecule in 90.45% of cases as the first suggestion. Surprisingly, the

model provided with only the 1H NMR spectrum outperforms the model provided with

both spectra. The reason for this unexpected trend could be that the additional infor-

mation provided by the 13C NMR spectrum, introduces more complexity and potential

ambiguity for the model, leading to a slight decrease in performance. This trend goes

against the synergistic effects observed for structure elucidation.

Overall, our findings demonstrate that a transformer model can accurately assign a

molecule to an NMR spectrum when provided with a set of reactants and products from

a reaction, achieving a high level of accuracy.

2.5. Limitations

One of the key limitations of our methodological approach lies in the availability of large

NMR datasets. While these datasets exist, licenses for their use are often expensive

and restrict machine learning applications, limiting their use. Consequently, we opt to

simulate NMR spectra using MestreNova. While this approach is not inherently limiting,

it is important to note that the resulting spectra are highly coherent and consistent.

Experimental spectra likely exhibit greater variability and inconsistencies.

3. Conclusions

NMR spectroscopy is a very powerful tool routinely used by bench chemists. The analysis

of spectra, or rather their use for structure elucidation, remains a primarily manual task.
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Taking in consideration the number of spectra analyzed every day in the world, it is

surprising that few data-driven approaches to help in this process have been adopted so

far. In this work, we explored ways to change that.

To this end, we presented a transformer model capable of predicting the molecular

structure directly from NMR spectra. We trained and optimised the transformer model

to predict the molecular structure from the 1H, 13C, and combined 1H/13C NMR spec-

tra. We report a top–1 accuracy of 58.0%, 53.9% and 67.0% for the tasks on simulated

spectra, respectively. In different experiments, we observe that weaknesses present in

models trained on a single modality can be eliminated by combining the two modalities.

Erroneous model predictions are very similar to the target molecules, with an average

Tanimoto similarity of 0.55 for the model trained 1H and 13C spectra. This demonstrates

that the model predictions, even when incorrect, provide chemists with structure guesses

that are close to the correct compound.

In another task, we train models to select, among potential candidates, the molecule

corresponding to an NMR spectrum. We find that for all three modalities the model is

able to accomplish this task with a top–1 accuracy above 90%, compared to a random

baseline of 31%.

The models trained on simulated data in this work will provide a basis for fine-tuning in

settings in which datasets of experimental spectra are available — learning the variability

of experimental data while leveraging fundamentals learned from simulated data.

These advancements hold the potential to transform the analysis of NMR spectra, en-

abling faster and more accurate identification and characterization of compounds. As a

result, the integration of automated NMR analysis into the workflow of high-throughput

experiments promises to enhance efficiency and accelerate discoveries in the field of chem-

istry.

Code availability

The code for generating the data and training the models is available at https://github.

com/rxn4chemistry/nmr-to-structure.

Data availability

The reactions and molecules for which the NMR spectra were generated from NextMove

Software in the Pistachio dataset [25]. The simulated NMR spectra are are available from

the authors upon request.
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4. Methods

4.1. Synthetic Data

Before generating spectra, 1,029,381 reactions were sampled from the Pistachio patent

dataset [25]. A set of molecules was assembled from the precursors and products of these

reactions. Molecules were filtered out if they contain atoms other than carbon, hydrogen,

oxygen, nitrogen, sulfur, phosphorous and the halogens. In addition, all molecules with

a heavy atom count outside the range of 5–35, charged molecules or containing isotope

information were filtered out.

From this set, 1,120,390 1H and 1,943,950 13C NMR spectra were generated using

MestreNova. Standard simulation settings were used for 1H NMRs. For 13C NMRs, 1H

and 19F decoupled spectra were generated. For 13C NMR the position of all peaks was

recorded. On the other hand 1H NMR were further processed. First peak-picking was ap-

plied, followed by the autointegration and automultiplet assignment. All three processing

steps were carried out using built-in MestreNova functions with standard settings. For

each peak in an 1H NMR, the range of the peak, its centroid, the number of hydrogen

atoms and the multiplet was recorded. See the associated GitHub repository to replicate

the simulations (see “Code Availability”).

4.2. Model

We base our model architecture on the Molecular Transformer [7]. The model takes the

formatted NMR spectrum with the chemical formula as input and outputs a molecular

structure encoded as SMILES. This can be formulated as a translation task from the

spectrum to the molecular structure. The model is implemented using the standard

transformer of OpenNMT-py library [30,31] with the following hyperparameters deviating:

word_vec_size: 512

hidden_size: 512

layers: 4

batch_size: 4096

All models are trained for 350k steps amounting to approximately 35h on a A100 GPU.
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4.3. Tokenization

To tokenize 1H NMR peaks, we proceed as follows. The position of the peak is rounded

to the second decimal point, the type of multiplet (singlet, doublet, triplet, etc.) and

the number of hydrogens are appended as second and third token respectively. All peaks

are separated with a separating token (“|”). As an example a singlet at 1.239 ppm with

an integral of 3 would become “1.24 s 3H |”, with tokens separated by whitespaces. A

string of the 1H NMR spectrum is built accordingly by concatenating the peaks starting

with the lowest ppm and ending at the highest one. In addition, a prefix token is used

to differentiate 1H from 13C NMR spectra. As an example an 1H NMR with two peaks

would be formatted as follows: “1HNMR 1.24 t 3H | 1.89 q 3H |”.
13C NMR are formatted according to a simpler scheme. As the multiplet type and

integration is not relevant for this type of spectrum the position of the peaks are rounded to

one decimal point and tokenized accordingly. To illustrate this, a typical NMR spectrum

is tokenized as follows: “13CNMR 12.1 27.8 63.5”.

In addition to the spectra, the model is provided the chemical formula in addition to

the NMR spectrum. The formula is calculated using RDKit [32] and prepended to the

spectrum.

When both 1H and 13C NMR are used, the tokenized string consists first of the chemical

formula, followed by the 1H NMR spectrum and finally the 13C NMR. To have the 1H and
13C NMR share the same token space, the ppm values of the 13C NMR peaks are divided

by 10.

4.4. Data augmentation

The spectra are augmented using jitter augmentation as used previously by Jonas et.

al. [21]. This involves adding a a random distortion sampled from a range of 0.5 ppm for
1H NMR and 5 ppm for 13C NMR. The random noise is added to each of the peaks in

the spectra. In total, two augmented spectra are produced for each original one.
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[7] Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A.

Hunter, Costas Bekas, and Alpha A. Lee. Molecular Transformer: A Model for

Uncertainty-Calibrated Chemical Reaction Prediction. ACS Cent. Sci., 5(9):1572–

1583, 2019.

[8] Zhichao Liu, Ruth A. Roberts, Madhu Lal-Nag, Xi Chen, Ruili Huang, and Weida

Tong. AI-based language models powering drug discovery and development. Drug

Discovery Today, 26(11):2593–2607, 2021.

[9] Andres M. Bran, Sam Cox, Andrew D. White, and Philippe Schwaller. ChemCrow:

Augmenting large-language models with chemistry tools, 2023. arXiv:2304.05376.

[10] Melodie Christensen, Lars P. E. Yunker, Parisa Shiri, Tara Zepel, Paloma L. Prieto,

Shad Grunert, Finn Bork, and Jason E. Hein. Automation isn’t automatic. Chemical

Science, 12(47):15473–15490, 2021.

[11] Milad Abolhasani and Eugenia Kumacheva. The rise of self-driving labs in chemical

and materials sciences. Nat. Synth, 2(6):483–492, 2023.

[12] Steven M. Mennen, Carolina Alhambra, C. Liana Allen, Mario Barberis, Simon

Berritt, Thomas A. Brandt, Andrew D. Campbell, Jesús Castañón, Alan H. Cherney,
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Pablo Garćıa-Losada, Rubén Haro, Jacob Janey, David C. Leitch, Ling Li, Fangfang

Liu, Paul C. Lobben, David W. C. MacMillan, Javier Magano, Emma McInturff,

Sebastien Monfette, Ronald J. Post, Danielle Schultz, Barbara J. Sitter, Jason M.

Stevens, Iulia I. Strambeanu, Jack Twilton, Ke Wang, and Matthew A. Zajac. The

Evolution of High-Throughput Experimentation in Pharmaceutical Development and

Perspectives on the Future. Org. Process Res. Dev., 23(6):1213–1242, 2019.

16
https://doi.org/10.26434/chemrxiv-2023-8wxcz ORCID: https://orcid.org/0009-0003-9198-7866 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-8wxcz
https://orcid.org/0009-0003-9198-7866
https://creativecommons.org/licenses/by-nc-nd/4.0/


[13] Alexander Buitrago Santanilla, Erik L. Regalado, Tony Pereira, Michael Shevlin,

Kevin Bateman, Louis-Charles Campeau, Jonathan Schneeweis, Simon Berritt, Zhi-

Cai Shi, Philippe Nantermet, Yong Liu, Roy Helmy, Christopher J. Welch, Petr

Vachal, Ian W. Davies, Tim Cernak, and Spencer D. Dreher. Nanomole-scale high-

throughput chemistry for the synthesis of complex molecules. Science, 347(6217):49–

53, 2015.

[14] Damith Perera, Joseph W. Tucker, Shalini Brahmbhatt, Christopher J. Helal, Ash-

ley Chong, William Farrell, Paul Richardson, and Neal W. Sach. A platform for

automated nanomole-scale reaction screening and micromole-scale synthesis in flow.

Science, 359(6374):429–434, 2018.

[15] Michael Shevlin. Practical High-Throughput Experimentation for Chemists. ACS

Med. Chem. Lett., 8(6):601–607, 2017.

[16] Babak Mahjour, Rui Zhang, Yuning Shen, Andrew McGrath, Ruheng Zhao,

Osama G. Mohamed, Yingfu Lin, Zirong Zhang, James L. Douthwaite, Ashootosh

Tripathi, and Tim Cernak. Rapid planning and analysis of high-throughput experi-

ment arrays for reaction discovery. Nat Commun, 14(1):3924, 2023.

[17] Adam Cook, Roxanne Clément, and Stephen G. Newman. Reaction screening in

multiwell plates: high-throughput optimization of a Buchwald–Hartwig amination.

Nat Protoc, 16(2):1152–1169, 2021.

[18] MestreLab, MNova. https://mestrelab.com/software/mnova/ (Accessed July 24,

2023).

[19] ACD Labs, NMR Workbook Suite. https://www.acdlabs.com/products/

spectrus-platform/nmr-workbook-suite/ (Accessed July 24, 2023).

[20] Zhaorui Huang, Michael S. Chen, Cristian P. Woroch, Thomas E. Markland, and

Matthew W. Kanan. A framework for automated structure elucidation from routine

NMR spectra. Chem. Sci., 12(46):15329–15338, 2021.

[21] Eric Jonas. Deep imitation learning for molecular inverse problems. In Advances in

Neural Information Processing Systems, volume 32, 2019.

[22] Weiwei Wei, Yuxuan Liao, Yufei Wang, Shaoqi Wang, Wen Du, Hongmei Lu,

Bo Kong, Huawu Yang, and Zhimin Zhang. Deep Learning-Based Method for Com-

pound Identification in NMR Spectra of Mixtures. Molecules, 27(12):3653, 2022.

[23] Iván Cortés, Cristina Cuadrado, Antonio Hernández Daranas, and Ariel M. Sarotti.

Machine learning in computational NMR-aided structural elucidation. Frontiers in

Natural Products, 2, 2023.

17
https://doi.org/10.26434/chemrxiv-2023-8wxcz ORCID: https://orcid.org/0009-0003-9198-7866 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://mestrelab.com/software/mnova/
https://www.acdlabs.com/products/spectrus-platform/nmr-workbook-suite/
https://www.acdlabs.com/products/spectrus-platform/nmr-workbook-suite/
https://doi.org/10.26434/chemrxiv-2023-8wxcz
https://orcid.org/0009-0003-9198-7866
https://creativecommons.org/licenses/by-nc-nd/4.0/


[24] Jinzhe Zhang, Kei Terayama, Masato Sumita, Kazuki Yoshizoe, Kengo Ito, Jun

Kikuchi, and Koji Tsuda. NMR-TS: de novo molecule identification from NMR

spectra. Science and Technology of Advanced Materials, 21(1):552–561, 2020.

[25] NextMove Software, Pistachio. https://www.nextmovesoftware.com/pistachio.

html (Accessed July 24, 2023).

[26] Marvin Alberts, Teodoro Laino, and Alain C. Vaucher. Leveraging Infrared Spec-

troscopy for Automated Structure Elucidation, 2023. DOI: 10.26434/chemrxiv-2023-

5v27f.

[27] David Weininger. SMILES, a chemical language and information system. 1. Introduc-

tion to methodology and encoding rules. J. Chem. Inf. Comput. Sci., 28(1):31–36,

1988.
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Appendix

A. Simulated NMR spectra

In this section, we provide a description of the molecular dataset used to generate the

NMR spectra. We calculate the heavy atom count for all molecules in the dataset. We

use the heavy atom count as an easily understandable proxy metric for the complexity of

molecules. As can be seen in Figure 6, our dataset shows a relatively flat distribution in

the range of 11 to 28. In addition, we calculate the Bertz complexity for all molecules in

the set. The average complexity for this dataset evaluates to 744.
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Figure 6: Heavy Atom count distribution of the simulated dataset.

B. Functional group definitions

Functional groups are defined in SMARTS as shown in Table 3. Using these SMARTS

and RDKit the presence of a certain function group is determined by invoking <RDKit

molecule>.GetSubstrucMatches(<RDKit molecule from SMARTS pattern>)
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Table 3: Functional group definitions used.

Definition
Alcohol [OX2H][CX4;!$(C([OX2H])[O,S,#7,#15])]
Carboxylic Acid [CX3](=O)[OX2H1]

Ester [#6][CX3](=O)[OX2H0][#6]

Ether [OD2]([#6])[#6]

Aldehyde [CX3H1](=O)[#6]

Ketone [#6][CX3](=O)[#6]

Alkene [CX3]=[CX3]

Alkyne [$([CX2]#C)]
Benzene c1ccccc1

Primary Amine [NX3;H2;!$(NC=[!#6]);!$(NC#[!#6])][#6]
Secondary Amine [NH1,nH1])

Tertiary Amine [NH0,nH0])

Amide [NX3][CX3](=[OX1])[#6]

Cyano [NX1]#[CX2]

Fluorine [#6][F]

Chlorine [#6][Cl]

Iodine [#6][I]

Bromine [#6][Br]

Sulfonamide [#16X4]([NX3])(=[OX1])(=[OX1])[#6]

Sulfone [#16X4](=[OX1])(=[OX1])([#6])[#6]

Sulfide [#16X2H0]

Phosphoric Acid†

[$(P(=[OX1])([$([OX2H]),$([OX1-]),$([OX2]P)])([$([OX2H]),
$([OX1-]),$([OX2]P)])[$([OX2H]),$([OX1-]),$([OX2]P)]),
$([P+]([OX1-])([$([OX2H]),$([OX1-]),$([OX2]P)])([$([OX2H]),
$([OX1-]),$([OX2]P)])[$([OX2H]),$([OX1-]),$([OX2]P)])]

†
Adapted from [33]

C. Functional group definition

In Tables 4, 5, and 6, the accuracy of the model solely trained on 1H , 13C , and combined
1H /13C NMR data, respectively, is shown depending on the presence of specific functional

groups in the target molecule. “Count” represents the number of molecules with this

functional group in the test set. Additionally, the average heavy atom count (“Avg.

HAC” in the table) is calculated to rule out bias.

20
https://doi.org/10.26434/chemrxiv-2023-8wxcz ORCID: https://orcid.org/0009-0003-9198-7866 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-8wxcz
https://orcid.org/0009-0003-9198-7866
https://creativecommons.org/licenses/by-nc-nd/4.0/


Table 4: The model trained on 1H NMR spectra’s ability to predict the correct molecular
structure based on if a specific functional group is present in the target molecule.

Count Avg. HAC Top–1% Top–5% Top–10%
Phosphoric Acid 76 27.09 31.58 47.37 48.68
Alkene 12727 22.55 46.94 66.87 70.46
Cyano 7691 23.58 53.54 71.92 75.83
Alkyne 2071 23.39 54.23 71.61 74.89
Alcohol 17214 22.86 54.23 74.83 78.49
Sulfide 15214 23.85 55.06 73.41 77.06
Primary Amine 12504 21.30 55.42 75.99 79.57
Amide 31834 26.10 56.13 74.26 77.77
Chlorine 23685 23.59 56.42 75.31 78.95
Tertiary Amine 83118 24.01 56.74 74.85 78.30
Carboxylic Acid 13838 23.26 56.79 77.03 80.60
Ketone 8100 22.35 56.91 73.10 76.35
Secondary Amine 56201 24.50 56.96 75.16 78.65
Fluorine 30166 25.16 57.70 75.59 78.97
Ether 34926 24.98 58.75 76.93 80.16
Sulfone 2428 26.03 58.86 75.41 78.46
Benzene 86972 24.08 58.86 76.92 80.18
Sulfonamide 5758 26.44 59.48 76.55 79.63
Ester 16344 23.20 59.50 79.08 82.13
Aldehyde 2208 19.09 60.19 79.71 83.02
Bromine 9687 20.11 60.48 80.21 83.47
Iodine 1728 19.93 62.21 82.52 85.30
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Table 5: The model trained on 13C NMR spectra’s ability to predict the correct molecular
structure based on if a specific functional group is present in the target molecule.

Count Avg. HAC Top–1% Top–5% Top–10%
Phosphoric Acid 142 26.54 36.62 55.63 59.86
Alkene 21149 23.09 40.65 60.35 64.87
Alcohol 21781 23.11 48.25 69.14 74.11
Sulfide 26917 23.90 50.54 69.80 74.08
Primary Amine 22672 21.39 51.14 72.07 76.61
Amide 51806 26.33 51.29 69.90 74.21
Cyano 13327 23.34 51.30 70.18 74.57
Chlorine 40757 23.39 51.43 71.69 76.30
Secondary Amine 85969 24.94 51.97 71.35 75.62
Tertiary Amine 146144 24.10 52.21 71.32 75.66
Fluorine 49707 25.00 52.33 72.09 76.49
Carboxylic Acid 18879 23.21 54.47 75.34 79.46
Iodine 3193 19.40 54.56 76.20 80.74
Sulfone 4928 25.85 54.61 71.25 75.59
Benzene 149174 24.31 54.79 73.83 77.95
Alkyne 3700 23.31 54.89 73.14 76.89
Bromine 17680 19.99 55.71 76.84 81.46
Sulfonamide 9319 26.70 55.77 73.00 76.97
Ketone 14910 22.41 56.32 73.66 77.94
Ether 65246 25.10 56.60 75.00 78.97
Aldehyde 4452 19.25 57.46 78.23 82.88
Ester 33632 23.47 58.11 78.01 81.80
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Table 6: The model trained on both 1H and 13C NMR spectra’s ability to predict the
correct molecular structure based on if a specific functional group is present in
the target molecule.

Count Avg. HAC Top–1% Top–5% Top–10%
Phosphoric Acid 71 25.82 38.03 50.70 54.93
Alkene 12799 22.36 54.68 74.48 77.40
Alcohol 16967 22.77 62.32 82.14 85.04
Primary Amine 12378 21.36 63.94 83.16 85.85
Sulfide 15219 24.17 64.02 80.92 83.68
Amide 32013 26.12 64.90 82.31 85.11
Chlorine 23849 23.58 65.57 82.79 85.53
Secondary Amine 56290 24.50 65.67 82.79 85.55
Cyano 7767 23.61 65.91 82.17 84.97
Fluorine 30724 25.09 66.00 82.98 85.66
Sulfone 2537 26.08 66.30 81.75 84.15
Tertiary Amine 83173 24.01 66.31 82.98 85.59
Carboxylic Acid 13719 23.30 66.80 85.41 87.82
Alkyne 2070 23.49 66.86 83.24 85.89
Ketone 8241 22.29 67.10 82.55 85.01
Ester 16499 23.25 67.66 85.24 87.50
Benzene 87374 24.05 67.85 84.40 86.86
Ether 34823 24.86 67.87 84.35 86.75
Sulfonamide 5663 26.58 68.20 83.68 86.39
Iodine 1705 19.88 68.68 85.34 87.21
Bromine 9838 20.19 69.66 86.91 89.04
Aldehyde 2152 19.11 70.77 87.04 89.22
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D. Tanimoto Similarity Distribution

In Figure 7 the Tanimoto similarity distribution for all three models is illustrated. The

distribution shows a peak around 0.55 for all three models.

a)

b)

c)

Figure 7: The Tanimoto distribution of three models: a) 1H NMR, b) 13C NMR, c)
1H+13C NMR. All correct molecules were excluded.
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