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ABSTRACT

The right solvent is a crucial factor in achieving environmentally friendly, selective, and highly
converted chemical reactions. Artificial intelligence-based tools, often lack the ability to reliably
predict reaction conditions such as the appropriate solvent. Here, we present a comprehensive
investigation into the efficacy of data-driven machine-learning models for solvent prediction for a
broad spectrum of single-solvent organic reactions. Remarkably, our models achieve a Top-3 accuracy
of 86.88%, showcasing outstanding performance in predicting solvents from underrepresented classes.
An uncertainty analysis revealed that the models’ misclassifications could be explained by the fact
that the reaction can be run in multiple solvents. In the experimental validation, 8 out of 11 reactions
succeeded with the predicted solvent. Our work addresses a key challenge in organic synthesis and
demonstrates the practical application of machine learning models in predicting reaction solvents for
more efficient and sustainable chemical synthesis.
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1 Introduction

Chemistry plays a critical role in our daily lives, from the fabrics we wear and the medicines we take to the materials that
surround us and the technologies we use. When it comes to chemical reactions, the choice of solvents can profoundly
impact the reaction outcome, such as yield, purity, selectivity, and overall sustainability. A good summary of commonly
used greenness criteria for solvent in pharmaceutical companies [2, 10, 16] or academia [6, 22] can be found in the
"green solvent selection guide" by [5].

The optimal solvent for a given reaction depends on various factors, such as the reaction mechanism, the type of
reactants, and the reaction conditions. However choosing the best solvent for a given reaction is a challenging task,
as there are numerous solvents available, each with its own set of properties and interactions with the reactants and
products. Solvents with low boiling points, generally preferable for reducing the complexity of workouts, evaporate
easily, contributing to air pollution and increasing risks to the workers’ health and the environment. While experimental
solvent screening demands significant time and resources, atomistic modeling like quantum chemistry calculations
offer the ability to predict solvent properties and interactions with reactants and products [23, 14]. However, quantum
chemical calculations can be computationally intensive thus limiting the extensiveness of the sampling required to
properly account entropy factors.

Machine learning (ML) has shown great potential in predicting solvents properties. Vermeire and Green [23] used a
graph-based directed-message passing neural network (NN) to predict the solvation-free energies and demonstrate their
model capability on an experimental dataset. Boobier et al. [4] trained a variety of machine learning models such as
random forest (RF), NN, and support vector machines (SVM) using a small set of molecular descriptors describing the
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dissolution process. These models demonstrated exceptional accuracy in predicting the solubility of organic solvents in
water.

Sanchez-Lengeling et al. [18] employed Gaussian processes, a Bayesian machine learning approach, to derive the
Hansen solubility parameters. These parameters are essential for predicting solubility between solute and solvent. The
authors effectively utilized their model to predict solubility interactions among 193 solvents and 31 polymers or 8,000
organic compounds. This demonstrated the model’s capability to learn the Hansen parameters from a collection of
quantum descriptors and molecular fingerprints.

In the realm of predicting reaction conditions, the prediction of the missing solvent has also been explored, with
particular case studies conducted on various reaction classes. For instance, Walker et al. [24] reported the successful
implementation of neural networks trained to predict solvents for Friedel-Crafts, Aldol addition, Claisen condensation,
Diels-Alder, and Wittig reactions. Shim et al. [21] investigated the use of transfer learning for predicting reaction
conditions, including solvent prediction, in palladium-catalyzed coupling reactions. Gao et al. [9] used Reaxys [1] to
extract information regarding reactants, solvents, and catalysts involved in a reaction and trained a neural network to
predict in sequence catalysts and subsequently solvents and reactants. They achieved a top-3 accuracy of 75.8% for
predicting the major solvent.

Recently, Beker et al. [3] challenged the paradigm, that ML can be used to find optimal reaction conditions, by
demonstrating that a database of carefully curated literature data may be insufficient to create accurate and meaningful
ML models. The authors illustrate this point by examining the prediction of optimum reaction conditions for Suzuki-
Miyaura coupling with heterocyclic building blocks. Even when restricting the search space to solvents and bases, the
proposed ML models failed to make predictions better than naive assignments based on the sheer frequency of certain
reaction conditions.

Transformed-based neural networks, including BERT models, have emerged as leading performers in classifying text-
based inputs into distinct categories [8]. In the field of chemistry, BERT models have demonstrated success in tasks such
as yield prediction [20] and reaction classification [19]. Recently, researchers have applied transformed-based neural
networks to predict solvation-free energy. SolvBERT, introduced by Yu et al. [25], represents the latest advancement in
this area, achieving state-of-the-art performance by leveraging the SMILES of a solute and the solvent to predict either
experimental solvation-free energy or solubility.

Despite recent advancements in machine learning techniques to predict reaction solvents, the accuracy and reliability
of such models are still limited. To address this issue, we have developed a BERT-based classifier and simpler
machine learning classifiers using DRFP [17] to reliably predict the missing solvent in a reaction. Our models show
improved accuracy in predicted solvents compared to existing reaction condition models [9]. Furthermore, our approach
outperforms the models proposed by Beker et al. [3] and their popularity baseline in predicting solvent classes. One
notable feature of our BERT-based models is the analysis of prediction uncertainty using Monte Carlo dropout, which
revealed that most of the uncertainty is attributed to the use of multiple solvents in the training data for certain reaction
classes. We report an experimental validation campaign that showcases the models’ ability to correctly predict the
solvent in 8 out of 11 cases.

2 Methods

2.1 Data-set analysis and prepossessing

We used two main datasets, namely the open-source USPTO dataset from Lowe [12] and the Pistachio dataset from
NextMove (version 2022Q4) [13], both of which were curated by extracting information from reaction procedures
found in patents. To ensure consistency and quality of the data, we used the RXN reaction preprocessing pipeline 2 to
remove atom mapping, eliminate duplicate reactions, add reagents to the reactants, and canonicalize each molecule in
the reaction string. After preprocessing, the Pistachio dataset contained 3’996’348 reactions, while the USPTO dataset
contained 1’435’481 reactions.

To determine the solvents used in each reaction, we compiled a list of 227 solvents based on two solvent sets found in the
literature [18, 3]. This concatenated list included the SMILES string of each solvent, which was then canonicalized for
matching with the SMILES string of each molecule in a reaction. Each reaction in the Pistachio dataset was processed
to detect possible solvents, and subsequently group them into one of three categories: reactions containing no solvents,
reactions containing exactly one solvent, and reactions containing more than one solvent. It is worth noting that since
duplicate molecules were removed during preprocessing, the number of solvents in a given reaction corresponds to the
unique number of solvents used. Reactions without a solvent were excluded from this study, given the uncertainty of

2Available at https://github.com/rxn4chemistry/rxn-reaction-preprocessing
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Figure 1: (left) Distribution of the 26 most used Solvents in the Pistachio dataset. (right) The BERT architecture used in
our study employs tokenized reactions SMILES as input for a classifier neural network, which is jointly trained. The
[CLS]-embedding is utilized for generating input to the classifier head, which learns to predict the probabilities of each
solvent class.

being run without any solvent or the solvent not being extracted correctly from the reaction procedure paragraph. We
analyzed a subset of the dataset consisting of reactions involving multiple solvents. Nevertheless, during inspection of
the corresponding paragraphs, we noticed instances where one of the listed solvents was not used as a reaction solvent
but rather as a solvent for workup steps, such as product extraction or water in crystal structures of reagents. To mitigate
this limitation, we decided to focus primarily on reactions that contained only one solvent for the main part of our study.
Table 1 provides a summary of the number of reactions in each subset.

Among the 3’996’348 reactions in the Pistachio dataset, 1’530’590 reactions contained exactly one solvent. These
reactions were analyzed to determine the distribution of the 227 solvents. As shown in Figure 1, the 26 most common
solvents account for 95.2% of the reactions with a single solvent, while the top 50 solvents cover 98.4% of all the
one-solvent cases. Here, we aim to predict the 26 most commonly used solvent classes, with additional experiments
conducted using the top 50 most common solvents.

We excluded reactions that did not involve any of the 26 specified solvents, as this 4.8% of the data might have unique
solubility characteristics. Creating a separate category to encompass all such cases would not be ideal, as the model
could fail to capture the underlying trends due to the varying solubility properties.

The extracted solvent was removed from the reactions SMILES to form the input for the machine learning models.
After this prepossessing the data was split into 90% training data, 5% validation data, and 5% test data.

Table 1: Number of Reactions containing zero, one, or two solvents

Number of Reactions Pistachio USPTO

Unique Reactions 3’996’348 1’435’481
Reactions without a solvent 879’506 270’655
Reactions with 1 solvent 1’530’590 561’817
Reactions with 2 solvents 144’754 421’726
Reactions with more than 1 solvent 1’441’279 603’009
Reactions with more than 2 solvents 1’296’525 181’283

Reactions Train 1’410’064 522’223
Reactions Validation 78’337 29’012
Reactions Test 78’337 29’013
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2.2 Machine Learning Architectures

In our study, we employed various machine learning models to predict the solvent of a reaction using representations
with the absence of the solvent information. Specifically, we used BERT models, which were first pre-trained on a mask
language modeling (MLM) task and then fine-tuned on the task of solvent classification. To achieve this, we utilized a
pre-trained MLM model from Schwaller et al. [19] that has prior domain knowledge and was trained on a version of the
Pistachio dataset 3.

Subsequently, we fine-tuned the selected BERT model by attaching a classifier head that identifies solvent class. We
generated the input for the classifier head using the embeddings of the [CLS] token, which was already included during
the MLM pretraining specifically for classification tasks. During the fine-tuning process, we optimized the model using
the cross-entropy loss function and the AdamW optimizer[11]. We also utilized a learning rate scheduler to optimize
the learning rate during training.

In addition to the BERT model, we also trained simpler machine learning classifiers using differential reaction finger-
prints (DRFP) as input. Specifically, we trained k-nearest neighbors (KNN) clustering, XGBoost and Random Forest
(RF) classifiers. Additional details on the training procedure and hyperparameters are provided in the supplemental
information 5.3.

2.3 Molecular Representation

For BERT models, the reactions were represented as SMILES strings and tokenized into tokens corresponding to the
same procedure and vocabulary used in the training of the MLM task, while the solvent was one hot encoded into
n-classes. The one-hot encoding leads to a vector length of n-classes where each position corresponds to one of the
classes. If a solvent is present the corresponding position in the vector is set to 1, while the non-present solvent positions
are represented by 0.

For the models using the fingerprints as an input (Random Forest, XGBoost, K-NN Clustering) the DRFP of the reaction
without solvent was constructed according to Probst et al. [17], additionally the embedding of the pooled last hidden
state layer (so-called reaction fingerprint [19]) of the fine-tuned BERT model was tested as input for traditional machine
learning approaches.

2.4 Uncertainty Analysis

To assess the uncertainty of our BERT models’ predictions, we performed a Monte Carlo dropout-based analysis.
This involved reactivating the dropout layers of the neural network during inference, resulting in different predicted
probabilities for each solvent class when the same reaction is sampled multiple times. We used this method to predict
the solvent for each reaction in the test set 25 times and averaged the probabilities for each class over these 25 samples.

To investigate cases where the model was uncertain about its prediction, we performed a reaction subclass analysis.
Each reaction in the pistachio dataset has a reaction class associated with it (e.g., "reductive amination"). We went
iterated over the entire dataset and listed the number of solvent occurrences for each reaction class, disregarding solvents
with an occurrence below 5% for a given reaction class, due to their relatively rare nature.

For each sample in the test set, we analyzed the average predicted solvent probabilities of the twenty-five predictions. If
a solvent had an average probability above 20%, we investigated whether it was a valid choice for the given reaction
class. If the solvent was found among the frequently occurring solvents for the reaction class in question, we assigned it
to the valid suggestion category. If not, we assigned it to the not valid suggestion category. For example, if a reaction
belonging to the reaction class "reductive amination" had an average solvent probability of 40% for methanol and 30%
for ethanol, we checked whether methanol and ethanol are commonly used solvents for reductive amination in our
dataset. If they were, we assigned them as valid predictions, even if the model was not certain about them, since it is
likely that the reaction can be run in multiple solvents.

2.5 Experimental validation

A machine learning model is only as useful as their real-world implication, which in our case is the model’s ability to
reliably predict the solvent in which the reaction runs and the desired product is formed. As chemical reactions are
influenced by various parameters, including temperature, concentration, and atmosphere, it is not sufficient to test a
reaction in a predicted solvent and assume that if the desired product is not found it is solely due to the incorrect solvent

3Models available under https://github.com/rxn4chemistry/rxnfp/tree/master/rxnfp/models/transformers/
bert_pretrained
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Figure 2: Experimental workflow: Successful reactions were extracted from the electronic lab notebook. From
these reactions, solvent information was removed and then subjected to solvent prediction using the BERT model.
Subsequently, a subset of reactions with incorrectly predicted solvents was selected for experimental validation using
the model’s recommended solvent and the original solvent choice of the Chemist. The presence of the desired product
was confirmed by analyzing the mass spectrum. Reactions yielding detectable product peaks in the mass spectrum were
labeled as successful.

prediction. Instead, we leveraged our electronic lab notebooks (ELN) to identify reactions that were successfully run in a
solvent chosen by an expert chemist. We then used both our DRFP-based Random Forest and BERT models (trained on
Pistachio 26 Solvents) to predict the solvent for these reactions, after removing the solvent from the reactions SMILES.
Since the BERT model achieved higher accuracy on the ELN data, we used it as the predictor for this campaign (8 of
26 reactions = 30.76% vs. 6 of 26 reactions = 23.08%). Next, we compared the predicted solvent with the originally
used solvent for each reaction. When the predicted solvent differed from the original solvent, we identified them as
potential candidates for experimental validation. To validate these predictions, we ran the reaction again, once in the
original solvent as a control and once in the predicted solvent, while keeping all other conditions, such as concentration,
temperature, and reaction time, the same (see Figure 2). We selected 12 reactions to be screened, based on spanning a
diverse set of reaction classes and differences in the predicted and experimental solvents.

3 Results & Discussion

3.1 Solvent Prediction

The models’ predictive performance was evaluated by analyzing their Top-n scores to identify the most accurate
predictions, and their ability to detect deviations from statistical trends was measured using F1, recall, and precision
scores as defined in Section 5.1 of the Supplementary Information. The results of the evaluation are presented in
Table 3.1, which shows the performance of the models and input representations on the two datasets’ test sets. While
the models demonstrated similar predictive ability overall, the Random Forest model using DRFP as a molecular
representation achieved the highest Top-1 accuracy in both the USPTO and Pistachio datasets. Interestingly, the BERT-
based models exhibited more balanced learning for the underrepresented solvents in the Pistachio dataset, resulting in
improved F1 scores compared to the DRFP-based models. To benchmark our performance against existing models, we
compared our results with the models developed by Gao et al. [9] capable of predicting reaction solvents, temperature,
and catalyst using a reaxys-derived dataset. To account for the difference in solvents between their dataset and ours,
we assumed that any solvent predicted by their model, not included in our 26 solvents, was correct. Additionally, for
multiple solvent predictions, we evaluated each solvent individually and treated the prediction as correct if at least one
of the predicted solvents matched the true solvent. We can see that our model is significantly better in predicting the
solvent for a single solvent reaction. It should be noted that the model proposed by Gao et al. [9] achieved a higher
accuracy on the solvent prediction task on Reaxys data, which is most likely caused by the fact that no-solvent reactions
were permitted in their dataset.

3.2 Suzuki case study

Beker et al. [3] tried to utilize machine learning to predict ideal reaction conditions for the Suzuki cross-coupling.
They divided this task into different sub-tasks of which one of which is the reaction solvent prediction. Instead of
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Table 2: Predictive performance of the machine learning models classifying 26 solvents.

Model Input Top 1 Top 3 Top 10 F1
macro

F1
micro Precision Recall

Pistachio

BERT SMILES 66.20 85.96 97.09 56.87 66.20 62.06 62.06
Random Forest DRFP 68.92 86.88 96.14 52.98 62.42 83.62 49.79
XGBoost DRFP 60.70 82.62 96.19 45.55 54.80 78.37 42.13
K-NN DRFP 61.30 80.26 87.84 53.28 62.03 73.17 53.83
Askcos [9] Morgan FP 43.69 63.51 73.78 45.66 32.64 30.11 43.41

USPTO

BERT SMILES 64.29 82.50 95.10 57.17 64.29 64.29 60.64
Random Forest DRFP 65.39 85.10 95.92 59.26 65.35 65.35 63.35
XGBoost DRFP 59.97 82.00 96.66 52.77 59.97 59.97 59.97
K-NN DRFP 54.99 75.14 83.87 49.39 55.63 68.80 55.63
Askcos [9] Morgan FP 49.21 68.85 77.80 39.41 51.06 51.17 35.79

Table 3: Predictive ability of various models for Suzuki cross-coupling solvent prediction task: A comparison of the
feed-forward neural network, DRFP-based random forest, Bert models and popularity baseline predicting 6 and 13
solvent classes.

Model Input 6 Solvent classes 13 Solvent classes
Top 1 Top 2 Top3 Top 1 Top 2 Top 3

Reaxys[3] Popularity baseline 29.8 57.4 75.5 29.7 41.4 52.6
Feed-forward NN Morgan FP 51.7 69.4 81.2 43.3 57.4 67.0

USPTO-Suzuki-RXN Popularity baseline 37.4 63.0 76.8 37.2 62.5 76.7
Feed-forward NN Morgan FP 52.2 70.2 83.1 37.7 60.5 73.8

USPTO-Suzuki-RXN Random Forest DRFP 60.2 78.9 88.1 60.7 78.9 87.5
USPTO-Full Random Forest DRFP 60.7 80.2 89.7 60.8 79.6 87.1

USPTO-Suzuki-RXN BERT SMILES 50.8 68.8 82.6 53.4 70.4 77.7
USPTO-Full BERT SMILES 46.3 71.9 86.4 47.8 69.0 81.2
USPTO-Full finetuned BERT SMILES 55.3 73.1 84.4 58.8 70.8 79.2
USPTO-Suzuki-RXN BERT 8xAug SMILES 56.7 73.9 83.0 60.4 76.1 80.8
USPTO-Full finetuned BERT 8xAug SMILES 57.3 75.3 85.0 62.8 72.5 84.2

directly predicting the solvent they split the solvents into 6 classes ({alcohols, water/polar solvents, water/alcohols,
water/amides, water, amides}, {water/aromatics, alcohols/aromatics, water/alcohols/aromatics}, {aromatics}, {ethers},
{water/ethers}, {other}) or 13 classes (water/ethers, ethers, water/alcohols/aromatics, water/amides, alcohols/aromatics,
aromatics, amides, water/aromatics, low boiling polar aprotic solvents/ water, water/alcohols, water, alcohols, and
other).

The performance of Beker et al. [3]’s best-performing model, a feed-forward neural network using the reactants and
products Morgan fingerprints as molecular representation, was compared against a simple baseline called the "popularity
baseline" on Suzuki reactions extracted from Reaxys. The "popularity baseline" predicts the most commonly occurring
solvent in the training data as the prediction for all test cases. However, the neural network failed to achieve significantly
higher accuracy than this baseline. To further evaluate their method, the authors extracted an additional 5,434 Suzuki
reactions from USPTO [12] for reaction conditions testing. Our study benchmarked their best-performing Neural
Network against our models for the solvent prediction task using these 5’434 USPTO Suzuki reactions for predicting the
defined 6 and 13 solvent classes. We compared different varieties of our models: A DRFP-based Random Forest and the
BERT architecture only using the 5’434 reactions with an 80:20 train:test split (USPTO-Suzuki-RXN), and the Random
Forest and BERT architecture using the full scope of USPTO data (USPTO-Full). In the latter, we first removed all
5’434 Suzuki reactions from the full USPTO dataset, then after splitting it into training, validation, and test set, we
added 80% of the 5’434 Suzuki reactions back into the training data and used this to train the BERT and Random Forest
models to learn to predict the solvent classes. We evaluated directly the remaining 20% of the 5’434 Suzuki reactions
(USPTO-Full) or did an additional finetuning of the BERT models on 80% of the Suzuki reactions (USPTO-Full
fine-tuned) before evaluating on the 20%. We additionally implemented an 8-times SMILES augmentation of the
Suzuki reactions for the fine-tuning step based on the yield prediction task improvement of Schwaller et al. [20].
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The results, summarized in Table 3.2, indicate that the DRFP-based Random Forest model generally outperforms the
BERT models. Furthermore, utilizing the USPTO-Full dataset helps enhance the predictive performance. In the case of
the Bert models, finetuning improves the Top-1 accuracy, as well as that SMILES augmentation increases the accuracy
and generalization ability of the models. Overall, our approach, particularly for the 13 solvent models, outperforms
previously proposed models by Beker et al. [3]. We would also like to emphasize that predicting the correct solvent for
the Suzuki cross-coupling is a particularly challenging task. The difficulty arises from the fact that the reaction class
remains the same for all reactions, and the presence of a reaction in a solvent mixture does not imply that it cannot be
conducted in a different solvent mixture.

3.3 Uncertainty Analysis

Figure 3: (left) Even though the model is uncertain about the prediction the two most probable solvents, ethanol and
methanol, are commonly used solvents for the reaction class. (right) A reaction where the model is certain about is
prediction since the solvent class with the highest probability doesn’t change over the 25 samples.

The in section 2.4 introduced uncertainty analysis via Monte Carlo dropout allows us to understand how convinced
the BERT-based model is in its prediction. Across the entire test set, the average probability of the highest three
predicted classes was found to be 76.48± 24.56%, 10.90± 11.73%, and 4.27± 5.52%, which indicates that the model
is reasonably certain in it is prediction. To gain more insight into the uncertain predictions via further performed
reaction subclass analysis (see section 2.4). The core concept of this is that reactions in the same reaction class, e.g.
reductive amination, can be run in multiple solvents, therefore it is reasonable to assume that model is uncertain about
its prediction. The reaction subclass analysis revealed that 79.79% of the predicted solvents with an average probability
over 20% could be found as commonly used solvents for the given reaction class. On the left side of Figure 14 this
behavior is exemplified, the solvents with an over 20% prediction (methanol and ethanol) both are commonly used
solvents for the given reaction class.

Therefore, we conclude that when the dropout layers are activated during inference and the model changes its prediction,
it is more likely because the reaction in question can be run in multiple solvents rather than the model’s inability to
predict the correct solvent with high certainty.

3.4 Experimental validation

We selected 12 reactions based on a variety of factors including the solvent type, chemical transformation, and
availability of the required chemicals for experimentally validating our model’s solvent prediction. These twelve
reactions were previously run successfully in solvents chosen by an expert chemist but have a different predicted solvent
(see Section 2.5). The selected 12 reactions and their experimental procedures can be found in the SI 5.5. The reactions
were classified as either successful or not based on the presence of the expected product in the mass spectrum. Details
of the reactions and their solvents and success can be found in the table provided 4. Out of the 12 reactions, 11 were
successfully run under their original conditions. Among these working reactions, we observed that the product was
obtained in 8 cases when the reactions were run in the predicted solvent. This results in a success rate of 72.72% in the
run reactions, which if we assume that the correctly predicted reactions would have been run rate would actually be an
81.11% success rate on the overall ELN data (see equation 4). This indicates that our model can reliably predict the
missing solvent of a broad spectrum of organic reactions and demonstrates the usefulness of such a model.
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Table 4: Experimental validation of 12 reactions in two different solvents. If the product was found is marked by (S) or
if the reaction failed by a (F).

Reaction Type Chemist Bert Model

1 N-methylation Toluene (S) DMF (S)
2 Steglich reaction DMF (S) DCM (S)
3 N-acylation to amide THF (S) DMF (S)
4 Williamson ether synthesis DMF (S) THF (F)
5 Schiff base formation MeOH (S) Toluene (F)
6 Williamson ether synthesis Acetone (F) DMF (F)
7 Thiourea cyclization THF (S) Pyridine (F)
8 N-acylation THF (S) DCM (S)
9 N-substitution THF (S) Water (S)
10 Schotten-Baumann reaction DCM (S) THF (S)
11 N-acylation to amide THF (S) DCM (S)
12 Steglich reaction DCM (S) DMF (S)

4 Conclusion

In this study, we successfully demonstrated the ability of our models to predict solvents with high reliability using both
patent-derived data and experimental validation. Our evaluation of the models’ performance on two datasets, Pistachio
and USPTO, revealed that the Random Forest model using DRFP as a molecular representation achieved the highest
Top-1 accuracy for solvent prediction in both datasets.

Furthermore, we compared the performance of our models with existing models developed by Gao et al. [9] and found
that our models outperformed them in predicting the solvent for single-solvent reactions when the solvent information
was missing. These results highlight the potential of machine learning-based methods in providing accurate and efficient
solutions for predicting solvent identities in chemical reactions.

The experimental validation campaign showed that our models’ predictions were in good agreement with the exper-
imental results, confirming the models’ reliability and accuracy. Our findings have important implications for the
development of more sustainable and efficient chemical reactions, as an accurate prediction of solvent identities can
greatly aid in the design and optimization of reaction conditions. Overall, this study demonstrates the potential of
machine learning in advancing the field of chemical synthesis.
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5 Supporting information

5.1 Classification Results

Dataset Model Input Top 1 Top 3 Top 10 F1 macro F1 micro Precision Recall

USPTO BERT SMILES 62.79 82.55 94.85 51.19 62.79 68.57 44.75
USPTO RF drfp 64.50 84.10 94.84 43.39 58.72 70.17 47.60
USPTO xgboost drfp 59.28 81.26 94.61 46.20 53.59 67.13 45.66
USPTO knn drfp 53.97 73.57 79.05 44.29 54.62 56.07 40.54
USPTO RF bertfp 63.03 81.63 92.34 49.99 63.01 61.79 48.49
USPTO xgboost bertfp 62.61 80.49 93.91 52.80 63.12 60.34 48.38
USPTO knn bertfp 62.54 72.82 75.75 52.75 63.40 57.24 49.61

5.2 Classification Metrics

Accuracy is a commonly used metric in classification, defined as the ratio of true positive and true negative predictions
to the total number of predictions, as shown below:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Here, TP represents true positives, FP represents false positives, TN represents true negatives, and FN represents false
negatives. However, accuracy and top-k accuracy can be limited in their ability to evaluate unbalanced datasets in a
multi-class classification problem. A more appropriate metric for assessing the predictive performance of reactions
involving less common solvents is the F1 score, which is the harmonic mean of precision and recall, averaged in a
macro or micro fashion. In macro averaging, the F1 score is determined for each class and then averaged with equal
weight, while in micro averaging, the overall true positives, false positives, true negatives, and false negatives across all
classes are used.

F1 =
2

recall−1 + precision−1
= 2

precision · recall
precision + recall

=
2TP

2TP + FP + FN
. (2)

5.3 Machine learning architecture

5.3.1 Random Forest

We used the scikit-learn implementation [15] of the random forest classifier. We set the number of trees to 250 and the
class weight to balanced to train more favorably on underrepresented classes. We kept the remaining hyperparameters
at their default values. In our study, we aimed to assist chemists in selecting a suitable solvent. Therefore, instead of
directly predicting the solvent, we chose the solvent with the highest probability as the predicted class. This approach
differs from the implementation of [7, 15, 26], where a cutoff of 0.5 is used to determine if a solvent was predicted or
not, enabling multi-label classification. However, this approach can lead to cases where the model is uncertain between
two solvents, resulting in the failure to predict a solvent if all probabilities are below 0.5. Our approach is selecting the
solvent with the highest probability and set the remaining solvents as not-predicted.

5.3.2 XGBoost

For XGBoost, we used the implementation from Chen and Guestrin [7]. We set the number of trees to 250 and the class
weight to balanced to train more effectively on underrepresented classes. The remaining hyperparameters were left at
their default configuration.

5.3.3 K-NN Clustering

To implement K-NN clustering, we used the scikit-learn implementation [15]. We set the number of neighbors to 5 and
kept the remaining hyperparameters at their default configuration.

5.4 Calculation of success rate on ELN data

The success rate of the experimental campaign is twofold

Rexperiments =
nsuccess

nexperiments
(3)
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ncorrect pred RXN + (nuncorrect pred RXN ∗Rexperiments)

ntotal RXN ELN
=

8 + (18 ∗ 8
11 ))

26
= 81.11% (4)

10

https://doi.org/10.26434/chemrxiv-2023-hmml5 ORCID: https://orcid.org/0000-0003-0310-0851 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-hmml5
https://orcid.org/0000-0003-0310-0851
https://creativecommons.org/licenses/by-nc-nd/4.0/


AI for solvent predicition

5.5 Experimental Validation

Each reaction was run twice, once in the original solvent Original and once in the predicted solvent Predicted.

5.5.1 Reaction 1: N-Methylation of 3,3-dimethyl-1H-indol-2-one to 1,3,3-trimethylindolin-2-one

3,3-dimethyl-1H-indol-2-one (10mg, 0.062mmol, 1eq) and tetramethylammonium fluoride tetrahydrate (25.6 mg,
0.155mmol, 2.5 eq) added to a vial and dissolved with Original 1ml toluene or Predicted 1ml DMF. The mixture was
stirred at 100C overnight. The formation of the product 1,3,3-trimethylindolin-2-one was determined in the HPLC/MS
spectrum for Original and Predicted. MS (ESI): m/z 176.2 [M+H] calculated, found 176.1 m/z. Area peak: Original:
345’922’608 Predicted 121’640’946

Figure 4: MS spectra of Reaction 1: Original in black and on top, Predicted in red and bottom
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5.5.2 Reaction 2: Amide formation of ethyl 7-(cyclopentylamino)-4,7-dioxoheptanoate

7-ethoxy-4,7-dioxoheptanoic acid (15mg, 0.074mmol, 1eq) and cyclopentylamine (12.63mg, 0.184mmol, 2eq) were
added to vial along EDC hydrochloride (17.07 mg, 0.089mmol, 1.2eq), N,N-dimethylpyridin-4-amine (0.9mg
0.007mmol, 0.1eq). A mixture was formed by adding Original 1ml of DMF respectively Predicted 1ml of DCM. The
mixture was stirred at room temperature overnight to form ethyl 7-(cyclopentylamino)-4,7-dioxoheptanoate determined
via HPLC/Ms spectrum for Original and Predicted. MS (ESI): m/z 270.12[M+H] calculated, found 270.17 m/z.

Area peak: Original: 3’649’001’684 Predicted 4’282’004’193

Figure 5: MS spectra of Reaction 2: Original in black and on top, Predicted in red and bottom
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5.5.3 Reaction 3: Formation of 3-amino-6-bromo-N-(4-hydroxy-1-adamantyl)pyrazine-2-carboxamide

4-aminoadamantan-1-ol:hydrochloride (10mg, 0.046mmol, 1eq) and 3-amino-6-bromo-pyrazine-2-carboxylic
acid (10.37mg, 0.046mmol, 1eq) were added alongside EDC HCl (10.73mg 0.059mmol, 1.2eq) and 1-
hydroxybenzotriazole:hydrate (8.83mg 0.059mmol, 1.2eq) and Diisopropylethylamine (21.10mg, 0.0284ml, 1.642mmol,
3.5eq) and dissolved in Original 1ml THF or Predicted 1ml of DMF. The mixture was stirred over night at room
temperature. The product 3-amino-6-bromo-N-(4-hydroxy-1-adamantyl)pyrazine-2-carboxamide was detected for
Original and Predicted via HPLC/MS (ESI): m/z 367.07[M+H] calculated, found 367.07 m/z.

Area peak: Original: 526’414’862 Predicted 383’741’438

Figure 6: MS spectra of Reaction 3: Original in black and on top, Predicted in red and bottom
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5.5.4 Reaction 4: Williamsom ether synthesis of 2-(3-methylbutan-2-yloxy)acetic acid

Bromoacetic Acid (15mg, 0.108mmol, 1eq) and cyclopentylamine (9.51mg, 0.0116ml, 0.108mmol, 1eq) were added to a
vial. These starting materials were dissolved in Original 1ml DMF or Predicted 1ml THF. Sodium hydroyide (8.64mg,
0.216mmol, 2eq) was added and stirred overnight at room temperature. The product 2-(3-methylbutan-2-yloxy)acetic
acid was only found in reaction Original via HPLC/MS (ESI): m/z 147.102 [M+H] calculated, found 147.113 m/z.

Figure 7: MS spectra of Reaction 4: Original in black and on top, Predicted in red and bottom
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5.5.5 Reaction 5: Schiff base formation of (E)-N-(5-methylthiazol-2-yl)pentan-1-imine

5-methyl-2-thiazolamine (10mg, 0.0858mmol, 1eq) and valeraldehyde (7.6mg 0.0094ml, 0.0858mmol, 1eq) were added
to a vial. The reagents were dissolved in Original 1ml methanol or Predicted 1ml toluene. The mixture was stirred at
room temperature overnight. The product (E)-N-(5-methylthiazol-2-yl)pentan-1-imine was mainly found in solvent
Original via HPLC/MS (ESI): m/z 183.08[M+H] calculated, found 183.10m/z. While in Predicted trace amount of the
product was determined the reaction was classified as not successful.

Figure 8: MS spectra of Reaction 5: Original in black and on top, Predicted in red and bottom

5.5.6 Reaction 6: Williamson ether formation to build 2-fluoro-4-(tetradecyloxy)benzaldehyde

2-fluoro-4-hydroxy-benzaldehyde (15mg, 0.107mmol, 1eq) and 1-bromotetradecane (44.53mg, 0.048ml, 0.161mmol,
1.5eq) were added to a vial alongside Potassium carbonate (25.59mg, 0.214mmol, 2eq). To the vial, Original 1ml
of acetone or Predicted 1ml of DMF was added and the resulting mixture was stirred at 56 C overnight. No product
2-fluoro-4-(tetradecyloxy)benzaldehyde was detected via HPLC/MS(ESI) analysis.
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5.5.7 Reaction 7: Formation of 2-aminopyrido[3,2-e][1,3]thiazin-4-one

2-chloropyridine-3-carbonyl chloride (15mg, 0.0124ml, 0.085mmol, 1eq) and isothiourea (6.5mg, 0.085mmol, 1eq)
are added to a vial and were dissolved with Original 1ml THF or Predicted 1ml pyridine. The mixture was stirred
overnight at room temperature. The product only form 2-aminopyrido[3,2-e][1,3]thiazin-4-one only found in solvent
Original via HPLC/MS (ESI): m/z 180.19[M+H] calculated, found m/z.

Figure 9: MS spectra of Reaction 7: Original in black and on top, Predicted in red and bottom
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5.5.8 Reaction 8: Formation of N’-(3-methylbutanoyl)-1H-indole-4-carbohydrazide

1H-indole-4-carbohydrazide (15mg, 0.086mmol, 1eq) and 3-methylbutyryl chloride (12.3mg, 0.0125ml, 0.103mmol,
1.2eq) added to a vial alongside triethylamine (18.5mg, 0.025ml, 0.183mmol, 2.135eq) and dissolved in Original
1ml of THF or Predicted 1ml of DCM. The mixture was stirred at room temperature overnight. The product N’-(3-
methylbutanoyl)-1H-indole-4-carbohydrazide was detected via HPLC/MS (ESI): m/z 260.13[M+H] calculated, found
m/z.

Figure 10: MS spectra of Reaction 8: Original in black and on top, Predicted in red and bottom
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5.5.9 Reaction 9: Tertiary amine formation of 2-(diethylamino)acetic acid

2-bromoacetic acid (10mg, 0.072mmol, 1eq) and N-ethylethanamine (10.53mg, 0.015ml, 0.144mmol, 2eq) were added
to a vial. A mixture was formed by adding Original 1ml of THF or Predicted 1ml of water. The reaction mixture was
stirred overnight at room temperature. The product 2-(diethylamino)acetic acid was detected via HPLC/MS (ESI): m/z
132.09 [M+H] calculated, 132.10 found m/z.

Figure 11: MS spectra of Reaction 9: Original in black and on top, Predicted in red and bottom
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5.5.10 Reaction 10: Schotten-Baumann reaction to form benzyl (1-pentanoylpyrrolidin-3-yl)carbamate

Benzyl N-pyrrolidin-3-ylcarbamate (20mg, 0.091mmol, 1eq) and valeryl chloride (10.9mg 0.011ml 0.091mmol, 1eq)
were added alongside triethylamine (11.6mg, 0.016ml) to a vial and dissolved by adding Original 1ml DCM or
Predicted 1ml THF. The mixture was stirred at room temperature overnight. The formed benzyl (1-pentanoylpyrrolidin-
3-yl)carbamate was detected in Original and Predicted via HPLC/MS (ESI): m/z 305.18 [M+H] calculated, 305.18
found m/z.

Figure 12: MS spectra of Reaction 10: Original in black and on top, Predicted in red and bottom
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5.5.11 Reaction 11: Sulfonic ester formation of ethyl 2-(((5-fluoro-2-methoxyphenyl)sulfonyl)oxy)acetate

5-fluoro-2-methoxybenzenesulfonyl chloride (15mg, 0.066mmol, 1eq) and ethyl 2-hydroxyacetate (9.1mg, 0.086mmol,
1.2eq) were added to a vial alongside triethylamine (10.1mg, 0.014ml, 0.1mmol, 1.5eq) and dissolved in Original
1ml of THF or Predicted 1ml of DCM. The mixture was stirred overnight at room temperature. The product ethyl
2-(((5-fluoro-2-methoxyphenyl)sulfonyl)oxy)acetate formed and was detected in Original and Predicted via HPLC/MS
(ESI): m/z 310.07 [M+NH4] calculated, 310.18 found m/z.

Figure 13: MS spectra of Reaction 10: Original in black and on top, Predicted in red and bottom
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5.5.12 Reaction 12: Steglich reaction to form 3-fluoro-N-((tetrahydro-2H-pyran-2-yl)methyl)propanamide

3-fluoropropanoic acid (10mg, 0.104mmol, 1eq) and tetrahydropyran-2-ylmethylamine (12.0mg, 0.104mmol, 1eq) were
added to a vial alongside EDC (23.9mg, 0.121mmol, 1.2eq) DIPEA(33.7mg, 0.045ml, 0.261mmol, 2.5eq) and HOBt
(19.8mg, 0.121mmol, 1.2eq). To the vial, either Original 1ml of DCM or Predicted 1ml of DMF were added. The
mixture was stirred at room temperature overnight. 3-fluoro-N-((tetrahydro-2H-pyran-2-yl)methyl)propanamide was
detected in Original and Predicted via HPLC/MS (ESI): m/z 192.12 [M+H] calculated, found m/z.

Figure 14: MS spectra of Reaction 10: Original in black and on top, Predicted in red and bottom
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