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A simple and modular dialkylation of two electron-rich pyridine derivatives, 

namely 4-aminopyridine or 1,2,3,4-tetrahydropyrido[3,4-b]pyrazine, is achieved 

by aza-Michael reactions with electron-poor olefins (ethyl acrylate and 

acrylonitrile). Reducing the ester groups in the ethyl acrylate-derived compounds 

yielded the corresponding hydroxyl-containing derivatives. Subsequently, 

homopolymerization of phenyl glycidyl ether as well as an epoxy-alcohol 

polyaddition were catalyzed using the introduced compounds. As a reference 

catalyst, 4-dimethylaminopyridine was used. We found that in all cases an 

irreversible termination of the polymerization at temperatures above 100 °C 

occurred. The decomposition was particularly rapid in the case of pyridine 

derivatives containing hydroxyl groups. In contrast, at a constant temperature of 

100 °C, the latter compounds gave the fastest phenyl glycidyl ether homopolym-

erization and high conversions were found for all electron-rich pyridine 

derivatives. However, testing the catalysts at high alcohol concentrations at 

temperatures higher than 100 °C resulted in similarly moderate conversions in 

all cases.  
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Introduction 

 

4-(Dimethylamino)pyridine (DMAP) and related Lewis bases are widely 

used reagents for acylation, alkylation, condensation and transesterification 

reactions [1,2]. In polymer chemistry, DMAP is used as catalyst/initiator for 

living ring opening polymerization of lactide [3], in the conversion of isocyanates 

with alcohols [4] or as the initiator for aza- [5] and oxa-Michael polymerizations 

[6,7,8,9]. Further, DMAP is used in the homopolymerization of epoxy monomers 

[10,11] and in the combined polymerization of epoxy monomers and esters 

[11,12,13,14,15] as well as in the carbon dioxide addition to epoxides [16,17] and 

in the ring opening polymerization of cyclic carbonates [18]. In these cases, the 

use of DMAP often suffers from its poor solubility in the formulations. Since the 

use of solvents is usually undesirable, there is a strong interest to develop an easy 

and modular synthetic route to prepare DMAP analogues with tunable solubility.  

Another motivation is to provide a convenient method for incorporating additional 

functional groups, such as those used for polymerization or immobilization of 

DMAP derivatives [19,20], or for tuning the activity of the catalysts. 

Herein we disclose a synthetic methodology based on the aza-Michael 

reaction [21] of 4-aminopyridine or 1,2,3,4-tetrahydropyrido[3,4-b]pyrazine with 

electron-poor olefins, namely acrylonitrile and ethyl acrylate, and test the 

performance of the obtained derivatives and their follow-up products (Scheme 1) 

in epoxy homopolymerization as well as in the epoxy-alcohol reaction. In this 

context, we are particularly interested in discovering the activity of electron-rich 

pyridines with additional hydroxyl groups, which, as will be shown, are easily 

accessible via the synthetic route discussed. 

 

 

Scheme 1 

 

DMAP is usually prepared by reacting dimethylamine with 1-(4-

pyridyl)pyridinium chloride, which is accessible from pyridine and chlorine [22]. 
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In contrast, here we start from 4-aminopyridine, accessible either via 

ammonolysis of 1-pyridylpyridinium dichloride or via a Hofmann rearrangement 

of the corresponding pyridinecarboxamide [23] and perform an aza-Michael 

reaction for the alkylation. This synthetic approach should also be readily 

applicable to the derivatization of other more complex electron-rich 

aminopyridines, as exemplified here by the synthesis of alkyl-substituted 3,4-

diaminopyridines [24].  

 

Results and Discussion 

 

Firstly, the use of acrylonitrile as electron-poor olefin was investigated in the 

synthesis of the doubly cyanoethylated aminopyridine derivative (1a). Compound 

1a is readily obtained by heating 4-aminopyridine in acrylonitrile at 80 °C for 24 

h in 68 % yield (Scheme 2). The synthesis of 1a has been described in the 

literature using the same synthetic approach, but higher yields have been reported 

[25,26]. Compound 1a has been used as an intermediate in the preparation of 

polymeric acylation catalysts [27]. A single crystal X-ray structure of 1a is 

available [25].  

 

 

Scheme 2 

 

In contrast, 3,3′-(2,3-dihydropyrido[3,4-b]pyrazine-1,4-diyl)bis[propanenitrile] 

(1b) is a previously unknown compound, which was prepared by heating a 

dispersion of 1,2,3,4-tetrahydropyrido[3,4-b]pyrazine in acrylonitrile for 24 h at 
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80 °C. Upon removal of volatiles an oily brown residue remained from which 1b 

was isolated by column chromatography in 61 % yield.  

Changing to ethyl acrylate as the Michael-acceptor, N-(3-ethoxy-3-oxopropyl)-N-

4-pyridinyl-β-alanine ethyl ester (2a) was obtained in 43% yield by reacting 4-

aminopyridine and ethyl acrylate at 80°C for 24 h. Compound 2a has been 

previously disclosed in a patent [28] and the corresponding dimethyl ester 

derivative is also known [27,29,30]. The moderate yield is due to the need to 

separate ethyl acrylate oligomers by column chromatography. One of these by-

products was obtained in pure form and was identified as 2a’ (Figure 1). In 

contrast to 2a, the 1H-NMR spectrum of 2a’ shows the presence of three ethyl 

ester groups (CH2 at 4.2-4.1 ppm and CH3 1.27-1.16 ppm) per pyridine moiety, 

rather than two as in 2a. The 2-substituted pentanedioate substructure gives rise 

to a multiplet with the relative intensity of one proton at 2.83 ppm and two 

multiplets at 2.33 and 1.89 ppm. 2a’ is probably formed by a carba-Michael 

reaction of 2a with surplus ethyl acrylate [31].  

 

Figure 1. 1H-NMR spectra of 2a and 2a’ recorded in CDCl3 at 300 MHz; the red 

numbers correspond to the integrals of the peaks. 
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It is interesting to note that no related byproducts were observed when imidazoles 

were used as Michael donors under similar reaction conditions [32]. The product 

of the double Michael addition of ethyl acrylate to 1,2,3,4-tetrahydropyrido[3,4-

b]pyrazine (2b) is obtained in a similar way. Again, column chromatography was 

used to purify the target compound, which was obtained in 40 % yield. The two 

diesters 2a and 2b were then reduced with lithium aluminum hydride to give the 

corresponding dialcohols 3a and 3b in 60 and 50 % yield respectively (Scheme 

3). 

 

 

Scheme 3 

 

In a next step, the synthesized electron-rich pyridine derivatives were tested as 

catalysts/initiators in the homopolymerization of phenyl glycidyl ether (PGE). 

The reaction was monitored using dynamic Differential Scanning Calorimetry 

(DSC) [10] accompanied by on-line monitoring of sample weights in a 

simultaneous thermal analysis (STA) instrument. The reaction has previously 

been studied under solvent-free conditions with a DMAP loading of 2 or 8 mol% 

[10]. However, the solubility of DMAP and the compounds prepared here in PGE 

at room temperature is only moderate and from our experience, loadings above 5 

mol% are not fully soluble in the monomer within minutes at room temperature. 

The solubility of compounds 1b and 2b in PGE is particularly poor and therefore 

these two compounds were not evaluated in the following. Results are shown in 

Figure 2. The benchmark experiment with DMAP as the initiator shows an onset 

of the polymerization at about 80 °C, a maximum of the heat flow at 129±1 °C 
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and a heat of polymerization of about 96±3 kJ/mol. At the same time, a mass loss 

of 16±2 % is observed at a temperature of 210 °C, indicating that no complete 

polymerization of PGE could be obtained under these curing conditions. The 

cyanoethylated compound 1a shows a much later onset of the polymerization (as 

indicated by the exothermic heat flow in the thermogram) at about 125 °C. Shortly 

before this, at about 118 °C, an endothermic event is observed, which could be 

due to the melting of undissolved crystals of 1a (indeed, the solubility of 1a in 

PGE is the lowest of all the molecules studied). The heat flux peaks at 141±1 °C 

and probably a lower heat of polymerization was evolved (> 80 kJ/mol, the 

simultaneous occurrence of an endothermic heat flux prevents a more accurate 

quantification) than in the case of DMAP. However, the mass loss observed in 

this experiment is very similar (16±2 % at 210 °C) to that found in the DMAP 

experiment, suggesting similar PGE conversions in both cases. In the case of the 

diethyl ester derivative 2a, the onset of polymerization is found at a temperature 

about 20 °C lower than in the case of 1a, but still considerably higher than in the 

case of DMAP. The heat flux has its maximum at about 136±1 °C and the heat of 

reaction is much lower at 70±3 kJ/mol, which is accompanied by a much higher 

mass loss of about 30±1 % at 210 °C. It is interesting to note that the mass loss 

already starts at about 100 °C, i.e. at a much lower temperature than in the case of 

DMAP or 1a. Based on the literature [11-15], transesterification can be assumed 

to occur simultaneously with the anionic polymerization of PGE, which slows 

down the propagation reaction. A similar situation is conceivable for 1a, where 

the attack of the alkoxide on the electrophilic carbon atom of the nitrile may slow 

the propagation. Finally, diol derivatives 3a and 3b show an early onset of the 

polymerization (similar to that of DMAP), but almost no heat of polymerization 

(in the range of 7-14 kJ/mol) could be detected. Instead, almost 80% mass loss 

was observed at 215 °C in the case of 3a and even 85% in the case of 3b, 

indicating the occurrence of deactivation reactions at elevated temperatures 

(becoming important above 110 °C) specific to these two pyridine derivatives. 

Deactivation of DMAP during homopolymerization has been described in the 

literature. It is believed, that the propagating ion pair (or zwitterion) is irreversibly 

consumed by the attack of an alkoxide on the -system of a pyridinum cation (vide 

infra) [10,11]. Since in the case of 3a and 3b the alcohol groups are in close 
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proximity to the pyridinium moiety, it is easily conceivable that such degradation 

is more favored than in the case of DMAP or derivatives 1a and 2a.  

 

Figure 2. Dynamic STA measurements of the homopolymerization of PGE initiated 

with 1a, 2a, 3a, 3b and DMAP (5 mol% in respect to PGE; heat rate = 10 K/min) 

showing the heat flow of DSC experiments (thick lines with symbols, exothermal 

reactions show a positive heat flow) and the masses of the samples in dependence of the 

temperature (dashed lines with the same color code). 

 

To further qualify the different initiators, isothermal curing of PGE in the presence 

of 5 mol% initiator at a fixed temperature of 100 °C (temperature chosen in the 

range where 3a and 3b still showed heat release in the previous experiments) was 

studied by DSC (Figure 3). Under these conditions, 3a and especially the slightly 

better PGE soluble 3b clearly outperformed DMAP and the other newly 

introduced derivatives 1a and 1b. Initiator 3b shows a very fast PGE 

polymerization as indicated by the maximum heat flux at only 3±½ min and a heat 

of polymerization of 84±2 kJ/mol. 3a behaves similarly (observed heat of reaction 

83.5±2 kJ/mol), but the shape of the thermogram differs from the expected shape 

due to the presence of an additional endothermic event (probably melting of 

crystalline 3a).  
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Figure 3. Isothermal DSC measurements of the homopolymerization of PGE initiated 

with 1a, 2a, 3a, 3b and DMAP (5 mol% in respect to PGE; reaction temperature: 100 

°C) showing the heat flow (exothermal events show a negative heat flow) 

 

The heat of  reaction reported for the polymerizations initiated with 3a and 3b can 

be considered as the lower limits and are most probably higher (because 

considerable heat of polymerization could have developed during the first 2 min 

of the measurement, which is needed to reach the constant temperature of 100 

°C). DMAP is giving a slower reaction as can be seen from the time taken to reach 

the maximum heat flux of about 6 min, and the heat of polymerization is with 

68±2 kJ/mol lower than for 3a or 3b. Apparently, the alcohol groups attached to 

the electron-rich pyridine derivatives are advantageous for a fast conversion of 

PGE, which is in agreement with previous findings in the literature [11]. The 

reaction initiated by 2a starts slightly slower than in the DMAP case, and takes 

significantly longer to complete the polymerization. A heat of polymerization of 

72±2 kJ/mol was measured in this case. Finally, 1a is by far the slowest initiator, 

showing a maximum heat flow at about 22 min. However, the highest PGE 

conversion was observed, as the highest heat of polymerization (90±2 kJ/mol) 
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was determined in this case. The nitrile groups appear to have some mitigating 

effect on the irreversible termination reaction. 

To test the derivatives in an alcohol-rich environment, the curing of glycerol 

diglycidyl ether (gly-DGE, glycerol with an average of 1.5 glycidyl ether groups) 

with (Z)-but-2-ene-1,4-diol (molar ratio 1:1), as an exemplary epoxy alcohol 

formulation, was performed [33]. 

 

 

Figure 4. Dynamic DSC measurements of the epoxy alcohol reaction of Gly-DGE and 

(E)-but-2-ene-1,4-diol (molar ratio = 1:1) initiated with 1a, 2a, 3a, 3b and DMAP (5 

mol% in respect to PGE; heat rate = 2 K/min) showing the heat flow of DSC experiments 

(exothermal reactions show a negative heat flow) 

 

Under these conditions, 3a and 3b perform similarly to DMAP in terms of the 

onset of the polymerization (46±2 °C) and the maximum of the thermograms at 

(88±1 °C). However, the detected heat of polymerization is slightly lower for 

DMAP (42±2 kJ/mol) compared to 3a and 3b (45±2 kJ/mol). 1a shows a slightly 

delayed polymerization (maximum at 97±1 °C) with a slightly higher heat of 

reaction (49±2 kJ/mol) compared to the previous cases. The diester derivative 2a 

shows a different polymerization behavior. While the onset of the exothermic heat 
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flow is at a similar temperature as in the other cases, only a small amount of heat 

(< 3 kJ/mol) is released. Starting at about 74±1 °C, a second much stronger 

exothermic heat flux (46±2 kJ/mol) is observed, peaking at about 104±1 °C. The 

results show that the newly introduced alcohol-containing compounds 3a and 3b 

do not perform better than the parent DMAP in the epoxy-alcohol reaction. 

Considering that the theoretical heat of epoxy (homo)polymerization as well as 

epoxy-alcohol polymerization is about 100 kJ/mol [33,34] it can be concluded 

that under the experimental conditions all investigated derivatives are deactivated 

before the monomers are completely consumed and only epoxy conversions of 

about 50 % were obtained. The results show that in the presence of excess 

hydroxyl groups, all reactions are irreversibly terminated before the epoxy groups 

are consumed.  

The results obtained allow to outline a better mechanistic understanding, in 

particular with respect to the role of the alkoxide in DMAP initiated epoxy 

polymerizations. First, DMAP reacts with an epoxy monomer in an equilibrium 

reaction to form the zwitterionic species I (Scheme 4). In the absence of alcohol, 

the alkoxide group in I can attack another PGE leading to propagation as 

illustrated by the homologous zwitterion II. In the presence of alcohols, the 

zwitterion I is removed from the equilibrium by a proton transfer reaction to form 

the ion-pair III, consisting of a pyridinium cation and an alkoxide, which then 

attacks another PGE molecule (IV) starting the propagation. The ion-pair pathway 

then allows a faster conversion of PGE, presumably simply because the 

concentration of active species (the alkoxide) is higher in this case [35]. The 

superior activity of 3a and 3b under isothermal curing conditions (at 100 °C) can 

therefore be rationalized by a switch from the zwitterionic to the ion pair pathway 

(Scheme 4, note that in the case of 3a or 3b and the ion pair pathway, the 

propagating species can be a zwitterion). Propagation can be terminated in a 

number of ways that cancel out the charges. Most of the termination reactions 

discussed involve hydrogen abstraction (β-elimination) and nucleophilic 

substitution by alkoxides (not shown in Scheme 4) [35]. These two processes 

release the Lewis base and allow the polymerization to be restarted as long as 

unreacted epoxy groups are present [11,36]. 
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Scheme 4. (P in the dotted circle represents the polymer chain) 

 

However, as seen previously [10] and in this study, DMAP derivatives undergo 

additional termination reactions leading to deactivation of the Lewis base in the 

presence of alkoxide. It has been suggested that the formation of species 

represented by V (intra- or intermolecular attack of the alkoxide on the pyridinium 

cation may occur) is responsible for the irreversible termination of the epoxy 

homopolymerization [10]. Such a deactivation reaction becomes more important 

at temperatures above 100 °C and the more alkoxide species are present. In case 

of hydroxyl group bearing 3a and 3b, the decomposition in an epoxy-

homopolymerization is rapid above 100 °C resulting in the termination of PGE 

consumption. Figure 5 outlines a hypothetical scenario for 3a that attempts to 

explain the decomposition reaction based on the reactivity of pyridinum ions [37]. 

Upon initiation, the zwitterion Ia is formed [38], which is in equilibrium with the 

zwitterion IIIa, which in turn may undergo an intramolecular cyclisation reaction 

to give the neutral VIa. Previously postulated species of type V [10], such as Va 

sketched here, should be less important for the irreversible termination of the 
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reaction, according to the findings made here. This is supported by the fact that 

the deactivation of the polymerization of PGE is fastest at elevated temperatures 

with the initiators 3a and 3b bearing alcohol groups. For these two compounds, 

intramolecular attack in the α-position to the nitrogen atom in the pyridinium ring 

is unlikely for steric reasons. DFT calculations of the relative energies of the 

structures Ia-VIa in comparison to the starting materials show no significant 

thermodynamic preference of one of the investigated structures. 

 

 

Figure 5 Chemical structures of the postulated zwitterions Ia and IIIb and potential 

reaction pathways leading to neutral molecules Va and VIa. Grey parts of the structures 

illustrate the parts of the molecules that were omitted in the calculations to reduce 

computational cost. Relative energies of Ia-VIa in respect to the respective starting 

materials and lowest-energy conformers of the calculated model structures are shown. 

All calculations were performed using B3LYP. 

 

Furthermore, due to the relatively high energy differences observed, Va or VIb 

should rather be considered intermediates than final products of the attack of the 

alkoxide at the pyridinium moiety. We expect these intermediates to be starting 

points for yet unknown follow up reaction leading to thermodynamically more 

favored products and thus, the deactivation of the anionic polymerization reaction. 

The decomposition reaction starting from Ia to give Va should be equally feasible 
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for all studied DMAP derivatives and formation of the five-membered ring 

structure present in Va should be preferred over the formation of higher 

macrocycles or an intermolecular reaction. Accordingly, we postulate that the 

alkoxide attack on the other electrophilic carbon leading type VIa molecules, is 

at least another reasonable starting point for the irreversible termination of DMAP 

derivative promoted epoxy-homopolymerizations and epoxy-alcohol reactions. 

This pathway might be particularly important for the deactivation of 3a and 3b in 

the epoxy-homopolymerization at temperatures above 100 °C. 

 

Conclusion 

The aza-Michael reaction enables a simple and modular alkylation reaction 

of aminopyridine derivatives, introducing functional groups in the periphery of 

the electron-rich pyridine core. The presence of hydroxyl groups in the initiator is 

of particular interest because it provides a faster homopolymerization of phenyl 

glycidyl ether at 100°C than the parent 4-dimethylaminopyridine. However, 

epoxy homopolymerization and the epoxy alcohol reaction initiated with all 

electron-rich pyridine derivatives under investigation are irreversibly terminated 

at temperatures above 100°C. The termination reaction is particularly rapid at 

higher alcohol concentrations. 

 

Experimental 

 

Chemicals were purchased from Sigma-Aldrich, Fisher Scientific, Merck, or Alfa 

Aesar. All reagents were used without further purification unless otherwise noted. 

1,2,3,4-Tetrahydropyrido[3,4-b]pyrazine was prepared according to literature 

[24]. NMR spectra were recorded on a Bruker Avance III 300 MHz FT NMR 

spectrometer (300.36 MHz (1H), 75.53 MHz (13C)). Chemical shifts δ [ppm] are 

referenced to residual protonated solvent signals as internal standard CDCl3: 

δ = 7.26 ppm (1H), 77.16 ppm (13C). Elemental analyses were conducted on an 

Elementar Vario Micro Cube with CHN detector. Results were found to be in 

good agreement (±0.3%) with calculated values. Analytical thin layer 

chromatography (TLC) was performed on Merck silica gel 60-F254, and spots were 
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visualized by UV-light or by treatment with cerium ammonium molybdate 

solution or potassium permanganate. Column chromatography was performed 

using silica gel 60 Å from Acros Organics. Thermogravimetric analysis (TGA) 

was performed with a Netzsch simultaneous thermal analyzer STA 449C 

(crucibles: aluminum from Netzsch). The heating rate was 10 °C/min until a final 

temperature of 550 °C was reached. A helium flow of 20 cm3·min−1 was used in 

combination with a protective flow of helium of 10 cm3·min−1. Differential 

scanning calorimetry (DSC) measurements were performed on a PerkinElmer 

DSC 8500 instrument using aluminum sealed pans. In case of dynamic 

measurements, the heat of polymerization (H0) was determined from the 

integration of the peak area of the corresponding thermogram according to Eq. 1.  

 

∆𝐻0 [
𝑘𝐽

𝑚𝑜𝑙
] =

 𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 [
𝑚𝑊

𝑚𝑔
∗𝐾]

ℎ𝑒𝑎𝑡 𝑟𝑎𝑡𝑒 [
𝐾

𝑠
]

∗
𝑚𝑒𝑝𝑜𝑥𝑦+𝑚𝑎𝑙𝑐𝑜ℎ𝑜𝑙+𝑚𝑐𝑎𝑡 [𝑚𝑔]

𝑁𝑟 𝑜𝑓 𝑒𝑝𝑜𝑥𝑖𝑑𝑒𝑠 [𝑚𝑚𝑜𝑙]
/1000         (Eq. 1) 

 

In case of isothermal measurements, the heat of polymerization (H0) was 

determined from the integration of the peak area of the corresponding thermogram 

according to Eq. 2. 

 

∆𝐻0 [
𝑘𝐽

𝑚𝑜𝑙
] =  𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 [

𝑚𝑊

𝑚𝑔
∗ 𝑚𝑖𝑛] ∗

𝑚𝑒𝑝𝑜𝑥𝑦+𝑚𝑐𝑎𝑡 [𝑚𝑔]

𝑁𝑟 𝑜𝑓 𝑒𝑝𝑜𝑥𝑖𝑑𝑒𝑠 [𝑚𝑚𝑜𝑙]
∗

60

1000
   (Eq. 2) 

 

Computational Details 

Conformational searches of all structures have been performed with the COSMO-

conf programme (COSMOlogic GmbH & Co KG: Leverkusen, Germany, 2013) 

at the PBE-D3/def2-SVPD level [39,40]. The lowest energy structures were then 

reoptimized using PBE-D3/def2-SVPD as implemented in ORCA (version 5.0.2) 

[41]. Confirmation of the minima, calculation of zero-point vibrational energies 

and thermal properties (at 25 °C) were performed by calculation of analytical 

normal modes using the rigid-rotor harmonic oscillator (RRHO) approximation. 

The structures were used as input geometries for further optimization using the 

double-hybrid functional B3LYP-D3, the def2-TZVPPD basis set and D3 

dispersion correction [42,43]. Our best estimate for calculation of Gibbs free 

energies (ΔG) resulted in using B3LYP-D3/def2-TZVPPD + ZPE,temp (PBE-
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D3/def2-SVPD). Gibbs free energies were obtained by calculating the energy 

differences between products and starting materials.  

 

3,3′-(4-Pyridinylimino)bis[propanenitrile] (1a)  

A mixture of 4-aminopyridine (1.88 g, 0.020 mol) and acrylonitrile (13 cm3, 

excess) was stirred for 24 h at 80 °C. The formed participate was filtered off, 

washed with acetone and dried in vacuum giving 2.73 g (68 %) of a white solid. 

Rf (CH2Cl2/MeOH = 20/1) = 0.21; 1H-NMR (300 MHz, DMSO-d6, 25 °C): δ = 

8.16 (d, 2H, 3JHH = 6.5 Hz, py2,6), 6.79 (d, 2H, 3JHH = 6.5 Hz, py3,5), 3.74 (t, 4H, 

NCH2CH2), 2.76 (t, 4H, CH2CH2CN) ppm. 13C{1H}-NMR (75 MHz, DMSO-d6, 

25°C): δ = 151.1 (1C, py4), 149.9 (2C, py2,6), 119.1 (1C, N≡C-), 107.1 (2C, py3,5), 

44.6 (2C, NCH2CH2), 15.1 (2C, CH2CH2CN) ppm. 

 

3,3′-(2,3-dihydropyrido[3,4-b]pyrazine-1,4-diyl)bis[propanenitrile] (1b, 

C13H15N5) 

A mixture of 1,2,3,4-tetrahydropyrido[3,4-b]pyrazine (200 mg, 1.48 mmol) and 

acrylonitrile (1 cm3, excess) was stirred for 24 h at 80°C. Volatiles were removed 

in vacuum and the resulting oily brown residue was then purified by column 

chromatography (CH2Cl2/MeOH/TEA = 1500/100/1) on silica to afford upon 

drying in vacuum 218 mg (61 %) of a yellow solid. Rf = (CH2Cl2/MeOH/TEA = 

1000/100/1) = 0.30; 1H-NMR (300 MHz, CDCl3, 25 °C): δ = 7.87 (d, 1H, 3JHH = 

6 Hz, py7), 7.67 (s, 1H, pyr5), 6.31 (d, 1H, 3JHH = 6 Hz, pyr8), 3.65 (m, 4H, 

NCH2CH2), 3.60, 3.45 (m, 4H, pyr2,3), 2.65 (m, 4H, CH2CH2CN) ppm. 13C{1H}-

NMR (75 MHz, CDCl3, 25°C): δ = 141.6, 139.7, 131.6, 129.4 (4 C, pyr4a,5,7,8a), 

118.3, 117.9 (2C, CH2CH2CN), 104.5 (1C, pyr8), 48.0, 47.1, 46.8 (4C, pyr2,3, 

CH2CH2CN), 15.1 (2C, CH2CH2CN) ppm. 

 

N-(3-Ethoxy-3-oxopropyl)-N-4-pyridinyl-β-alanine ethyl ester (2a) 

A mixture of 4-aminopyridine (1.88 g, 0.020 mol) and ethyl acrylate (11 cm3, 

excess) were stirred at 80°C for 24 h. Volatiles were removed in vacuum and the 

brown oily crude material was purified with column chromatography 

(CH2Cl2/MeOH/TEA = 90/10/1) on silica to afford a light brown solid (2.53 g, 43 

%). 
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Rf (CH2Cl2/MeOH/TEA = 90/10/1) = 0.45; 1H-NMR (300 MHz, CDCl3, 25 °C): 

δ = 8.24 (d, 2H, 3JHH = 5 Hz, py2,6), 6.51 (d, 2H, 3JHH = 5 Hz, py3,5), 4.15 (q, 4H, 
3JHH = 7 Hz, OCH2CH3), 3.69 (t, 4H, 3JHH = 7 Hz, CH2CH2N), 2.59 (t, 4H, 3JHH = 

7 Hz, CH2CH2N), 1.25 (t, 6H, 3JHH = 7 Hz, OCH2CH3) ppm. 13C{1H}-NMR (75 

MHz, CDCl3, 25°C): δ = 171.6 (2C, COO), 151.8 (1C, py4), 150.3 (2C, py2,6), 

106.9 (2C, py3,5), 61.0 (2C, OCH2CH3), 45.9 (2C, CH2CH2N), 32.3 (2C, 

CH2CH2N), 14.3 (2C, OCH2CH3) ppm. 

 

Diethyl 2-(((3-ethoxy-3-oxopropyl)(pyridin-4-yl)amino)methyl)pentanedioate 

(C20H30N2O6, 2a’) 

2a’ was isolated from the reaction mixture obtained during the synthesis of 2a by 

column chromatography giving upon drying in vacuum 180 mg (2.3 %) of a 

slightly yellow oil. Rf (CH2Cl2/MeOH/TEA = 90/10/1) = 0.50; 1H-NMR (300 

MHz, CDCl3, 25 °C): δ = 8.23 (d, 2H, 3JHH = 5 Hz, py2,6), 6.50 (d, 2H, 3JHH = 5 

Hz, py3,5), 4.19-3.99 (m, 6H, OCH2CH3), 3.75-3.60 (m, 3H, CH2CH2N, 

CHCH2N), 3.42 (m, 1H, CHCH2N), 2.83 (m, 1H, CH2CHCH2), 2.55 (t, 2H, 

CH2CH2N), 2.33 (m, 2H, CHCH2CH2COO), 1.89 (m, 3.9H, CHCH2CH2COO, 

1.9H unknown), 1.31-1.11 (m, 9H, OCH2CH3) ppm. 13C{1H}-NMR (75 MHz, 

CDCl3, 25°C): δ = 173.4, 171.9, 170.9 (3C, COO), 151.4 (1C, py4), 149.7 (2C, 

py2,6), 106.6 (2C, py3,5), 60.4, 60.2, 60.0 (3C, OCH2CH3), 51.8 (1C, CHCH2N), 

45.5 (1C, CH2CH2N), 42.7 (1C, CHCH2N), 31.18, 31.13 (2C, CH2CH2), 24.7 (1C, 

CHCH2CH2COO), 13.71, 13.68, 13.63 (3C, OCH2CH3) ppm. 

 

Diethyl 3,3'-(2,3-dihydropyrido[3,4-b]pyrazine-1,4-diyl)dipropionate (2b, 

C17H25N3O4) 

2b was prepared analogously to 1b using 1,2,3,4-tetrahydropyrido[3,4-b]pyrazine 

(0.80 g, 5.9 mmol) and ethyl acrylate (3.5 cm3, excess) as the starting materials. 

Purification was accomplished by column chromatography (CH2Cl2/MeOH/TEA 

= 2500/100/1) on silica to afford a light brown solid (0.79 g, 40 %). Rf 

(CH2Cl2/MeOH/TEA = 1000/10/1) = 0.40; 1H-NMR (300 MHz, CDCl3, 25 °C): 

δ = 7.80 (d, 1H, 3JHH = 6 Hz, pyr7), 7.67 (s, 1H, pyr5), 6.36 (d, 1H, 3JHH = 6 Hz, 

pyr8), 4.14 (q, 4H, 3JHH = 7 Hz, OCH2CH3), 3.59, (m, 4H, pyr2,3), 3.47, 3.29 (m, 

4H, NCH2CH2), 2.59 (m, 4H, NCH2CH2), 1.24 (t, 6H, 3JHH = 7 Hz, OCH2CH3) 

ppm. 13C{1H}-NMR (75 MHz, CDCl3, 25°C): δ = 171.9 (2C, COO), 141.8, 139.9, 
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131.5, 129.3 (4C, pyr4a,5,7,8a), 104.7 (1C, pyr8), 61.2 (2C, OCH2CH3), 48.2, 47.4, 

46.3, 45.9 (4C, pyr2,3, CH2CH2COO), 32.3, 32.1 (2C, CH2CH2COO), 14.3 (2C, 

OCH2CH3) ppm. 

 

3,3'-(Pyridin-4-ylazanediyl)bis(propan-1-ol) (3a, C11H18N2O2) 

To a suspension of lithium aluminum hydride (245 mg, 6.5 mmol) in THF (12 

cm3) at 0 °C, a solution of 2a (1.14 g, 3.87 mmol) in THF (5 cm3) was added 

dropwise over 10 min. The reaction mixture was vigorously stirred for 4 h at room 

temperature. Water was added dropwise to the stirred reaction mixture and the 

formed precipitate was filtered off and washed 3 times with THF (5 cm3 each). 

The THF solution was dried over Na2SO4 and after evaporation of volatiles, a 

brown oily residue was obtained. The crude product was purified by 

recrystallization from acetonitrile (approx. 10 cm3) releasing colorless crystals 

(0.49 g, 60 %). Rf (CH2Cl2/MeOH/TEA = 100/10/1) = 0.90; 1H-NMR (300 MHz, 

CDCl3, 25 °C): δ = 8.13 (d, 2H, 3JHH = 6 Hz, py2,6), 6.53 (d, 2H, 3JHH = 6 Hz, 

py3,5), 3.72 (q, 4H, 3JHH = 7 Hz, NCH2CH2CH2O), 3.48 (t, 4H, 3JHH = 7 Hz, 

NCH2CH2CH2O), 1.85 (m, 4H, NCH2CH2CH2O) ppm. 13C{1H}-NMR (75 MHz, 

CDCl3, 25°C): δ = 152.6 (1C, py4), 149.7 (2C, py2,6), 106.6 (2C, py3,5), 59.9 (2C, 

NCH2CH2CH2O), 46.7 (2C, NCH2CH2CH2O), 29.8 (2C, NCH2CH2CH2O) ppm. 

 

3,3'-(2,3-Dihydropyrido[3,4-b]pyrazine-1,4-diyl)bis(propan-1-ol) (3b, 

C13H21N3O2)  

3b was prepared analogously to 3a using lithium aluminum hydride (189 mg, 5 

mmol) and 2b (600 mg, 1.79 mmol) as the starting materials resulting in a white 

solid (225 mg, 50 %). Rf (CH2Cl2/MeOH/TEA = 1000/10/1) = 0.10; 1H-NMR 

(300 MHz, CDCl3, 25 °C): δ = 7.70 (d, 1H, 3JHH = 6 Hz, pyr7), 7.64 (s, 1H, pyr5), 

6.60 (d, 1H, 3JHH = 6 Hz, pyr8), 3.65 (m, 4H, 3JHH = 6 Hz, NCH2CH2CH2O), 3.47, 

3.40, 3.25, 3.18 (m, 8H, pyr2,3, NCH2CH2CH2O), 1.82 (4H, m, NCH2CH2CH2O) 

ppm. 13C{1H}-NMR (75 MHz, CDCl3, 25°C): δ = 141.4, 140.7, 131.8, 130.9 (4C, 

pyr4a,5,7,8a), 104.2 (1C, pyr8), 61.0, 60.0 (2C, NCH2CH2CH2O), 48.7, 47.5, 47.2, 

46.1 (4C, N pyr2,3, CH2CH2CH2O), 28.9, 28.6 (2C, CH2CH2CH2O) ppm. 
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